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THE BERNSTEIN-VON MISES THEOREM FOR
STATIONARY PROCESSES

Kenichiro Tamaki*

This paper discusses the asymptotic properties of the posterior density under
Whittle measure. The Bernstein-von Mises theorem is shown for short- and long-
memory stationary processes. Applications to Bayesian inference for time series are
provided.
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1. Introduction

In the literature of time series analysis since Whittle (1953), many authors
(for example, Dunsmuir and Hannan (1976), Dunsmuir (1979), and Hosoya and
Taniguchi (1982)) have considered an approach using Whittle’s log-likelihood,
which is an approximation of Gaussian log-likelihood of the data, and have de-
veloped the asymptotic properties of an estimator that maximizes Whittle’s log-
likelihood.

The Whittle likelihood is useful because it is easy to compute, and the use
of the periodogram transforms dependent data into asymptotically independent
data. Hence, there has been considerable interest in the further development
of the theory in other directions. Monti (1997) applied the empirical likelihood
approach to Whittle’s likelihood for constructing confidence regions. Choudhuri
et al. (2004) showed that the actual joint distribution of the periodograms, at
certain frequencies for a Gaussian time series, is mutually contiguous with the
corresponding Whittle measure. Contiguity plays vital roles in estimation and
testing theory.

The Bernstein-von Mises theorem is one of the fundamental results in the
asymptotic theory of Bayesian inference, and gives the convergence of the pos-
terior density to normal. For Markov processes this result was obtained by
Borwanker et al. (1971). Applications of this theorem lead to various results
on the asymptotic behavior of Bayes estimates.

This paper discusses a Bayes approach to stationary time series. We give the
asymptotic properties of the posterior density under Whittle measure. Then the
Bernstein-von Mises theorems for short- and long-memory stationary processes
are shown. In Section 2 we present our main results. These results enable us to
elucidate the asymptotic behavior of Bayes estimates. Also some examples will
be given. Proofs are relegated to Section 3.
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2. Results

We consider a real-valued linear process {X(t)} generated as

X(t) =

∞∑
j=0

aθ(j)ε(t− j), θ ∈ Θ,

where {ε(t)} is a sequence of i.i.d. random variables satisfying E[ε(t)] = 0,
E[ε(t)2] = σ2 and E[ε(t)8] < ∞, and Θ is an open subset of a compact set
C ∈ R. Denote the spectral density of {X(t)} by

fθ(λ) =
σ2

2π

∣∣∣∣∣∣
∞∑
j=0

aθ(j)e
ijλ

∣∣∣∣∣∣
2

.

Let

λj = 2πj/(n + 1), rj = exp(iλj),

vj = n−1/2(rj , r
2
j , . . . , r

n
j )′ for j = 1, . . . , n

and let

cj = (vj + vn−j)/
√

2, sj = i(vj − vn−j)/
√

2 for j = 1, . . . , n.

Define an n× n matrix

Pn =

{
(c1, s1, . . . , cn/2, sn/2)

′, if n is even,

(c1, s1, . . . , c[n/2], s[n/2], 2
−1/2c[n/2]+1)

′, if n is odd,

where [n] denotes the greatest integer less than or equal to n.
For a function f > 0 on [−π, π] define an n× n diagonal matrix

Dn(f) =




2π diag{f(λ1), f(λ1), . . . , f(λn/2), f(λn/2)}, if n is even,

2π diag{f(λ1), f(λ1), . . . , f(λ[n/2]), f(λ[n/2]), f(λ[n/2]+1)},
if n is odd.

For the stretch X = (X(1), . . . , X(n))′ define the Whittle measure Qn,θ as the
product measure of independent normals that gives rise to the Whittle likelihood.
Then Qn,θ = N{0, Dn(fθ)} and the quasi (Gaussian) likelihood function based
on Z = PnX under Qn,θ is given by

L(θ) = (2π)−n/2 det{Dn(fθ)}−1/2 exp{−(1/2)Z ′Dn(fθ)
−1Z}(2.1)

(see Section 4.5 of Brockwell and Davis (1991) and Choudhuri et al. (2004)).
We make the following assumption.

Assumption 1. The coefficients aθ(j) satisfy

∞∑
j=0

|∂kaθ(j)| < ∞, k = 0, 1, 2,
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where ∂k = ∂k/∂θk.

Assumption 2.
(i) fθ > 0 a.e. λ.
(ii) If fθ1 = fθ2 , then θ1 = θ2 a.e. λ.
(iii) There exists a positive constant d0 such that

I(θ) =
1

4π

∫ π

−π

{
∂

∂θ
fθ(λ)

}2

fθ(λ)−2dλ > d0, for θ ∈ Θ.

(iv) Let θ0 denote the true parameter and K(t) be a nonnegative measurable
function satisfying the following conditions: There exists 0 < ε < I(θ0) such
that ∫ ∞

−∞
K(t) exp[−{I(θ0) − ε}t2/2]dt < ∞.

(v) θ has the prior density function ρ(θ) which is continuous and positive in an
open neighborhood of θ0.

(vi) For every h > 0 and every δ > 0

e−δn

∫
|t|>h

K(n1/2t)ρ(θ̂ + t)dt → 0 a.s. n → ∞,

where θ̂ is a maximum quasi-likelihood estimator which maximizes L(θ) in
(2.1).

Assumption 1 implies that the spectral density fθ(λ) of {X(t)} is differen-
tiable with respect to θ and satisfies

|∂kfθ(λ)| < ∞, k = 0, 1, 2.

For the usual ARMA processes it can be shown that

|∂kaθ(j)| = O(|j|k|r|j), k = 0, 1, 2,

for some |r| < 1. Hence we can see that Assumption 1 is satisfied by a wide class of
time series models. The above ARMA process is referred to as a “short-memory
process” because the autocovariance function decreases to zero geometrically.

Assumptions 1 and 2 (i) imply that fθ(λ)−1 exists and has the Fourier series
representation

fθ(λ)−1 =
1

2π

∞∑
j=−∞

∆θ(j)e
ijλ,

∞∑
j=−∞

|∆(j)| < ∞.(2.2)

We introduce D space of functions on [−π, π] defined by

D =


g : g(λ) =

∞∑
j=−∞

b(j) exp(−ijλ), b(j) = b(−j),

∞∑
j=−∞

|b(j)| < ∞


 ,
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that is, D is the space of functions which have the Fourier series representations
with absolutely summable Fourier coefficients. From (2.2) and fθ(λ) = fθ(−λ),
it is easily seen that fθ(λ)−1 ∈ D.

In what follows, we state the fundamental results on the periodogram.

Lemma 1. Let In(λ) = (2πn)−1|
∑n

t=1 X(t) exp(itλ)|2. For β > 3/4 and
g ∈ D, ∣∣∣∣∣∣n−β

n∑
j=1

{In(λj) − Eθ0 [In(λj)]}g(λj)

∣∣∣∣∣∣ → 0 a.s.

Liggett (1971) shows that Lemma 1 holds for β > 1/2 in the Gaussian case
because all of the moments exist. We define

l(θ) =
1

n
logL(θ)

= − log(2π) − 1

2n

n∑
j=1

log fθ(λj) −
1

2n

n∑
j=1

fθ(λj)
−1In(λj).

From Lemma 1 and Eθ0 [In(λ)] = fθ0(λ) + o(1), we get

l(θ) − l(θ0) →
1

4π

∫ π

−π

(
1 − fθ0

fθ
+ log

fθ0
fθ

)
dλ < 0,(2.3)

unless fθ = fθ0 , which implies θ̂ → θ0 a.s.
Now we discuss a Bayes approach to stationary time series. First we consider

the posterior density of θ using the Whittle measure. The posterior density of θ
given X is

fn(θ | X) =
exp{nl(θ)}ρ(θ)∫

Θ exp{nl(θ)}ρ(θ)dθ .

Thus the posterior density of t = n1/2(θ − θ̂) is given by

f∗
n(t | X) = C−1

n νn(t)ρ(θ̂ + n−1/2t),

where

νn(t) = exp{nl(θ̂ + n−1/2t) − nl(θ̂)}
and

Cn =

∫ ∞

−∞
νn(t)ρ(θ̂ + n−1/2t)dt.

In the following, we give the Bernstein-von Mises theorem for short-memory
stationary processes.

Theorem 1. Under Assumptions 1 and 2,

lim
n→∞

∫ ∞

−∞
K(t)|f∗

n(t | X) − φ(t; I(θ0)
−1)|dt = 0 a.s.,
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where φ(t;V ) is the normal density function with mean 0 and variance V .

This result enables us to elucidate the asymptotic behavior of Bayes estima-
tors.

Example 1. We consider the Bayes estimator η̂ which minimizes

Bn(η) =

∫
Θ
l(θ, η)fn(θ | X)dθ,

where l(θ, η) = (η − θ)2 is the loss function. Then η̂ is given by

η̂ =

∫
Θ
θfn(θ | X)dθ.

Note that

η̂ =

∫ ∞

−∞

(
θ̂ +

t√
n

)
f∗
n(t | X)dt

= θ̂ +
1√
n

∫ ∞

−∞
tf∗

n(t | X)dt.

We obtain √
n(η̂ − θ0) =

√
n(θ̂ − θ0) +

∫ ∞

−∞
tf∗

n(t | X)dt.

From Theorem 1 we have∫ ∞

−∞
tf∗

n(t | X)dt →
∫ ∞

−∞
tφ(t; I(θ0)

−1)dt = 0, a.s.

Hence it is seen that η̂ → θ0 a.s. and
√
n(η̂ − θ0) =

√
n(θ̂ − θ0) + op(1), which

means that the Bayes estimator η̂ and the maximum quasi-likelihood estimator
θ̂ have the same asymptotic distribution.

It is well known that the asymptotic distribution of
√
n(θ̂ − θ0) is normal

with mean 0 and variance V (θ0), where

V (θ) = I(θ)−1 + V0(θ),

V0(θ) =
1

8π
I(θ)−2

∫ π

−π

∫ π

−π
{∂1fθ(λ1)}{∂1fθ(λ2)}fθ(4)(−λ1, λ2,−λ2)dλ1dλ2

and fθ
(4)(λ1, λ2, λ3) is the forth-order cumulant spectral density of {X(t)} (see

Hosoya and Taniguchi (1982)). Hence if V0(θ) = 0, then the posterior density of
t is asymptotically equal to the density function of the asymptotic distribution
of

√
n(θ̂ − θ0).

Example 2. To compare the Bayes estimator η̂ in Example 1 with the max-
imum quasi-likelihood estimator θ̂, we consider the following AR(1) model:

X(t) − θX(t− 1) = ε(t), |θ| < 1,
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Table 1. The average values of θ̂ and η̂.

θ0 θ̂ η̂ ρ(θ)

−0.75 −0.728 −0.730 [−0.99,−0.5]

−0.25 −0.246 −0.248 [−0.5, 0]

0.25 0.237 0.242 [0, 0.5]

0.75 0.724 0.730 [0.5, 0.99]

Table 2. MSE of θ̂ and η̂.

θ0 θ̂ η̂ ρ(θ)

−0.75 0.00442 0.00375 [−0.99,−0.5]

−0.25 0.00967 0.00622 [−0.5, 0]

0.25 0.00962 0.00600 [0, 0.5]

0.75 0.00554 0.00441 [0.5, 0.99]

where ε(t) ∼ i.i.d. t(10) and t(p) is t-distribution with p degrees of freedom.
Suppose that we have the prior information for θ, e.g., for the true value θ0 = 0.25,
it is assumed that we know θ0 ∈ [0, 0.5] in advance. Then let ρ(θ) be the density
function of the uniform distribution on the interval [0, 0.5]. Similarly for the
true value θ0 = 0.75, it is assumed that we know θ0 ∈ [0.5, 0.99] in advance.
The average values of θ̂ and η̂ for n = 100, θ0 = −0.75, −0.25, 0.25, 0.75, and
1000 times simulations are given in Table 1, where the row of ρ(θ) expresses the
interval on which ρ(θ) is the density function of the uniform distribution. Table 2
gives the mean square errors (MSE) of θ̂ and η̂ for the same case as in Table 1.
From Table 1, it is seen that the average value of η̂ is closer to θ0 than that of θ̂.
Moreover Table 2 shows that the MSE of η̂ is smaller than that of θ̂.

Recently much attention has been paid to “long-memory process” which
appear in many fields (e.g., hydrology and economics). For these processes the
autocovariance functions decrease to zero with order of power of lag. In what
follows we consider a linear process with long-range dependence. First we impose
the following assumption instead of Assumption 1.

Assumption 3.
(i) For some d = d(θ) (0 < d < 1/4), the coefficients aθ(j) satisfy

|∂kaθ(j)| = O{|j|−1+d(log |j|)k}, k = 0, 1, 2.

(ii) Let Aθ(z) =
∑∞

j=0 aθ(j)z
j . Then |Aθ(z)| �= 0 for |z| ≤ 1 and Aθ(z) can be

expanded as follows:

Aθ(z)
−1 = 1 +

∞∑
j=1

bθ(j)z
j ,

where the coefficients bθ(j) satisfy

|∂kbθ(j)| = O{|j|−1−d(log |j|)k}, k = 0, 1, 2.
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Then similarly as in Lemma 1 we give

Lemma 2. For β > 3/4 + d and g ∈ D,∣∣∣∣∣∣n−β
n∑

j=1

{In(λj) − Eθ0 [In(λj)]}g(λj)

∣∣∣∣∣∣ → 0 a.s.

Hence we have the Bernstein-von Mises theorem for stationary processes with
long-range dependence.

Theorem 2. Under Assumptions 2 and 3,

lim
n→∞

∫ ∞

−∞
K(t)|f∗

n(t | X) − φ(t; I0)|dt = 0 a.s.

3. Proofs

Proof of Lemma 1. Setting

Zn = n−β
n∑

j=1

{In(λj) − Eθ0 [In(λj)]}g(λj),

we obtain Eθ0 [Zn] = 0. Note that

n∑
j=1

In(λj)g(λj) =
1

2πn

n∑
j=1

n−1∑
l=−(n−1)

n−l∑
k=1+l

XkXk+l

∞∑
m=−∞

b(m) exp{−i(l + m)λj},

where l = max(0,−l) and l = max(0, l) for l ∈ Z . We get

Varθ0 [Zn] =

(
1

2πn1+β

)2 ∞∑
m1,m2=−∞

b(m1)b(m2)

×
n−1∑

l1,l2=−(n−1)

n−l1∑
k1=1+l1

n−l2∑
k2=1+l2

cum[Xk1Xk1+l1 , Xk2Xk2+l2 ]

×
n∑

j1,j2=1

exp{−i(l1 + m1)λj1} exp{−i(l2 + m2)λj2}.

Since

cumθ0 [Xk1Xk1+l1 , Xk2Xk2+l2 ] = cumθ0 [Xk1 , Xk1+l1 , Xk2 , Xk2+l2 ]

+ γθ0(k2 − k1)γθ0(k2 − k1 + l2 − l1)

+ γθ0(k2 − k1 + l2)γθ0(k2 − k1 − l1),
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where γθ(j) = Eθ[X(t)X(t + j)], we have Varθ0 [Zn] = O(n1−2β). Similarly,

cum
(4)
θ0

[Zn] = O(n2−4β). Thus it is seen that Eθ0 [Z
4
n] = O(n2−4β). Since 2−4β <

−1, Lemma 1 follows from the Borel-Cantelli lemma. �

The proof of Theorem 1 is based on the following three lemmas.

Lemma 3.
(i) For every ε (0 < ε < I(θ0)) there exists a δ0 and an integer N such that

νn(t) ≤ exp

[
−1

2
{I(θ0) − ε}t2

]
,

for |t| ≤ δ0n
1/2 and n ≥ N .

(ii) For every δ > 0 there exists a positive ε and an integer N such that

sup
|t|>δn1/2

νn(t) ≤ exp

(
−1

4
nε

)

for n ≥ N .
(iii) For every fixed t

lim
n→∞

νn(t) = exp

{
−1

2
I(θ0)t

2

}
a.s.

Proof of Lemma 3.
(i) Expanding l(θ̂ + n−1/2t) in a Taylor series at θ = θ̂, we obtain

log νn(t) =
√
n∂1l(θ̂)t +

1

2
∂2l(θ∗)t2,(3.1)

where |θ∗− θ̂| ≤ tn−1/2. The first order term on the right hand side of (3.1)
equals zero. For the second order term we have

1

2
∂2l(θ∗)t2 =

1

2
∂2l(θ0)t

2 +
1

2
{∂2l(θ∗) − ∂2l(θ0)}t2.(3.2)

Note that

∂2l(θ) = − 1

2n

n∑
j=1

[{∂2fθ(λj)}fθ(λj) − 2{∂1fθ(λj)}2

fθ(λj)3
{fθ(λj) − In(λj)}

+
{∂1fθ(λj)}2

fθ(λj)2

]
.

From Lemma 1, the first order term on the right hand side of (3.2) converges
a.s. to −I(θ0)t

2/2. Therefore it follows that for a positive ε, (ε < I(θ0)),

1

2
∂2l(θ0)t

2 <
1

2

{
−I(θ0) +

ε

2

}
t2
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for n ≥ N1 (say). Now choose a positive δ such that |θ̂ − θ0| < δ and
|θ∗− θ̂| ≤ tn−1/2 < δ for n ≥ N2 (say). Hence if n ≥ N2, then |θ∗− θ0| < 2δ
and

{∂2l(θ∗) − ∂2l(θ0)} ≤ sup
|θ−θ0|<2δ

{∂2l(θ) − ∂2l(θ0)}.

From Lemma 1 there exists a δ0 > 0 such that

sup
|θ−θ0|<2δ0

{∂2l(θ) − ∂2l(θ0)} <
ε

2
.

Thus we get

νn(t) ≤ exp

[
−1

2
{I(θ0) − ε}t2

]
.

(ii) We have

n−1 log νn(t) = l(θ̂ + n−1/2t) − l(θ0) + l(θ0) − l(θ̂).

If |θ̂−θ0| < δ/2 for n ≥ N3, then |tn−1/2| > δ implies that |θ̂+tn−1/2−θ0| >
δ/2. Hence for n ≥ N3,

l(θ̂ + n−1/2t) − l(θ0) ≤ sup
|θ−θ0|>δ/2

{l(θ) − l(θ0)}

< 0 a.s.

Moreover, l(θ0) − l(θ̂) converges to zero a.s. Now choose ε > 0 such that

sup
|θ−θ0|>δ/2

{l(θ) − l(θ0)} ≤ −ε.

Thus, we obtain

sup
|t|>δn1/2

νn(t) ≤ exp

(
−1

4
nε

)
.

(iii) For a fixed t and any ε > 0 choose an ε1 > 0 such that (t2/2)ε1 < ε. From
the proof of Lemma 3 (i), we have∣∣∣∣log νn(t) +

1

2
I(θ0)t

2

∣∣∣∣ < 1

2
t2ε1 < ε

for n ≥ N4 (say), which implies the result. �

Lemma 4. There exists a positive δ0 such that

lim
n→∞

∫
|t|≤δ0n1/2

K(t)|νn(t)ρ(θ̂ + n−1/2t) − ρ(θ0) exp{−I(θ0)t
2/2}|dt = 0 a.s.
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Proof of Lemma 4.∫
|t|≤δ0n1/2

K(t)|νn(t)ρ(θ̂ + n−1/2t) − ρ(θ0) exp{−I(θ0)t
2/2}|dt(3.3)

≤
∫
|t|≤δ0n1/2

K(t)ρ(θ0)|νn(t) − exp{−I(θ0)t
2/2}|dt

+

∫
|t|≤δ0n1/2

K(t)νn(t)|ρ(θ0) − ρ(θ̂ + n−1/2t)|dt.

Choose an ε > 0 such that
∫

exp[−{I(θ0)− ε}t2/2]dt < ∞. Then from Lemma 3
(i), there exist a δ1 > δ0 and an N such that

νn(t) ≤ exp

[
−1

2
{I(θ0) − ε}t2

]
, |t| ≤ δ1n

1/2, n ≥ N.(3.4)

Hence, we have, by the dominated convergence theorem and Lemma 3 (iii),∫
|t|≤δ0n1/2

K(t)ρ(θ0)|νn(t) − exp{−I(θ0)t
2/2}|dt(3.5)

→ 0 as n → ∞, a.s.

For the second order term on the right hand side of (3.3), we obtain by (3.4)∫
|t|≤δ0n1/2

K(t)νn(t)|ρ(θ0) − ρ(θ̂ + n−1/2t)|dt

≤ sup
|θ−θ0|≤δ2

|ρ(θ) − ρ(θ0)|
∫
|t|≤δ0n1/2

K(t) exp{−I(θ0)t
2/2}dt,

where δ2 > |θ̂ − θ0| + δ0. From |θ̂ − θ0| < δ1 for n ≥ N5 (say), for a given δ,
choose δ0 < δ2 − δ1 such that

sup
|θ−θ0|≤δ2

|ρ(θ) − ρ(θ0)|
∫
|t|≤δ0n1/2

K(t) exp{−I(θ0)t
2/2}dt < δ.(3.6)

Combining (3.5) with (3.6), we have Lemma 4. �

Lemma 5. For every δ > 0,

lim
n→∞

∫
|t|>δn1/2

K(t)|νn(t)ρ(θ̂ + n−1/2t) − ρ(θ0) exp{−I(θ0)t
2/2}|dt = 0 a.s.

Proof of Lemma 5. It is easily seen that∫
|t|>δn1/2

K(t)|νn(t)ρ(θ̂ + n−1/2t) − ρ(θ0) exp{−I(θ0)t
2/2}|dt(3.7)

≤
∫
|t|>δn1/2

K(t)νn(t)ρ(θ̂ + n−1/2t)dt

+

∫
|t|>δn1/2

K(t)ρ(θ0) exp{−I(θ0)t
2/2}dt.
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For the first order term on the right hand side of (3.7), we obtain by Lemma 3 (ii),∫
|t|>δn1/2

K(t)νn(t)ρ(θ̂+ n−1/2t)dt ≤ exp

(
−1

4
nε

)∫
|t|>δn1/2

K(t)ρ(θ̂+ n−1/2t)dt,

which, from Assumption 2 (vi), tends to zero a.s. Since

ρ(θ0)

∫
|t|>δn1/2

K(t) exp{−I(θ0)t
2/2}dt → 0 a.s.,

we complete the proof. �

Proof of Theorem 1. From Lemmas 4 and 5, we obtain

lim
n→∞

∫
K(t)|νn(t)ρ(θ̂ + n−1/2t) − ρ(θ0) exp{−I(θ0)t

2/2}|dt = 0 a.s.(3.8)

Putting K(t) ≡ 1 , which satisfies the assumptions on the function K trivially,
we get

Cn =

∫ ∞

−∞
νn(t)ρ(θ̂ + n−1/2t)dt → ρ(θ0)

∫ ∞

−∞
exp{−I(θ0)t

2/2}dt(3.9)

= ρ(θ0)(2π)1/2I(θ0)
−1/2.

Note that ∫ ∞

−∞
K(t)|f∗

n(t | X) − φ(t; I(θ0))|dt(3.10)

≤
∫ ∞

−∞
K(t)|C−1

n νn(t)ρ(θ̂ + n−1/2t)

− C−1
n ρ(θ0) exp{−I(θ0)t

2/2}|dt

+

∫ ∞

−∞
K(t)|{C−1

n ρ(θ0) − (2π)−1/2I(θ0)
1/2}

× exp{−I(θ0)t
2/2}|dt.

The first order term on the right hand side of (3.10) tends to zero from
(3.8). The second order term tends to zero from (3.9). Hence we complete
the proof. �

Proof of Lemma 2. A similar way to the proof of Lemma 1 yields the
results. �

Proof of Theorem 2. First, we need to show that θ̂ → θ0 a.s. for long
memory processes. To this purpose, we show that for g ∈ D,

1

n

n∑
j=1

Eθ0 [In(λj)]g(λj) =
1

2π

∫ π

−π
fθ0(λ)g(λ)dλ + o(1).(3.11)
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It is easily seen that

1

n

n∑
j=1

Eθ0 [In(λj)]g(λj) =
1

2πn

∞∑
m=−∞

n−1∑
l=−(n−1)

b(m)

(
1 − |l|

n

)
γθ0(l)

×
n∑

j=1

exp{−i(m + l)λj}

=
1

2π

∞∑
m=−∞

n−1∑
l=−(n−1)

b(m)γθ0(l) + o(1),

where m + l = k(n + 1) (k = 0,±1,±2, . . .). Then we obtain

1

2π

∞∑
m=−∞

n−1∑
l=−(n−1)

b(m)γθ0(l)(3.12)

=
1

2π

∞∑
k=−∞

n−1∑
l=−(n−1)

b{k(n + 1) − l}γθ0(l)

=
1

2π

1∑
k=−1

n−1∑
l=−(n−1)

b{k(n + 1) − l}γθ0(l) + o(1)

by |k(n + 1) − l| ≥ n + 3 for |k| ≥ 2. Note that for k = ±1∣∣∣∣∣∣
n−1∑

l=−(n−1)

b{k(n + 1) − l}γθ0(l)

∣∣∣∣∣∣ ≤
∑

|l|≤[n/2]

|b{k(n + 1) − l}γθ0(l)|

+
∑

[n/2]<|l|≤n−1

|b{k(n + 1) − l}γθ0(l)|

→ 0 as n → ∞.

From (3.12) it follows that

1

n

n∑
j=1

Eθ0 [In(λj)]g(λj) =
1

2π

n−1∑
l=−(n−1)

b(−l)γθ0(l) + o(1)

=
1

2π

∞∑
l=−∞

b(−l)γθ0(l) + o(1),

which implies (3.11). From fθ(λ)−1 ∈ D, (2.3) and (3.11), we have θ̂ → θ0 a.s.
Hence, Theorem 2 follows from Lemmas 2–5 in the same fashion as Theorem 1
follows from Lemmas 1 and 3–5. �
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