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COLLAPSED SYMMETRY MODEL AND ITS
DECOMPOSITION FOR MULTI-WAY TABLES WITH

ORDERED CATEGORIES

Kouji Tahata*, Akira Takazawa* and Sadao Tomizawa*

For r × r tables with ordered categories, Tomizawa (1995) considered the col-
lapsed symmetry model. This model indicates the structure of symmetry for the
r− 1 ways of collapsing the r× r table into a 2× 2 table by choosing cut points after
the u-th row and after the u-th column for u = 1, . . . , r − 1. This paper proposes
a collapsed symmetry (C) model for multi-way tables with ordered categories. The
proposed model is an extension of the complete symmetry model and a special case of
the marginal homogeneity (M) model. Also for multi-way tables, this paper proposes
the collapsed quasi-symmetry (CQS) model which is an extension of the C model,
and gives a theorem that the C model holds if and only if both the CQS and M
models hold. An example is given.

Key words and phrases: Collapsed quasi-symmetry, collapsed symmetry, decompo-
sition, marginal homogeneity, multi-way tables, ordered category, quasi-symmetry,
symmetry.

1. Introduction

For an r× r square contingency table with the same ordinal row and column
classifications, let pij denote the probability that an observation will fall in the
i-th row and j-th column of the table (i = 1, . . . , r; j = 1, . . . , r) and let X1 and
X2 denote the row and column variables, respectively. The symmetry model is
defined by

pij = pji (i = 1, . . . , r; j = 1, . . . , r);

see, for example, Bowker (1948) and Bishop et al. (1975, p. 282). This model
indicates that the probability that an observation will fall in row category i and
column category j (�= i) is equal to the probability that the observation falls in
row category j and column category i.

Caussinus (1965) considered the quasi-symmetry model defined by

pij = µαiβjψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψji. A special case of this model obtained by putting {αi = βi} is
the symmetry model.

The marginal homogeneity model is defined by

pi· = p·i (i = 1, . . . , r),
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where pi· =
∑r

s=1 pis and p·i =
∑r

t=1 pti (Stuart (1955)). This model indicates
that the row marginal distribution is identical to the column marginal distribu-
tion. Note that Caussinus (1965) gave the theorem that the symmetry model
holds if and only if both the quasi-symmetry and marginal homogeneity models
hold.

Consider the r−1 ways of collapsing the r×r table into a 2×2 table by choos-
ing cut points after the u-th row and after the u-th column for u = 1, . . . , r − 1
(see Table 1). Tomizawa (1993, 1995) described the collapsed symmetry (denoted
by C2) model, defined by

G1(u) = G2(u) (u = 1, . . . , r − 1),

where

G1(u) =
u∑

s=1

r∑

t=u+1

pst = P(X1 ≤ u,X2 > u),

and

G2(u) =
r∑

s=u+1

u∑

t=1

pst = P(X1 > u,X2 ≤ u).

See also McCullagh (1978), Agresti (1984, p. 205), Tomizawa et al. (2001, 2006,
2007), Miyamoto et al. (2004), and Tomizawa and Miyamoto (2007). This model
states that for u = 1, . . . , r − 1, the cumulative probability that an observation
will fall in row category u or below, and in column category u + 1 or above, is

Table 1. Illustration of (a) the 4 × 4 table of probabilities, and (b) the collapsed 2 × 2 tables.

(a) The probabilities

X2

X1 (1) (2) (3) (4) Total

(1) p11 p12 p13 p14 p1·

(2) p21 p22 p23 p24 p2·

(3) p31 p32 p33 p34 p3·

(4) p41 p42 p43 p44 p4·

Total p·1 p·2 p·3 p·4 1

(b) The u-th (u = 1, 2, 3) collapsed 2 × 2 table

X2

X1 ≤ u > u Total

≤ u

u∑

a=1

u∑

b=1

pab

u∑

a=1

4∑

b=u+1

pab (= G1(u))

u∑

a=1

pa·

> u

4∑

a=u+1

u∑

b=1

pab (= G2(u))

4∑

a=u+1

4∑

b=u+1

pab

4∑

a=u+1

pa·

Total

u∑

b=1

p·b

4∑

b=u+1

p·b 1
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equal to the cumulative probability that the observation falls in column category
u or below, and in row category u + 1 or above. This indicates that there is a
structure of symmetry in each collapsed 2 × 2 table. We note that the collapsed
symmetry model is equivalent to the marginal homogeneity model for the r × r
table.

Next consider an rT contingency table (T ≥ 2). Let pi1...iT denote the
probability that an observation will fall in the (i1, . . . , iT )-th cell of the table.
The complete symmetry (ST ) model is defined by

pi1...iT = pj1...jT ,

for any permutation (j1, . . . , jT ) of (i1, . . . , iT ) with ik = 1, . . . , r; k = 1, . . . , T
(Agresti (2002), p. 440). For instance, in a three-way table, pijk = pikj = pjik =
pjki = pkij = pkji (Bishop et al. (1975), p. 301).

Bishop et al. (1975, p. 303) defined the quasi-symmetry model for three-way
tables (i.e., for T = 3), and Bhapkar and Darroch (1990) defined the quasi-
symmetry (QST ) model for multi-way tables, which may be expressed as

pi1...iT = µα1(i1)α2(i2) · · ·αT (iT )ψi1...iT ,

where ψi1...iT = ψj1...jT and (j1, . . . , jT ) is any permutation of (i1, . . . , iT ) with
ik = 1, . . . , r; k = 1, . . . , T . For the details of this model, see also Agresti (2002,
p. 440), Tomizawa and Tahata (2007), and Yamamoto et al. (2007).

Let Xk (k = 1, . . . , T ) denote the k-th variable. The marginal homogeneity
(MT ) model is defined by

p
(1)
i = · · · = p

(T )
i (i = 1, . . . , r),

where
p
(k)
i = P(Xk = i) (k = 1, . . . , T ).

For instance, in a three-way table, pi·· = p·i· = p··i where pi·· =
∑r

s=1

∑r
t=1 pist,

p·i· =
∑r

s=1

∑r
t=1 psit and p··i =

∑r
s=1

∑r
t=1 psti. Note that Bhapkar and Darroch

(1990) gave the theorem that for multi-way tables, the ST model holds if and only
if both the QST and MT models hold (see also Agresti (2002, p. 440), Tomizawa
and Tahata (2007), Yamamoto et al. (2007)).

The ST , QST and MT models are invariant under the arbitrarily same per-
mutations of categories for all variables. Thus, it is suitable to apply these models
for analyzing the multi-way tables with nominal categories. We are interested
in the models that indicate the structure of symmetry for multi-way tables with
ordered categories; concretely, in (1) extending the collapsed symmetry model to
multi-way tables, in (2) proposing the collapsed quasi-symmetry model for multi-
way tables, and in (3) decomposing the collapsed symmetry model for multi-way
tables.

The purpose of this paper is to propose two new models for multi-way tables
with ordered categories. Subsection 2.1 proposes the collapsed symmetry model
and the collapsed quasi-symmetry model for three-way contingency tables, and
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gives a decomposition of the collapsed symmetry model. Subsection 2.2 extends
them to multi-way tables. The collapsed symmetry model is an extension of
the ST model and a special case of the MT model for T ≥ 3. The collapsed
quasi-symmetry model is an extension of the collapsed symmetry model, and it
is different from the quasi-symmetry model. Section 3 gives an example.

2. Collapsed symmetry models

2.1. Case of three-way tables
Consider an r × r × r contingency table with ordered categories. Let pijk

denote the probability that an observation will fall in the (i, j, k)-th cell of the
table for 1 ≤ i, j, k ≤ r. Denote the k-th variable by Xk (k = 1, 2, 3).

For u = 1, . . . , r − 1, let

G1(u) = P(X1 ≤ u,X2 > u,X3 > u),

G2(u) = P(X1 > u,X2 ≤ u,X3 > u),

G3(u) = P(X1 > u,X2 > u,X3 ≤ u),

and
G12(u) = P(X1 ≤ u,X2 ≤ u,X3 > u),

G13(u) = P(X1 ≤ u,X2 > u,X3 ≤ u),

G23(u) = P(X1 > u,X2 ≤ u,X3 ≤ u).

We shall consider two new models. First, consider the collapsed symmetry (C3)
model defined by, for u = 1, . . . , r − 1,

G1(u) = G2(u) = G3(u),(2.1)

and

G12(u) = G13(u) = G23(u).(2.2)

Consider the r−1 ways of collapsing the r× r× r table into a 2×2×2 table
by choosing cut points after the category u of X1, X2 and X3 for u = 1, . . . , r−1
(see Table 2). Denote the cumulative probability for the (i, j, k)-th cell of the u-th
collapsed 2× 2× 2 table (u = 1, . . . , r− 1) by G∗

ijk(u) (i = 1, 2; j = 1, 2; k = 1, 2).

For instance, G∗
121(u) = G13(u) and G∗

212(u) = G2(u). Then the C3 model is
expressed as, for u = 1, . . . , r − 1,

G∗
122(u) = G∗

212(u) = G∗
221(u),

and
G∗

112(u) = G∗
121(u) = G∗

211(u).

Namely the C3 model indicates the symmetry for the u-th collapsed 2 × 2 × 2
table (u = 1, . . . , r − 1). Note that the C3 model is not equivalent to the S3

model in the r× r× r table. Thus the C3 model states that for each cut point u
(u = 1, . . . , r − 1), (1) from (2.1), three cumulative probabilities that one of X1,
X2 and X3 is in the category u or below and the other two are in the category
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Table 2. Illustration of (a) the 3 × 3 × 3 table of probabilities, and (b) the collapsed 2 × 2 × 2 tables.

(a) The probabilities

X3

(1) (2) (3)

X2 X2 X2

X1 (1) (2) (3) (1) (2) (3) (1) (2) (3)

(1) p111 p121 p131 p112 p122 p132 p113 p123 p133

(2) p211 p221 p231 p212 p222 p232 p213 p223 p233

(3) p311 p321 p331 p312 p322 p332 p313 p323 p333

(b) The u-th (u = 1, 2) collapsed 2 × 2 × 2 table

X3 ≤ u

X2

X1 ≤ u > u

≤ u

u∑

a=1

u∑

b=1

u∑

c=1

pabc (= G∗
111(u))

u∑

a=1

3∑

b=u+1

u∑

c=1

pabc (= G13(u) = G∗
121(u))

> u

3∑

a=u+1

u∑

b=1

u∑

c=1

pabc (= G23(u) = G∗
211(u))

3∑

a=u+1

3∑

b=u+1

u∑

c=1

pabc (= G3(u) = G∗
221(u))

X3 > u

X2

X1 ≤ u > u

≤ u

u∑

a=1

u∑

b=1

3∑

c=u+1

pabc (= G12(u) = G∗
112(u))

u∑

a=1

3∑

b=u+1

3∑

c=u+1

pabc (= G1(u) = G∗
122(u))

> u

3∑

a=u+1

u∑

b=1

3∑

c=u+1

pabc (= G2(u) = G∗
212(u))

3∑

a=u+1

3∑

b=u+1

3∑

c=u+1

pabc (= G∗
222(u))

u+ 1 or above, are the same, and (2) from (2.2), three cumulative probabilities
that two of X1, X2 and X3 are in the category u or below and the other one is
in the category u + 1 or above, are the same. So, the C3 model indicates the
symmetry for r − 1 collapsed 2 × 2 × 2 tables.

We note that the S3 model implies the C3 model, and the C3 model implies
the M3 model. Namely, the C3 model is an extension of the S3 model and it
is a special case of the M3 model (though only when T = 2 the C2 model is
equivalent to the M2 model).

Next consider the collapsed quasi-symmetry (CQS3) model defined by, for
u = 1, . . . , r − 1,

G∗
ijk(u) = µ(u)α

(u)
1(i)α

(u)
2(j)α

(u)
3(k)Ψ

(u)
ijk (i = 1, 2; j = 1, 2; k = 1, 2),

where
Ψ

(u)
ijk = Ψ

(u)
jik = Ψ

(u)
ikj = Ψ

(u)
jki = Ψ

(u)
kij = Ψ

(u)
kji.

Note that without loss of generality, we may set, e.g., α
(u)
1(2) = α

(u)
2(2) = α

(u)
3(2) = 1
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and Ψ
(u)
122 = Ψ

(u)
222 = 1. A special case of this model obtained by putting α

(u)
1(i) =

α
(u)
2(i) = α

(u)
3(i) (u = 1, . . . , r − 1; i = 1, 2) is the C3 model.

Denote odds ratios as, for u = 1, . . . , r − 1,

θ
(u)
1 =

G∗
211(u)G

∗
222(u)

G∗
212(u)G

∗
221(u)

, θ
(u)
2 =

G∗
121(u)G

∗
222(u)

G∗
122(u)G

∗
221(u)

, θ
(u)
3 =

G∗
112(u)G

∗
222(u)

G∗
122(u)G

∗
212(u)

.

Although the details are omitted, then the CQS3 model may be expressed, e.g.,
as

θ
(u)
1 = θ

(u)
2 = θ

(u)
3 (u = 1, . . . , r − 1).

Namely, this indicates that for each of the r− 1 collapsed 2× 2× 2 tables, there
is a structure of symmetry of odds ratios.

In the similar way to the decomposition of the symmetry model for the cell
probabilities described in Section 1, we can obtain the following theorem:

Theorem 1. The C3 model holds if and only if both the CQS3 and M3

models hold.

2.2. Extension to multi-way tables
Consider an rT (T > 3) contingency table with ordered categories. Let

(j1, . . . , jk, jk+1, . . . , jT ) be any permutation of (1, . . . , T ). Then let for u =
1, . . . , r − 1, and k = 1, . . . , T − 1,

Gj1...jk(u) = P(Xj1 ≤ u, . . . ,Xjk ≤ u,Xjk+1
> u, . . . ,XjT > u).

For instance, when T = 5,

G14(u) = P(X1 ≤ u,X2 > u,X3 > u,X4 ≤ u,X5 > u),

G125(u) = P(X1 ≤ u,X2 ≤ u,X3 > u,X4 > u,X5 ≤ u).

For multi-way rT tables, consider the collapsed symmetry (CT ) model de-
fined by, for u = 1, . . . , r − 1, and k = 1, . . . , T − 1,

Gs1...sk(u) = ∆k(u) (sj = 1, . . . , T ; j = 1, . . . , k; sl �= sm (l �= m)),

where ∆k(u) is unspecified.
Denote the cumulative probability for the (i1, . . . , iT )-th cell of the u-th col-

lapsed 2T table (u = 1, . . . , r − 1) by G∗
i1...iT (u) where ik = 1, 2; k = 1, . . . , T .

Then the CT model may be expressed as, for u = 1, . . . , r − 1,

G∗
i1...iT (u) = G∗

j1...jT (u),

where (j1, . . . , jT ) is any permutation of (i1, . . . , iT ) with ik = 1, 2; k = 1, . . . , T .
Namely, this model indicates the structure of symmetry for the r − 1 ways of
collapsing the rT table into a 2T table. We note that the CT model is an extension
of the ST model and it is a special case of the MT model.
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Next consider the collapsed quasi-symmetry (CQST ) model defined by, for
u = 1, . . . , r − 1,

G∗
i1...iT (u) = µ(u)α

(u)
1(i1)α

(u)
2(i2) · · ·α

(u)
T (iT )Ψ

(u)
i1...iT

,

where Ψ
(u)
i1...iT

= Ψ
(u)
j1...jT

and (j1, . . . , jT ) is any permutation of (i1, . . . , iT ) with
ik = 1, 2; k = 1, . . . , T . Note that without loss of generality, we may set, e.g.,

α
(u)
1(2) = · · · = α

(u)
T (2) = 1 and Ψ

(u)
12···2 = Ψ

(u)
22···2 = 1. A special case of this model

obtained by putting α
(u)
1(i) = · · · = α

(u)
T (i) (u = 1, . . . , r − 1; i = 1, 2) is the CT

model. Note that the CQST model can be defined when T ≥ 3, and this model
is different from the quasi-symmetry model with the multiplicative form for the
cell probabilities described in Section 1.

In the similar way to the decomposition of the symmetry model for the
cell probabilities for multi-way tables described in Section 1, we can obtain the
following theorem:

Theorem 2. The CT model holds if and only if both the CQST and MT

models hold.

Note that each of the CT and CQST models is not invariant under the arbi-
trary same permutations of the categories for all variables, and thus each model
should be applied for analyzing the multi-way tables with ordered categories.

2.3. Goodness-of-fit test
Let ni1...iT denote the observed frequency in the (i1, . . . , iT )-th cell of the

rT (T ≥ 2) table (ik = 1, . . . , r; k = 1, . . . , T ) with n =
∑
. . .

∑
ni1...iT . Assume

that {ni1...iT } have a multinomial distribution. The maximum likelihood esti-
mates of expected frequencies under each of the CT and CQST models could be
obtained using the Newton-Raphson method in the log-likelihood equation.

Each model can be tested for goodness-of-fit by, e.g., the likelihood ratio
chi-squared statistic (denoted by G2) with the corresponding degrees of freedom.
The numbers of degrees of freedom for each model are given in Table 3. Note
that the number of degrees of freedom for the CT model is equal to the sum of
those for the CQST and MT models.

Table 3. The numbers of degrees of freedom for models applied to the rT table (T ≥ 2), where

the CQST model is defined when T ≥ 3.

Models Degrees of freedom

ST rT −K

QST rT −K − (r − 1)(T − 1)

CT (r − 1)(2T − T − 1)

CQST (r − 1)(2T − 2T )

MT (r − 1)(T − 1)

Note: K =
(
r+T−1

T

)
=

(r+T−1)!
(r−1)!T !

.
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3. An example

Consider the data in Table 4(a) obtained from the Meteorological Agency
in Japan. These are obtained from the daily temperatures at Nagasaki City,
Japan, in three years, 2001, 2002 and 2003, using three levels, (1) below normals,
(2) normals and (3) above normals. The observation nijk in the (i, j, k)-th cell
in Table 4(a) (i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, 3) with ΣΣΣnijk = 365 indicates
that for each of nijk days in 365 days (i.e., from 1 January to 31 December), the
temperatures in three years are i in 2001, j in 2002, and k in 2003. Table 4(b)
gives two collapsed 2 × 2 × 2 tables.

Table 5 gives the values of likelihood ratio statistics G2 for testing goodness-
of-fit of each model. The S3 model fits these data poorly yielding G2 = 31.85
with 17 degrees of freedom. The C3 model fits these data well yielding G2 = 8.05
with 8 degrees of freedom.

The QS3 model fits these data poorly, however, the CQS3 model fits the
data well (see Table 5). In addition, we test that the C3 model holds assuming
that the CQS3 model holds true. According to the test based on the difference
between the G2 values for the C3 and CQS3 models, the C3 model is preferable
to the CQS3 model.

The M3 model also fits these data well (see Table 5). In addition, we test
that the C3 model holds assuming that the M3 model holds true. According

Table 4. The daily temperatures at Nagasaki City, Japan, in 2001, 2002 and 2003. (The upper

and lower parenthesized values are the maximum likelihood estimates of expected frequencies

under the C3 and CQS3 models, respectively.)

(a) Observations

2003

(1) (2) (3)

2002 2002 2002

2001 (1) (2) (3) (1) (2) (3) (1) (2) (3)

(1) 1 3 5 5 5 15 5 10 10

(1.00) (3.79) (5.86) (4.52) (5.56) (15.56) (5.13) (13.02) (8.50)

(1.00) (3.16) (5.82) (4.77) (5.00) (16.50) (4.84) (10.13) (8.02)

(2) 5 18 9 15 41 31 18 20 24

(4.53) (18.55) (8.71) (13.28) (41.00) (29.15) (18.07) (23.06) (18.81)

(5.00) (17.81) (9.78) (15.15) (41.00) (34.09) (18.43) (20.27) (19.25)

(3) 6 8 8 12 39 21 1 17 13

(5.12) (7.69) (7.69) (10.01) (36.46) (19.62) (1.28) (26.03) (13.00)

(5.38) (7.11) (8.11) (10.86) (34.97) (21.52) (1.35) (22.67) (13.00)

(b) The u-th (u = 1, 2) collapsed 2 × 2 × 2 table

(u = 1) (u = 2)

2003 2003

≤ u > u ≤ u > u

2002 2002 2002 2002

2001 ≤ u > u ≤ u > u 2001 ≤ u > u ≤ u > u

≤ u 1 8 10 40 ≤ u 93 60 53 34

(1.00) (9.65) (9.65) (42.64) (92.23) (59.28) (59.28) (27.31)

(1.00) (8.99) (9.61) (39.65) (92.90) (66.20) (53.67) (27.27)

> u 11 43 46 206 > u 65 29 18 13

(9.65) (42.64) (42.64) (207.13) (59.28) (27.31) (27.31) (13.00)

(10.38) (42.81) (45.79) (206.78) (58.31) (29.63) (24.02) (13.00)
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Table 5. Likelihood ratio chi-square values G2 for models applied to the data in Table 4(a).

Models Degrees of freedom G2

S3 17 31.85*

QS3 13 28.14*

C3 8 8.05

CQS3 4 4.61

M3 4 4.01

* means significant at the 0.05 level.

to the test based on the difference between the G2 values for the C3 and M3

models, the C3 model is preferable to the M3 model.
Since the S3 model fits these data poorly, there is not a structure of complete

symmetry for these data. However, since the C3 model fits these data well, we can
state that under the C3 model, for u (u = 1, 2), (1) three cumulative probabilities
(i.e., G1(u), G2(u) andG3(u)) that the temperature is in the level u or below for one
of three years, 2001, 2002 and 2003, and in the level u+ 1 or above for the other
two years, are the same (without depending on in which year the temperature is
lower than in the other two years), and (2) three cumulative probabilities (i.e.,
G12(u), G13(u) and G23(u)) that the temperature is in the level u or below for two
of three years and in the level u+1 or above for the other one year, are the same
(without depending on in which year the temperature is higher than in the other
two years). Namely, there is no change of temperatures among 2001, 2002 and
2003, in the sense that the symmetry of cumulative probabilities holds in two
collapsed 2 × 2 × 2 tables.

4. Concluding remarks

For the analysis of multi-way tables with nominal categories (not ordered
categories), it is appropriate to apply the ST , QST and MT models. Also, these
models may be used for analyzing multi-way tables with ordered categories if
we do not use the information of ordering of categories. We are also interested
in models which can be used for analyzing multi-way tables with ordered cate-
gories. The CT and CQST models are not invariant under the arbitrarily same
permutations of the categories for all variables. Thus, these models are suitable
for the analysis of multi-way tables with ordered categories. Also these models
are suitable when we want to see whether there is the structure of symmetry or
quasi-symmetry for each of r − 1 collapsed 2T tables.
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