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ESTIMATION OF LINEAR FUNCTIONS OF ORDERED
SCALE PARAMETERS OF TWO GAMMA

DISTRIBUTIONS UNDER ENTROPY LOSS

Yuan-Tsung Chang* and Nobuo Shinozaki**

The problem of estimating linear functions of ordered scale parameters of two
Gamma distributions is considered under entropy loss. A necessary and sufficient
condition for the maximum likelihood estimator (MLE) to dominate the crude un-
biased estimator (UE) is given on two non-negative coefficients. Furthermore, im-
provement on the UE of the reciprocal of each scale parameter is also obtained under
entropy loss. Some numerical results are given to illustrate how much improvement
is obtained over the UE.

Key words and phrases: Admissible estimator, entropy loss, MLE, reciprocal of scale
parameter, unbiased estimator.

1. Introduction

In this paper we discuss the problem of estimating linear functions of scale
parameters of two Gamma distributions under entropy loss when shape param-
eters are known and order restriction is given on the scale parameters. As is
mentioned in Chang and Shinozaki (2002), this general estimation problem in-
cludes as special cases the one of linear functions of ordered variances in two
sample problems, and also the one of variance components in a one-way random
effect model (see, for example, Section 3.5 of Lehmann and Casella (1998)).

There has been considerable interest in the estimation of parameters when
there are some order restrictions, or more generally linear inequality restrictions
among parameters. See for example, Barlow et al. (1972), Robertson et al. (1988),
Silvapulle and Sen (2004) and van Eeden (2006). In various applications we often
have some prior knowledge about the parameter values of these forms and it is
natural to utilize the knowledge to obtain better estimators than the usual ones.
Many papers focus on comparing the maximum likelihood estimator (MLE),
which satisfies the order restriction with the unbiased estimator (UE) of normal
means, coordinately in terms of mean square error (MSE) (Lee (1981), Kelly
(1989)). On the other hand Hwang and Peddada (1994) have discussed the
stochastic domination of an improved estimator for order restricted parameters
of symmetric distributions.

Rueda and Salvador (1995) have considered the problem of estimating linear
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functions of normal means when two linear inequality constraints are given, and
have shown that MLE gives an improvement for any coefficients in terms of MSE.
In estimating linear functions of positive normal means, Shinozaki and Chang
(1999) have given a necessary and sufficient condition on coefficients so that the
linear function of MLE dominates the one of UE in terms of MSE and have shown
that MLE dominates UE for any choice of coefficients if and only if the number of
means is less than 5. Independently, Fernández et al. (2000) also have discussed
the same problem under the symmetric unimodal location model. In recent years,
Oono and Shinozaki (2005) have considered the estimation problem of linear
functions of two order restricted normal means when variances are unknown and
possibly unequal.

Other than the estimation of restricted normal means, there are many pa-
pers dealing with the estimation of scale parameters under order restriction. Es-
timation of smaller variance has been discussed by Kushary and Cohen (1989).
Kaur and Singh (1991) have considered the estimation of two ordered exponen-
tial means with the same sample sizes and have shown that MLE dominates UE
coordinately. Vijayasree et al. (1995) have also considered the componentwise
estimation of ordered parameters of k(≥ 2) exponential populations. Hwang and
Peddada (1994) and Kubokawa and Saleh (1994) have discussed the general scale
parameter estimation problem under order restriction. See Oono and Shinozaki
(2006a, b) for variance estimation under general order restriction. Estimation
of linear functions of ordered scale parameters of two Gamma distributions has
been discussed by Chang and Shinozaki (2002) under squared error loss. It has
been shown that MLE does not always improve upon UE and a necessary and
sufficient condition on the ratio of two coefficients is given for MLE to dominate
the crude UE.

In estimating scale parameters, squared error loss may not be natural and
entropy loss may be pertinent. Dey et al. (1987) have discussed the admissibility
of best scale invariant estimators of scale parameters, and of their reciprocals
of independent Gamma distributions under entropy loss. They have considered
simultaneous estimation problems of scale parameters and their reciprocals under
entropy loss function when order restriction is not present.

Here we first compare MLE with UE in estimating linear functions of ordered
scale parameters of two Gamma distributions under entropy loss. In Section 2,
we again show that MLE does not always improve upon UE and give a necessary
and sufficient condition on nonnegative coefficients for MLE to dominate UE.
In Section 3, we discuss the estimation of reciprocals of scale parameters of two
Gamma distributions under entropy loss when order restriction is given. In Sec-
tion 4, some results with numerical evaluation are given to illustrate the behavior
of risk functions of MLE and estimators of reciprocals of scale parameters of two
Gamma distributions. We give concluding remarks in Section 5.
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2. A necessary and sufficient condition for MLE to dominate UE

Let Xi, i = 1, 2 be independent Gamma(αi, λi) random variables, having
the density

fλi
(xi) = xαi−1

i λ−αi
i e−xi/λi/Γ(αi), 0 < xi < ∞,

where αi(> 0) is known and λi(> 0) is unknown but satisfying the order restric-
tion 0 < λ1 ≤ λ2 < ∞. We note that even if we have more than one observation,
we can reduce the case to the one above as stated in Chang and Shinozaki (2002).
The MLE of λi is given by

λ̂i =
Xi

αi
+ (−1)i

(α2X1 − α1X2)
+

αi(α1 + α2)
, i = 1, 2,

where a+ = max(0, a) and Xi/αi is the unbiased estimator(UE) and also the
best invariant one of λi.

As stated in Dey et al. (1987), it follows from Stein (1959) or Brown (1966)
that Xi/αi is an admissible estimator of λi under entropy loss function when only
Xi is observed. Further, Dey et al. (1987) have proved that (X1/α1, X2/α2) is
admissible for estimating (λ1, λ2) under the sum of entropy losses when we don’t
have the order restriction λ1 ≤ λ2 and min(α1, α2) > 4.

Let c1, c2 be given non-negative constants and we want to estimate η =
c1λ1+c2λ2. We compare two estimators, UE,

∑2
i=1 ciXi/αi and, MLE,

∑2
i=1 ciλ̂i

in terms of their risk functions when the loss function is given by

L(η, δ) = δη−1 − log(δη−1) − 1,

where δ is an estimator of η. We note that if at least one of c1 and c2 is negative,
UE takes negative values with positive probability and we cannot apply the
entropy loss function.

We may expect that MLE will dominate UE for any nonnegative constants
c1 and c2. However, we will show that this is not the case. We give a necessary
and sufficient condition on c1 and c2 for MLE to dominate UE. Hereafter, we
denote the risk of an estimator δ of η by

R(λ, δ) = E{L(η, δ)},

where λ = (λ1, λ2). We give a sufficient condition for the uniform improvement
in Theorem 2.1. We show its necessity in Theorem 2.2.

Theorem 2.1. The MLE
∑2

i=1 ciλ̂i dominates the UE
∑2

i=1 ciXi/αi in
terms of risk if

(i)
c2
α2

≥ c1
α1

or
(ii) c1 > 0 and c2 = 0.
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Proof. The difference between the risks of MLE and UE is given as

∆R = R

(
λ,

2∑
i=1

ci
Xi

αi

)
−R

(
λ,

2∑
i=1

ciλ̂i

)

= E

{
log

[
1 +

c′2 − c′1
α1 + α2

(α2X1 − α1X2)
+∑2

i=1 c
′
iXi

]
− c′2 − c′1

α1 + α2

(α2X1 − α1X2)
+∑2

i=1 ciλi

}
,(2.1)

where c′i = ci/αi, i = 1, 2. To evaluate this risk difference, we make the variable
transformation

W =
X1

λ1
+

X2

λ2
, Z =

X1

λ1W
.

Then we see that W ∼ Gamma(α1 + α2, 1), Z ∼ Beta(α1, α2) and they are
independently distributed. By using the random variables W and Z, we can
express ∆R as

∆R = E

{
log

[
1 +

c′2 − c′1
α1 + α2

{α2λ1Z − α1λ2(1 − Z)}+

c′1λ1Z + c′2λ2(1 − Z)

]}

− c′2 − c′1
α1 + α2

E(W )E

{
{α2λ1Z − α1λ2(1 − Z)}+∑2

i=1 ciλi

}
.

Since E(W ) = α1 + α2, setting β = α2λ1+α1λ2
(α1+α2)λ2

and γ = α1λ2
α2λ1+α1λ2

, we have

∆R = E{h(Z)},

where

h(z) = log

[
1 +

(c′2 − c′1)λ2β(z − γ)+

c′1λ1z + c′2λ2(1 − z)

]
− (c′2 − c′1)λ2β(α1 + α2)(z − γ)+∑2

i=1 ciλi

.(2.2)

To show that h(z) ≥ 0 for γ ≤ z < 1, we first notice that h(γ) = 0. Thus we
need only to show that h(z) is a non-decreasing function for γ ≤ z < 1. For that
purpose we differentiate h(z) and have

d

dz
h(z) = (c′2 − c′1)λ2β

{
1 +

(c′2 − c′1)λ2β(z − γ)

c′1λ1z + c′2λ2(1 − z)

}−1

g(z),

where

g(z) =
1

c′1λ1z + c′2λ2(1 − z)

{
1 +

(c′2λ2 − c′1λ1)(z − γ)

c′1λ1z + c′2λ2(1 − z)

}

− α1 + α2∑2
i=1 ciλi

{
1 +

(c′2 − c′1)λ2β(z − γ)

c′1λ1z + c′2λ2(1 − z)

}
.

We consider the following two cases (i) and (ii) separately.
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(i) Case when c2/α2 ≥ c1/α1. It is sufficient for us to show that g(z) is
non-negative for γ < z < 1. Noting that c′2λ2 − c′1λ1 ≥ (c′2 − c′1)λ2β since β ≤ 1
and λ2 ≥ λ1, we have

g(z) ≥
{

1

c′1λ1z + c′2λ2(1 − z)
− α1 + α2∑2

i=1 ciλi

}{
1 +

(c′2 − c′1)λ2β(z − γ)

c′1λ1z + c′2λ2(1 − z)

}
.

Thus we need only to show that

1

c′1λ1z + c′2λ2(1 − z)
− α1 + α2∑2

i=1 ciλi

(2.3)

=

∑2
i=1 ciλi − (α1 + α2){c′1λ1z + c′2λ2(1 − z)}

{c′1λ1z + c′2λ2(1 − z)}(∑2
i=1 ciλi)

is nonnegative. If we set the numerator of of the right hand side of (2.3) as !(z),
we need only to show that !(γ) ≥ 0 and !(1) ≥ 0, both of which can be easily
verified. This completes the proof for the case when c2/α2 ≥ c1/α1.

(ii) Case when c1 > 0 and c2 = 0. We set c1 = 1 for simplicity. Then the
derivative of h(z) is given as

d

dz
h(z) =

λ2β

α1

{
1 − λ2β(z − γ)

λ1z

}−1 [α1 + α2

λ1

{
1 − λ2β(z − γ)

λ1z

}

− α1

λ1z

(
1 − z − γ

z

)]
.

We can easily show that

λ2β

α1

{
1 − λ2β(z − γ)

λ1z

}−1

≥ 0, for γ < z < 1.

Further we have

α1 + α2

λ1

{
1 − λ2β(z − γ)

λ1z

}
− α1

λ1z

(
1 − z − γ

z

)

=

(
α1

λ1z

)2
{

(λ1 − λ2)z
2 + λ2z

α1
− λ1λ2

α2λ1 + α1λ2

}

≥
(

α1

λ1z

)2 (λ1z

α1
− λ1λ2

α2λ1 + α1λ2

)

which is nonnegative for γ < z < 1. This completes the proof.

Now we will show that if c1/α1 > c2/α2 > 0, then MLE does not dominate
UE. More specifically we give the following theorem.

Theorem 2.2. Suppose that c1/α1 > c2/α2 > 0. If λ1 and λ2 satisfy the
condition c2λ2/α2 > c1λ1/α1, then

R

(
λ,

2∑
i=1

ci
Xi

αi

)
< R

(
λ,

2∑
i=1

ciλ̂i

)
.
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Proof. We show that if λ1 and λ2 satisfy the condition, then h(z) given
by (2.2) is negative. To show this we first note the following inequality:

log(1 + x) ≤ x, for x > −1.

Applying this inequality to (2.2), we have

h(z) ≤ {(c′1 − c′2)λ2β(z − γ)+}
{

α1 + α2∑2
i=1 ciλi

− 1

c′1λ1z + c′2λ2(1 − z)

}
.(2.4)

The first factor of the right-hand side of (2.4) is nonnegative since c′1 > c′2. Thus
we need only to show that

(α1 + α2){c′1λ1z + c′2λ2(1 − z)} −
2∑

i=1

ciλi ≡ s(z)

is say, negative for γ < z < 1. We see that s(z) is a strictly decreasing function
since c′2λ2 > c′1λ1 and

s(γ) =
α1α2(c

′
2λ2 − c′1λ1)(λ1 − λ2)

α2λ1 + α1λ2

is not positive since λ1 ≤ λ2 and c′2λ2 > c′1λ1. This completes the proof.

From Theorems 2.1 and 2.2 we see that MLE dominates UE if and only if
(i) c2/α2 ≥ c1/α1 or (ii) c1 > 0 and c2 = 0. We see that if (c1, c2) satisfies the
condition, then positive multiple of (c1, c2) also satisfies it. This is also clear from
(2.1) which is invariant even if we replace (c1, c2) with its positive multiple. We
also note that the range of c1/c2 for which MLE dominates UE becomes larger
if α1 gets larger or α2 gets smaller.

3. Estimation of reciprocals of ordered scale parameters

Here we consider the estimation of reciprocals of Gamma scale parameters,
θi = λ−1

i , i = 1, 2. Order restriction is reversed and we have θ1 ≥ θ2. If the shape
parameter is an integer, the Gamma distribution is a sum of independent expo-
nential random variables, and reciprocals of scale parameters represent failure
rates in statistical theory of reliability.

As stated in Dey et al. (1987), we see from Stein (1959) or Brown (1966)
that UE (and also the best invariant estimator), (αi − 1)X−1

i , is an admissible
estimator of θi based solely on Xi under the entropy loss function when αi >
1. Further, Dey et al. (1987) have shown that when we estimate θ1 and θ2

simultaneously under the sum of entropy loss functions and we don’t have the
order restriction, ((α1 − 1)X−1

1 , (α2 − 1)X−1
2 ) is an admissible estimator when

min(α1, α2) > 5.
We first consider the estimation of θ1. If λ1 = λ2 ≡ λ, X1 +X2 is distributed

as Gamma(α1 +α2, λ), and (α1 +α2 − 1)/(X1 +X2) is the best invariant UE of
λ−1. Thus, similarly to λ̂i, we may consider

max

(
α1 − 1

X1
,
α1 + α2 − 1

X1 + X2

)
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is a natural estimator of θ1 and is a candidate which dominates (α1 − 1)/X1.
Actually we give a slightly larger class of estimators which dominate (α1−1)/X1

in the following theorem.

Theorem 3.1. If two constants a1 and b1 satisfy the conditions 0 < b1 ≤ α2

and 0 < b1a1 ≤ α2, then

θ̂1(X1, X2) =
α1 − 1

X1
+

a1{b1X1 − (α1 − 1)X2}+

X1(X1 + X2)

dominates (α1 − 1)X−1
1 in terms of risk.

Note. If we choose b1 = α2 and a1 = 1, then we have max{(α1 − 1)X−1
1 ,

(α1 + α2 − 1)(X1 + X2)
−1}. If we take b1 smaller, we can make a1 larger. If we

set b1 = α2 − 1 and a1 = 1, then a1 and b1 satisfy the conditions and we have
max{(α1 − 1)X−1

1 , (α1 + α2 − 2)(X1 + X2)
−1}.

Proof. Putting θ = (θ1, θ2), the difference between the risks of two esti-
mators of θ1, (α1 − 1)X−1

1 and θ̂1(X1, X2), is given by

∆R = R

(
θ,

α1 − 1

X1

)
−R(θ, θ̂1(X1, X2))

= E

{
log

[
1 +

a1{b1X1 − (α1 − 1)X2}+

(α1 − 1)(X1 + X2)

]
− a1{b1X1 − (α1 − 1)X2}+

X1(X1 + X2)θ1

}
.(3.1)

Again we make the variable transformation

W =
X1

λ1
+

X2

λ2
= θ1X1 + θ2X2, Z =

X1

λ1W
=

θ1X1

W
.(3.2)

Then we can express the risk difference as

∆R = E

{
log

[
1 +

a1{b1Zθ2 − (α1 − 1)(1 − Z)θ1}+

(α1 − 1){θ2Z + θ1(1 − Z)}

]}

− E

(
1

W

)
E

{
a1{b1Zθ2 − (α1 − 1)(1 − Z)θ1}+

Z{θ2Z + θ1(1 − Z)}

}
.

Since E(1/W ) = 1/(α1 + α2 − 1), we have

∆R = E{h(Z)},
where

h(z) = log

[
1 +

a1ξ(z − ρ)+

(α1 − 1){θ2z + θ1(1 − z)}

]
− a1ξ(z − ρ)+

(α1 + α2 − 1)z{θ2z + θ1(1 − z)} ,

ξ = b1θ2 + (α1 − 1)θ1 and ρ = (α1 − 1)θ1/ξ. It is clear that h(ρ) = 0, and we
need only to show that h(z) is a non-decreasing function of z for ρ ≤ z < 1. The
derivative of h(z) is given as

d

dz
h(z) = a1ξ

[
1 +

a1ξ(z − ρ)+

(α1 − 1){θ2z + θ1(1 − z)}

]−1

g(z),
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where

g(z) =
1

(α1 − 1){θ2z + θ1(1 − z)}

{
1 +

(θ1 − θ2)(z − ρ)

θ2z + θ1(1 − z)

}

− 1

(α1 + α2 − 1)z{θ2z + θ1(1 − z)}

[
1 +

a1ξ(z − ρ)+

(α1 − 1){θ2z + θ1(1 − z)}

]

×
{
ρ

z
+

(θ1 − θ2)(z − ρ)

θ2z + θ1(1 − z)

}
.

For z ≥ ρ we have

g(z) ≥
{

1

α1 − 1
− 1

(α1 + α2 − 1)z

[
1 +

a1ξ(z − ρ)+

(α1 − 1){θ2z + θ1(1 − z)}

]}
(3.3)

× 1

θ2z + θ1(1 − z)

{
1 +

(θ1 − θ2)(z − ρ)

θ2z + θ1(1 − z)

}
.

Let the first factor of the right-hand side of (3.3) be t(z), then we show that
t(z) ≥ 0 for ρ ≤ z ≤ 1. It is easily seen that we only need to examine the two
endpoints z = ρ and z = 1. We have

t(ρ) =
1

α1 − 1
− 1

(α1 + α2 − 1)ρ
=

α2θ1 − b1θ2

(α1 − 1)(α1 + α2 − 1)θ1

which is non-negative if b1 ≤ α2. We also have

t(1) =
α2 − a1b1

(α1 − 1)(α1 + α2 − 1)

which is non-negative if a1b1 ≤ α2. This completes the proof.

We give a class of estimators of θ2 which improve upon (α2 − 1)X−1
2 in the

following theorem. The proof is very similar to the one of Theorem 3.1 and is
omitted.

Theorem 3.2. If two constants a2 and b2 satisfy the conditions b2 ≥ α1

and 0 < a2 ≤ 1, then

θ̂2(X1, X2) =
α2 − 1

X2
− a2{(α2 − 1)X1 − b2X2}+

X2(X1 + X2)

dominates (α2 − 1)X−1
2 in terms of risk.

If we choose b2 = α1 and a2 = 1, we have min{(α2 − 1)X−1
2 , (α1 + α2 −

1)(X1 + X2)
−1}. The estimator min{(α2 − 1)X−1

2 , (α1 + α2 − 2)(X1 + X2)
−1}

corresponds to the choice of b2 = α1 − 1 and a2 = 1, which do not satisfy the
condition.

As stated earlier, Dey et al. (1987) have shown that if min(α1, α2) > 5, ((α1−
1)/X1, (α2−1)/X2) is an admissible estimator of (θ1, θ2) under the sum of entropy
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loss. However, from Theorems 3.1 and 3.2 we see that (θ̂1(X1, X2), θ̂2(X1, X2))
dominates ((α1 − 1)/X1, (α2 − 1)/X2) when we have the restriction θ1 ≥ θ2,
provided that the conditions given in the theorems are satisfied.

The condition b2 ≥ α1 given in Theorem 3.2 implies that θ̂2(x1, x2) = (α2 −
1)/x2 at least in the region x2 > (α2 − 1)x1/α1. If the estimator θ̂1(X1, X2) is
to satisfy the order restriction θ̂1(X1, X2) ≥ θ̂2(X1, X2) for such an estimator
θ̂2(X1, X2), we need b1x1 > (α1 − 1)x2 for any (x1, x2) such that (α1 − 1)/x1 <
(α2 − 1)/x2 < α1/x1. Thus we have b1 ≥ α2 − 1. In this case the region where
θ̂1(x1, x2) is not equal to (α1 − 1)/x1 is different from the one where θ̂2(x1, x2) is
not equal to (α2−1)/x2. This makes it technically difficult to discuss the general
problem of improving the UE, c1(α1 − 1)/X1 + c2(α2 − 1)/X2, of c1θ1 + c2θ2 for
arbitrarily fixed non-negative constants c1 and c2. We have not succeeded in
giving any definite result.

Note. Figure 1 shows the regions where θ̂1(X1, X2) and θ̂2(X1, X2) differ
from UE.

Figure 1. Regions where θ̂1(X1, X2) and θ̂2(X1, X2) differ from UE.

4. Numerical results

In this section we give some results based on numerical evaluations to illus-
trate the extent of the risk improvement. We have made numerical evaluations of
risk functions of the estimators by first making a variable transformation given
by (2.2), and then by performing numerical integration using Mathematica.

We first consider the estimation of c1λ1 + c2λ2 where c1 and c2 are non-
negative constants. We define the relative risk of MLE c1λ̂1 + c2λ̂2 compared to
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UE c1X1/α1 + c2X2/α2 as

R(λ, c1λ̂1 + c2λ̂2)

R

(
λ, c1

X1

α1
+ c2

X2

α2

) .

We have made calculations for 12 cases of (α1, α2): (1, 1), (1, 3), (1, 5), (3, 1),
(3, 3), (3, 5), (5, 1), (5, 3), (5, 5), (9, 1), (9, 3) and (9, 5). We have chosen (c1, c2)
as (1, 0), (0, 1) and (1, 2), which correspond to the estimation of λ1, λ2 and
λ1 + 2λ2 respectively. We note that λ̂1 and λ̂2 always dominate UE and that
λ̂1 +2λ̂2 dominates UE except for the cases (α1, α2) = (1, 3) and (1, 5). Without
loss of generality we fix λ1 = 1 and have calculated risk estimates for λ2 = 1(1)10.
For each choice of (α1, α2) relative risks for three choices of (c1, c2) are shown in
one figure (Fig. 2). We note that relative risk of λ̂1 gets smaller when α1 becomes
smaller or α2 larger. On the contrary the relative risk of λ̂2 gets smaller when α1

becomes larger or α2 becomes smaller. The relative risk of λ̂2 is quite small in
some cases, but that of λ̂1 is not small. As a function of λ2, the minimum seems
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Figure 2. Relative risks of MLE, dashed line for c1 = 1, c2 = 2, solid line for c1 = 1, c2 = 0,

and dotted line for c1 = 0, c2 = 1.
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to be attained when λ2 = λ1 for both λ̂1 and λ̂2. The relative risk of λ̂1 + 2λ̂2 is
larger than those of λ̂1 and λ̂2 except for some cases where α1 = 1.

Next we consider the estimation of θ1 = 1/λ1 and θ2 = 1/λ2. We set
θ̂1 = max{(α1−1)X−1

1 , (α1+α2−1)(X1+X2)
−1} and θ̂2 = min{(α2−1)X−1

2 , (α1+
α2 − 1)(X1 + X2)

−1} and define the relative risk of θ̂i compared to (αi − 1)X−1
i

as
R(θ, θ̂i)

R(θ, (αi − 1)X−1
i )

, i = 1, 2.

We have made calculations for α1 = 2(1)5, 7, 10, and for α2 = 2, 3, 4, 5. Again
we fix θ1 = 1 and have calculated risk estimates for θ2 = 1, 1/2, 1/4, 1/8. The
relative risks are given in Table 1. We see that risk improvement can be quite
substantial in some cases for both θ̂1 and θ̂2, especially when the value of θ2 is
close to that of θ1. The relative risk of θ̂1 gets smaller when α1 becomes smaller
or α2 becomes larger. On the contrary the relative risk of θ̂2 gets smaller when
α1 becomes larger or α2 becomes smaller.

5. Concluding remarks

In Section 2, the estimation problem of linear functions of ordered scale
parameters of two Gamma distributions is discussed under the entropy loss func-
tion. We have given a necessary and sufficient condition on two non-negative
coefficients for MLE to dominate UE. The same problem has been dealt with
under squared error loss functions in Chang and Shinozaki (2002), and a neces-
sary and sufficient condition is given on two coefficients for MLE to dominate
UE. A necessary and sufficient condition is also given on coefficients for modi-
fied MLE (which we can obtain by replacing αi by αi + 1 in MLE) to dominate∑2

i=1 cixi/(αi + 1). Although negative coefficients are allowed in the case of
squared error loss, we restrict analysis to the case with non-negative coefficients
and compare the conditions.

For the case when c1 > 0 and c2 = 0, similar to the case of the entropy
loss function, MLE and modified MLE dominate their competitors under mild
conditions. Thus we need only to compare the conditions when c1 ≥ 0 and c2 > 0.
Then we notice that three conditions are all of the form c1/c2 ≤ c(α1, α2), where
c(α1, α2) is a constant which depends on α1 and α2. As is given in Theorem
2.1, c(α1, α2) = α1/α2 for the entropy loss function. We notice that this is
comparable to the result c(α1, α2) = (α1 + 1)/(α2 + 1) when modified MLE is
to dominate its competitor under squared error loss. An expression is given for
c(α1, α2) in terms of an incomplete Beta function when MLE is to dominate UE
under squared error loss in Chang and Shinozaki (2002). The values of c(α1, α2)
are numerically evaluated and the results show that they are much smaller than
those of α1/α2 and (α1 + 1)/(α2 + 1). Thus the obtained result for the entropy
loss function given in Section 2 is quite similar to the one for the squared error
loss function and for modified MLE.
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