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MAXIMIZATION OF CORRELATION UNDER A
QUADRATIC CONSTRAINT

Akihiro Hashimoto*, Hisao Miyano** and Masaaki Taguri**

An algebraic method is suggested to search for the optimal solution that max-
imizes a correlation criterion under a quadratic constraint. First it is shown that
the problem formulated in a sample space can be reformulated in a parameter space,
and then some properties of a matrix which specifies the quadratic constraint are
provided along with its geometrical interpretation; the solution can be obtained by
solving a nonlinear equation derived from the singular value decomposition of the
matrix. Numerical results based on artificial data and entrance examination data
are given to examine how our solution differs from the least squares solution under a
quadratic constraint.

Key words and phrases: Canonical correlation, correlation coefficient, nonlinear op-
timization, quadratic constraint, singular value decomposition.

1. Introduction

In this paper we discuss the interrelation between a dependent variable y
and a set of p concomitant variables z = (z1, z2, . . . , zp)

′, where there exists
some restriction on parameters. More precisely, we find the linear combination of
concomitant variables that has maximum correlation with the dependent variable
under a given quadratic constraint on the coefficients of the linear combination.

This kind of problem arises in some practical situations. For example, a
university wants to assess the abilities of candidates in a particular field by the
scores of several subjects in the entrance examination. The weighted totals of
these subjects are sometimes used in such a case. The university may determine
the weights so as to attain the maximum correlation between the abilities and
the weighted totals. However, it may be better that the weights are not so much
changed from the currently used weights.

This is one of the simplest cases in canonical correlation analysis, but it has
a quadratic constraint. This problem may also be considered as a prediction
problem in regression analysis. Rao (1973) classified problems into the following
three cases according to the criterion to be adopted;

(i) Minimizing the mean squared error for predictor,
(ii) Maximizing the correlation between a dependent variable and its predictor,
(iii) Maximizing the expected performance in selection.

If none of the restrictions is there, the solutions for these three cases are all
given by the conditional mean of y given z (see Rao (1973), section 4g.1).
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For case (i), the least squares case, Golub and Van Loan (1996) investigated
the optimization problem with a quadratic constraint, and gave the algorithm
for solving it based on the Lagrangian method. Although it is easily seen that
the optimal solutions for cases (i) and (ii) coincide with each other in a linear
constraint case, how about in a quadratic constraint case?

For case (i), the optimization problems with quadratic or cone constraints
have been addressed in the literature, including Golub and Van Loan mentioned
above, Vavasis (1991), Lawlor (1991), Faraut and Koranyi (1994), Shapiro (1997),
Kojima (1998), and Vandenberghe and Boyd (1996). In this paper we investigate
the optimization problem for case (ii), and show the solution of (ii) is, in general,
different from that of (i) under a quadratic constraint. Note that the correlation
coefficient between a dependent variable and its predictor is invariant for the
scale transformation of these variables. This property must be quite preferable
in many practical situations.

In Section 2, we first state the original problem in terms of a sample space.
It is then translated to the problem in a parameter space, because the given
constraint is on parameters. In Section 3, our problem is reformulated so as to
make its handling easier, and some properties of a matrix which specifies the
quadratic constraint are investigated in Section 4. Although these sections are
preliminary, essential ideas for the solution are presented here. The main result
is given in Section 5, where we also give its geometrical interpretation which is
quite helpful for intuitive comprehension of our algorithm. The algorithm for
calculating the solutions and numerical examples are given in Section 6, which
should make clear the difference of cases (i) and (ii) mentioned above. In the
final Section 7, a brief summary and some extensions of our problem are given
as concluding remarks. The Appendix completes the validation of the algorithm
in Section 6.

2. Formulation of the problem and the solutions in trivial cases

Suppose that a dataset (yi,zi) is given for i = 1, 2, . . . , n, where yi and
zi are the i-th observed values of a dependent variable y and a p-dimensional
concomitant variable z (n ≥ p), respectively. The observation vector y and the
design matrix Z are defined by y = (y1, y2, . . . , yn)′ and Z = (z1,z2, . . . ,zn)′,
where all columns of Z are assumed to be linearly independent. Let us now
denote a linear combination of the concomitant variables by w′z, where w is a p-
dimensional coefficient (weight) column vector. The sample correlation coefficient
R0 between the dependent variable y and the composed variable w′z is then given
by

R0 =
y′(I −Q)Zw√

y′(I −Q)y
√
w′Z ′(I −Q)Zw

,(2.1)

where I is an n×n identity matrix. Q is given by Q = 1
n11′, and 1 = (1, 1, . . . , 1)′.

Note that the matrix Q and so I−Q is idempotent and symmetric; that is, I−Q
is a projector.
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The primary objective is to maximize the absolute value of R0, however
we consider the case that the following quadratic constraint is imposed on the
coefficient vector w;

(w −w0)
′W−1(w −w0) ≤ r2,(2.2)

where W , w0 and r are given p×p positive definite matrix, p dimensional column
vector and positive constant, respectively. Our problem is then as follows:

Problem 0. Find w which maximizes |R0| subject to (2.2).

In Problem 0 the objective function |R0| is regarded as a function of w,
which is a p-dimentional vector in the parameter space. Also the constraint (2.2)
determines some region in the parameter space. On the other hand, (I − Q)y
and (I −Q)Zw, which appear in the definition of R0, are vectors in the sample
space.

Let us therefore consider to express Problem 0 by using the vectors in the
parameter space. The singular value decomposition of the matrix (I − Q)Z is
given by (I −Q)Z = UΛV , where U and V are orthogonal matrices with size n
and p, respectively. Λ is an n× p matrix and has the form Λ = [∆ 0]′, where ∆
is the diagonal matrix of nonzero singular values δi (i = 1, . . . , p) of (I − Q)Z,
and 0 is a p× (n− p) zero matrix.

We now partition U as U = [U1 U2], where U1 is n× p and U2 is n× (n− p),
and put T = ∆V . Using these notations, the numerator and the denominator of
R0 can be written as{

y′(I −Q)Zw = y′U1∆Vw = (U ′
1y)′(Tw) = b′x,

w′Z ′(I −Q)Zw = w′(U1T )′(U1T )w = (Tw)′(Tw) = x′x,

where b = U ′
1y and x = Tw.

R0 is then given by

R0 =

√
b′b√

y′(I −Q)y

b′x√
b′b

√
x′x

=

√
b′b√

y′(I −Q)y

b′x
‖b‖‖x‖ .(2.3)

Since
√
b′b/

√
y′(I −Q)y does not depend on w, maximizing |R0| with respect

to w is equivalent to maximizing |R1| = |b′x|/(‖b‖‖x‖) with respect to x.
As for the constraint (2.2), put a = Tw0 and Σ = TWT ′. Since T is

nonsingular from our assumption, the constraint is give by

(w −w0)
′W−1(w −w0) = (x− a)′(T−1)′W−1T−1(x− a)

= (x− a)′Σ−1(x− a) ≤ r2.(2.4)

Note that Σ is positive definite. Thus, Problem 0 is now translated to the fol-
lowing Problem 1:
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Problem 1. Find x which maximizes |R1| subject to (2.4).

The optimal solution for this problem is trivial or does not exist in some
cases, which we investigate here. First, let us consider the case that the origin
of the parameter space is an inner point of the restriction region (2.4), that
is, a′Σ−1a < r2 holds. The optimal solution x∗ is then given by x∗ = cb,
and the optimal value of |R1| is equal to 1, where the constant c must satisfy
(cb− a)′Σ−1(cb− a) ≤ r2. Solving this inequality for c, we have

b′Σ−1a−
√
D

b′Σ−1b
≤ c ≤ b′Σ−1a +

√
D

b′Σ−1b
,(2.5)

where D = (b′Σ−1a)2 − (b′Σ−1b)(a′Σ−1a− r2).
Second, we consider the case that the origin is a boundary point of the

region (2.4), that is, a′Σ−1a = r2 holds. If the vector b is not included in the
tangent space of the surface (x − a)′Σ−1(x − a) = r2 at the origin, the same
discussion mentioned above holds. The optimal solution is given by x∗ = cb and
|R1| = 1, where c must satisfy (2.5). We then examine the case that b is on the
tangent plane of the surface (x−a)′Σ−1(x−a) = r2 at the origin, which is given
by a′Σ−1x = 0. Consider the vector x = c(kb − a), where c and k are some
constants. For any fixed k, we can determine the value of c so as to satisfy (2.4).
Using the relations a′Σ−1a = r2 and a′Σ−1b = 0, we have

− r2

k2b′Σ−1b + r2
≤ c ≤ 0.

The value of |R1|, which depends on k in this case, is given by

|R1| =
|b′(kb− a)|√

b′b
√

(kb− a)′(kb− a)
,

and limk→±∞ |R1| = 1 holds. This means that the value of |R1| can be as large
as one likes, hence Problem 1 has no solution.

Let us now summarize the results obtained above as the following Theorem 1:

Theorem 1.
(i) If either a′Σ−1a < r2 is satisfied or both a′Σ−1a = r2 and a′Σ−1b �= 0 are

satisfied , then the optimal solution x∗ for Problem 1 is given by x∗ = cb,
where c is any constant that satisfies (2.5). The corresponding optimal value
of |R1| is |R1| = 1.

(ii) If a′Σ−1a = r2 and a′Σ−1b = 0 are satisfied , then there is no optimal
solution for Problem 1.

This theorem states that our problem is rather trivial in the case of a′Σ−1a ≤
r2. Hence, in the following sections, we mainly focus on the case that a′Σ−1a > r2

holds.
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3. Some preparatory considerations

As described in Section 1, Golub and Van Loan (1996) solved the problem
of least squares under a quadratic constraint by using the Lagrangian method.
Considering the wide applicability of the method to constrained optimization
problems, Problem 1 may be solved by the Lagrangian method. However, since
the objective function in Problem 1 is rather complicated, the Lagrangian method
will fail to give a simple algorithm for our problem. We therefore apply an
algebraic method that is completely different from the Lagrangian method; more
precisely, we first solve the following problem named Problem 2, and then obtain
the solution for Problem 1 by using the solution for Problem 2. The validation
of this procedure is given by Theorem 2 below.

Problem 2. Find x ∈ Rp, a p-dimensional real space, that maximizes the
objective function

|R(x)| =
|x′b|

‖x‖‖b‖ ,(3.1)

subject to the constraint x′Px ≤ 0, where P = Σ−1−(a′Σ−1a−r2)−1Σ−1aa′Σ−1

and a′Σ−1a > r2.

Theorem 2. If x̃ is the solution for Problem 2, then the solution x∗ for
Problem 1 is given by

x∗ =
x̃′Σ−1a

x̃′Σ−1x̃
x̃.(3.2)

Proof. Let M , N be the sets of points defined by

M = {x | (x− a)′Σ−1(x− a) ≤ r2,x ∈ Rp},
and

N = {x | tx ∈ M, t ∈ R1}.

First we will show that x is a member of N if and only if x satisfies the condition
x′Px ≤ 0. From the definition of N , it is clear that x ∈ N if and only if there
exists t ∈ R1 that satisifies the condition

(tx− a)′Σ−1(tx− a) ≤ r2.

Since this condition is equivalent to the condition

x′Σ−1aa′Σ−1x− (a′Σ−1a− r2)x′Σ−1x = −(a′Σ−1a− r2)x′Px ≥ 0,

we conclude that x ∈ N if and only if x satifies x′Px ≤ 0, since a′Σ−1a > r2 is
assumed.
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Next we prove the relation x∗ = x̃ ′Σ−1a
x̃ ′Σ−1x̃

x̃. Since N ⊃ M , it is clear that the
inequality |R(x∗)| ≤ |R(x̃)| is satisfied for x∗ and x̃. Also it can be shown that

x∗ defined by x∗ = x̃ ′Σ−1a
x̃ ′Σ−1x

x̃ ∈ N , belongs to M , since

(x∗ − a)′Σ−1(x∗ − a) − r2 = a′Σ−1a− r2 − (x̃′Σ−1a)2

x̃′Σ−1x̃

=
a′Σ−1a− r2

x̃′Σ−1x̃
x̃′P x̃ ≤ 0.

Hence we conclude that x∗ is the solution for Problem 1, and |R(x∗)| = |R(x̃)|.

4. Some algebraic properties of the matrix P

The matrix P defined in the previous section plays a significant role in the
development of our algorithm for solving Problem 2. We here summarize its
algebraic properties that will be used to validate our algorithm.

Theorem 3. Let Σ−1 be a p × p positive definite matrix , a ∈ Rp be a
nonzero vector , and r be a nonzero real number.

(i) If a′Σ−1a > r2, then the matrix P , defined by

P = Σ−1 − (a′Σ−1a− r2)−1Σ−1aa′Σ−1,(4.1)

has p− 1 positive and one negative eigenvalues.
(ii) If a′Σ−1a < r2, then all eigenvalues of P are positive.

Proof. Let Σ−1 and P be matrices with eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λp > 0 and γ1 ≥ γ2 ≥ · · · ≥ γp, respectively. Then, the second part of the
theorem is trivial, since if a′Σ−1a < r2, then −(a′Σ−1a − r2)−1Σ−1aa′Σ−1 is
nonnegative. If a′Σ−1a > r2, the eigenvalues γ1 ≥ γ2 ≥ · · · ≥ γp satisfy the
following inequalities (Golub and Van Loan (1996), p. 442);

λi ≥ γi ≥ λi+1, i = 1, 2, . . . , p− 1,(4.2)

λp ≥ γp ≥ λp − (a′Σ−1a− r2)−1a′Σ−1a.(4.3)

Hence we get that γi is positive for i = 1, 2, . . . , p− 1.
Let us now show that γp is negative when a′Σ−1a > r2: Let Σe be the

(p + 1) × (p + 1) matrix defined by

Σ−1
e =

(
a′Σ−1a− r2 −a′Σ−1

−Σ−1a Σ−1

)
.(4.4)

Then the determinant of Σ−1
e can be written as

|Σ−1
e | = (a′Σ−1a− r2)|P | = (a′Σ−1a− r2)

p∏
i=1

γi,(4.5)

or

|Σ−1
e | = |Σ−1|(a′Σ−1a− r2 − a′Σ−1ΣΣ−1a) = −r2|Σ−1|.(4.6)
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From the latter equation, it is clear that |Σ−1
e | is negative. Hence we obtain that

γp is negative when a′Σ−1a > r2.

Corollary 1.
(i) If a′Σ−1a �= r2, then

a′Σ−1vp = −γpa
′vp

a′Σ−1a− r2

r2
,(4.7)

where vp is the eigenvector of the matrix P associated with its smallest
eigenvalue γp.

(ii) If a′Σ−1a > r2, then a′vp is not zero.

Proof. From the definition of the matrix P , we have

a′Σ−1vp = a′{P + (a′Σ−1a− r2)−1Σ−1aa′Σ−1}vp

= γpa
′vp + {(a′Σ−1a− r2)−1a′Σ−1a}a′Σ−1vp,(4.8)

and hence the first result follows.
The second result can be obtained by showing a contradiction; that is, if

a′vp = 0, then we get a′Σ−1vp = 0 from (4.8), but this contradicts the assump-
tion that the matrix Σ is positive definite, because by (i) it can be shown that
v′
pΣ

−1vp = v′
pPvp = γpv

′
pvp < 0.

Corollary 2. If a′Σ−1a �= r2, then the sign of a′Σ−1vp is equal to that
of a′vp.

The result means that if a′Σ−1a > r2, we can assume a′Σ−1vp > 0 without
any loss of generality, since we can take −vp as vp if a′vp < 0.

Lemma 1. Let a′Σ−1a > r2, α be a scalar , x be a nonzero vector that
satisfies x′Px = 0, and g(α) be the function of α defined by

g(α) = (x + αPx)′P (x + αPx).(4.9)

Then g(α) > 0 for any α in (0,− 2
γp

), and there exists a negative constant θ for

which g(α) < 0 for any α in (θ, 0).

Proof. First we note that the function g(α) can be rewritten as g(α) =
αx′P (2I +αP )Px, and its derivative g′(α) is given by g′(α) = 2x′P (I +αP )Px.
Hence it is clear that there exists an interval (θ, 0) in which g(α) is always neg-
ative, since g(α) is continuous, g(0) = 0, and g′(0) > 0.

On the other hand, γp is negative in the case of a′Σ−1a > r2, so all the
eigenvalues of the matrix (2I +αP ) are positive for any α in (0,− 2

γp
). Hence we

obtain g(α) > 0 for any α in this interval.

Lemma 2. Let α be a scalar , x be a vector that satisfies x′Px > 0, and
f(α) be the function of α defined by

f(α) = x′(I + αP )−1P (I + αP )−1x.(4.10)
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If a′Σ−1a > r2, then the equation f(α) = 0 has a unique root in (0,− 1
γp

).

Proof. Let T be an orthogonal matrix whose columns are the eigenvectors
of the matrix P . Note that P = TΓT ′ and I +αP = T (I +αΓ)T ′, where Γ is the
diagonal matrix with the i-th diagonal element γi, and γ1 ≥ γ2 ≥ · · · ≥ γp−1 >
0 > γp are the eigenvalues of P . Then setting c = (c1, c2, . . . , cp)

′ = T ′x, f(α)
can be rewritten as

f(α) =
p∑

i=1

γi
(1 + αγi)2

c2i .(4.11)

The result directly follows from the fact that f(0) = x′Px > 0,
limα→−1/γp f(α) = −∞, and

f ′(α) = −2
p∑

i=1

γ2
i

(1 + αγi)3
c2i < 0, for any α ∈

(
0,− 1

γp

)
.(4.12)

5. Main result and its geometrical interpretation

Based on the results given in the previous section, here we present the alge-
braic solution for Problem 2, and develop an algorithm for computing x∗, that
maximizes |R(x)| under the quadratic constraint on x.

5.1. Main result
When the vector b given in Section 2 is in the region defined by the constraint

x′Px ≤ 0, the solution x̃ of Problem 2 is trivial; i.e., x̃ = b. Hence our main
concern is in the case of b for which b′Pb > 0. The following lemma and theorem
give the solution of Problem 2 for this case.

Lemma 3. Let x̃ be the solution of Problem 2, and b satisfy the condition
b′Pb > 0. Then x̃ satisfies x̃′P x̃ = 0.

Proof. We give a proof by showing a contradiction. Let x0(‖x0‖ = 1)
be the solution for Problem 2 satisfying x′

0Px0 < 0, and r0 be the value of
|R(x)| at x0; that is, r0 = |x′

0b|/‖b‖. Without loss of generality, we assume that
‖b‖ = 1, and x′

0b ≥ 0. If r0 = 0, it contradicts the optimality of x0, because
we can always take the vector such that x̃′P x̃ = 0 and |R(x̃)| > 0. Then for
any positive r0, we can find the vector x(t) = (1 − t)x0 + r0tb where t is an
appropriate value in (0, 1), satisfying x′(t)Px(t) = 0. It is always possible to
find such a t because f(t) = x′(t)Px(t) is an at most second order polynomial
of t with f(0) = x′

0Px0 < 0 and f(1) = r2
0b

′Pb > 0.
Since x′(t)x(t) = (1 − t)2(1 − r2

0) + r2
0, we have

R2(x(t)) =
r2
0

(1 − t)2(1 − r2
0) + r2

0

.

Then, noting that r2
0 < (1 − t)2(1 − r2

0) + r2
0 < 1 for any t in (0, 1), we obtain

R2(x(t)) > r2
0, which contradicts the assumption of x0 being optimal.
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Theorem 4. Let a and b satisfy the conditions a′Σ−1a > r2 and b′Pb > 0.
If b′vp �= 0, then the solution x̃ for Problem 2 is given by

x̃ = (I + αP )−1b,(5.1)

where α is a unique constant that satisfies

b′(I + αP )−1b− b′(I + αP )−2b = 0, 0 < α < − 1

γp
,(5.2)

and the maximum of |R(x)| is ‖(I +αP )−1b‖/‖b‖. If b′vp = 0, then the solution
x̃ is given by

x̃ =

(
I − 1

γp
P

)+

b +

√√√√√√√b′
(
I − 1

γp
P

)+

P

(
I − 1

γp
P

)+

b

−γp
vp,(5.3)

where (I − 1
γp
P )+ is the Moore-Penrose generalized inverse of (I − 1

γp
P ).

Proof. The proof of the latter case is given in the Appendix. Without
loss of generality, let a and b satisfy a′vp > 0 and b′vp > 0, since the sign of b
does not change |R(x)| (see also Corollary 2). Then, from the above lemma, x̃
satisfies x̃′P x̃ = 0; that is, P x̃ is orthogonal to x̃, and there must be a constant
α for which b = x̃+αP x̃. Hence, the result can be proved by showing that there
is a unique constant that satisfies (5.2).

First, from the condition b′Pb > 0, α must satisfy the inequality given by

(x̃ + αP x̃)′P (x̃ + αP x̃) > 0.(5.4)

From Lemma 1, this inequality is satisfied when α is at least in (0,− 1
γp

). Note

that I + αP is not singular for any α in (0,− 1
γp

).

Also, from the condition x̃′P x̃ = 0, α must satisfy the equation

αb′(I + αP )−1P (I + αP )−1b = b′(I + αP )−1b− b′(I + αP )−2b = 0.(5.5)

From Lemma 2, we can assert that this equation has a unique root in (0,− 1
γp

).

Formally this result is very similar to that given by Golub and Van Loan
(1996). However, we may assert that essentially it is very different from their
result, since we have derived it without assuming that P is positive.

5.2. Geometrical interpretations
As a means to getting an intuitive, or pictorial insight into our method,

we here provide its geometrical interpretations. First, under the assumption
a′Σ−1a > r2 we define the following three sets of points in Rp:

M = {x | (x− a)′Σ−1(x− a) ≤ r2,x ∈ Rp},(5.6)

N = {x | x′Px ≤ 0,x ∈ Rp},(5.7)

∂N = {x | x′Px = 0,x ∈ Rp}.(5.8)
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Proposition 1.
(i) M is an ellipsoid that does not include the origin of Rp, and N is an ellip-

soidal cone defined by M ; i.e., N = {x | tx ∈ M, t ∈ R}.
(ii) For every x ∈ ∂N , Px is normal to N at x.

Proposition 2. Let x be a point on ∂N . Then the point yα specified by
yα = x + αPx (0 < α < −2/γp) is not included in N .

Proof. From Lemma 1, 2I+αP is positive definite for any α ∈ (0,−2/γp).
So we have

y′
αPyα = x′(I + αP )P (I + αP )x = α(Px)′(2I + αP )(Px) > 0.

Hence the result follows.

Proposition 3. Let x be a point on ∂N . Then y−1/γi = x − 1/γiPx is
orthogonal to the i-th eigenvector vi of P .

Proof. y′
−1/γi

vi = x′vi − 1/γix
′Pvi = x′vi − 1/γix

′(γivi) = 0.

Noting that the direction of the pth principal axis of N is given by the
eigenvector vp, these propositions provide a simple graphical representation of our
method. Figure 1 illustrates three typical cases which explain how the solution
for Problem 2 depends on a quadratic constraint and a vector b. In Fig. 1, b1

is the case of the vector b being inside of the ellipsoidal cone N ; i.e., b′Pb ≤ 0.
Apparently this case yields the trivial solution x̃ = b. b2 is the case of the vector
b being outside of the cone N , and making an acute angle with the principal axis
of N . b3 is the case of b′vp = 0. These last two cases are the cases mentioned in
Theorem 4.

M

N

a

1b
2b

3b0

Figure 1. Illustration of three typical cases of vector bbbbbbbb.
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6. Algorithm and numerical examples

As shown in Theorem 1, if the condition a′Σ−1a ≤ r2 holds, then our op-
timization problem becomes rather trivial. In this section we hence restrict our
probelm to the case that a′Σ−1a > r2 is satisfied, and give a computational
algorithm for this case. Then some artificial data and entrance examination data
are analyzed to see how our optimal solution differs from the optimal solution
for least squares case.

6.1. Algorithm
The results in preceding sections yield the following algorithm to compute

the optimal solution:

Step 1. Calculate the matrix P = Σ−1 − (a′Σ−1a− r2)−1Σ−1aa′Σ−1, and
obtain the smallest eigenvalue γp and the corresponding eigenvector vp.

Step 2. If b′Pb ≤ 0, then compute x∗ = b′Σ−1a
b′Σ−1b

b; otherwise go to next
step.

Step 3. If b′vp �= 0, then compute x∗ = x̃ ′Σ−1a
x̃ ′Σ−1x̃

x̃, where x̃ = (I + αP )−1b,
and α is a uniquely determined constant that satisfies (5.2). If b′vp = 0, then
compute the optimal solution x̃ by using (5.3).

Figure 2 illustrates the computational flow of our algorithm, which includes
the case of a′Σ−1a ≤ r2.

Figure 2. Computational flow.
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6.2. Numerical examples
Artificial data. Our solution x∗ usually differs from the least squares so-

lution xLS . Since the difference between these two solutions depends on the
parameters a, Σ, and b, our computation was carried out by changing these
parameter values systematically. Let R∗ and RLS be the correlation coefficients
corresponding to x∗ and xLS , respectively. These values might depend on the
mutual relation of a and b, so we fixed a = (0, 0, 10)′ and changed the value of
b = t(cos θ1 cos θ2, sin θ1 cos θ2, sin θ2)

′, where t = 1, 10, 20, and θi = 0, π
12 ,

π
6 ,

π
4

for i = 1, 2 (see Fig. 3). The values of R∗ and RLS also depend on Σ and
r, so we fixed r = 1 and changed the value of Σ = diag(σ2

1, σ
2
2, σ

2
3), where

σi = 1, 4, 7 for i = 1, 2, 3. The numerical examination was carried out for all
combinations of these values; that is, the total number of cases examined was
1296 (= 3 × 42 × 33). For each case we calculated x∗ and xLS respectively by
using our method and that of Golub and Van Loan (1996), and evaluated the
difference of these two solutions by computing R∗ and RLS . Table 1 summarizes
part of the obtained results that may be enough to see how the parameters af-
fect the difference between x∗ and xLS . In the table, d is the relative difference
defined by d = {(R∗)2 − (RLS)2}/(R∗)2.

As for the difference of R∗ and RLS , we obtain the following findings:
(1) The difference is large for t = 1; that is, when the length of b is short,

R∗ is rather large compared with RLS .
(2) The difference is especially large for the cases (σ2, σ3) = (7, 1) and

(θ1, θ2) = (π4 ,
π
12), or (σ2, σ3) = (1, 7) and (θ1, θ2) = ( π

12 ,
π
12); that is, when

the direction of b projected onto the 1–2 plane is not so different from that of
the major axis of the ellipsoid M , R∗ is large compared with RLS .

(3) For any fixed value of σ′
is, the difference is monotone decreasing of θ2

in most cases; that is, when the vector b is far from the ellipsoidal cone N , the
difference of R∗ and RLS is large.

For the value of R∗, the following findings are obtained:
(4) The value of R∗ is large for large values of θ2, when the vector b is close

to the ellipsoidal cone N .

1x

2x

3x

1θ

2θ

a

10

0

Figure 3. Generation of artificial data.
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Table 1. Summary of results for artificial data.

Σ† θ1 θ2 t R∗ RLS d Σ θ1 θ2 t R∗ RLS d

171 π
12

π
12

1 0.404 0.274 0.538 771 π
12

π
12

1 0.442 0.287 0.576

10 0.404 0.377 0.127 10 0.442 0.438 0.015

20 0.404 0.402 0.009 20 0.442 0.433 0.039
π
12

π
4

1 0.790 0.716 0.180 π
12

π
4

1 0.814 0.724 0.209

10 0.790 0.787 0.008 10 0.814 0.805 0.021

20 0.790 0.784 0.016 20 0.814 0.769 0.107
π
4

π
12

1 0.613 0.307 0.748 π
4

π
12

1 0.677 0.372 0.698

10 0.613 0.585 0.087 10 0.677 0.677 0.000

20 0.613 0.613 0.000 20 0.677 0.651 0.075
π
4

π
4

1 0.887 0.733 0.317 π
4

π
4

1 0.907 0.768 0.282

10 0.887 0.881 0.012 10 0.907 0.900 0.015

20 0.887 0.879 0.016 20 0.907 0.866 0.089

111 π
12

π
12

1 0.354 0.269 0.421 711 π
12

π
12

1 0.390 0.274 0.506

10 0.354 0.339 0.082 10 0.390 0.387 0.020

20 0.354 0.353 0.006 20 0.390 0.383 0.036
π
12

π
4

1 0.774 0.713 0.152 π
12

π
4

1 0.798 0.717 0.194

10 0.774 0.771 0.007 10 0.798 0.790 0.022

20 0.774 0.770 0.012 20 0.798 0.753 0.110
π
4

π
12

1 0.354 0.269 0.421 π
4

π
12

1 0.390 0.274 0.507

10 0.354 0.339 0.082 10 0.390 0.386 0.020

20 0.354 0.353 0.006 20 0.390 0.383 0.036
π
4

π
4

1 0.774 0.713 0.152 π
4

π
4

1 0.798 0.717 0.194

10 0.774 0.771 0.007 10 0.798 0.790 0.022

20 0.774 0.770 0.012 20 0.798 0.753 0.110

117 π
12

π
12

1 0.749 0.340 0.794 717 π
12

π
12

1 0.839 0.454 0.707

10 0.749 0.740 0.025 10 0.839 0.837 0.006

20 0.749 0.749 0.001 20 0.839 0.793 0.107
π
12

π
4

1 0.973 0.750 0.405 π
12

π
4

1 0.990 0.812 0.326

10 0.973 0.967 0.012 10 0.990 0.986 0.008

20 0.973 0.971 0.004 20 0.990 0.951 0.077
π
4

π
12

1 0.613 0.307 0.748 π
4

π
12

1 0.677 0.372 0.698

10 0.613 0.585 0.087 10 0.677 0.677 0.000

20 0.613 0.613 0.000 20 0.677 0.651 0.075
π
4

π
4

1 0.887 0.733 0.317 π
4

π
4

1 0.907 0.768 0.282

10 0.887 0.881 0.012 10 0.907 0.900 0.015

20 0.887 0.879 0.016 20 0.907 0.866 0.089

† Σ = (σ2
1 , σ

2
2 , σ

2
3), and three-digit numbers represent the values of σi’s; for example, “171” means

σ1 = 1, σ2 = 7, and σ3 = 1.

(5) If σ3 < σ2 holds, R∗ is monotone increasing with respect to θ1; or equiv-
alently if σ3 > σ2 holds, R∗ is monotone decreasing with respect to θ1.

From the above examinations, the difference between R∗ and RLS becomes
especially large when the length of b is small (t = 1), the value of σ′

is is large,
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Table 2. Summary of results for entrance examination data.

1/σ Japanese Social Sci. Mathematics Natural Sci. English R∗/RLS

20 0.176 0.195 0.226 0.219 0.171 0.499

0.208 0.209 0.242 0.221 0.214 0.487

16 0.170 0.193 0.231 0.224 0.163 0.504

0.210 0.211 0.252 0.226 0.217 0.489

14 0.165 0.191 0.234 0.227 0.157 0.508

0.212 0.212 0.260 0.230 0.219 0.490

12 0.158 0.189 0.238 0.231 0.149 0.512

0.214 0.215 0.270 0.235 0.222 0.492

10 0.148 0.186 0.242 0.237 0.137 0.519

0.216 0.217 0.284 0.242 0.226 0.494

8 0.133 0.180 0.246 0.245 0.119 0.528

0.220 0.222 0.305 0.253 0.232 0.497

6 0.106 0.166 0.246 0.255 0.088 0.542

0.226 0.229 0.340 0.271 0.242 0.502

4 0.049 0.120 0.220 0.267 0.032 0.567

0.236 0.243 0.410 0.309 0.259 0.510

Table 3. Comparison of optimal weights and least squares weights.

Weights are normalized to be
∑5

i=1
wi = 1.

w∗

1/σ w∗
1 w∗

2 w∗
3 w∗

4 w∗
5

20 0.178 0.198 0.229 0.222 0.173

16 0.173 0.197 0.235 0.228 0.166

14 0.169 0.196 0.240 0.233 0.161

12 0.164 0.196 0.247 0.239 0.154

10 0.156 0.196 0.255 0.249 0.144

8 0.144 0.195 0.267 0.265 0.129

6 0.123 0.193 0.286 0.296 0.102

4 0.071 0.174 0.320 0.388 0.047

wLS

1/σ wLS
1 wLS

2 wLS
3 wLS

4 wLS
5

20 0.190 0.191 0.221 0.202 0.196

16 0.188 0.189 0.226 0.203 0.194

14 0.187 0.187 0.229 0.203 0.193

12 0.185 0.186 0.234 0.203 0.192

10 0.182 0.183 0.240 0.204 0.191

8 0.179 0.180 0.248 0.205 0.188

6 0.173 0.175 0.260 0.207 0.185

4 0.162 0.167 0.281 0.212 0.178
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and θ2 is small. For example, in the case of (σ1, σ2, σ3) = (1, 1, 7), θ1 = θ2 = π
12 ,

and t = 1, the values of R∗ and RLS are 0.749 and 0.340, respectively. So the

relative difference is d = (0.749)2−(0.340)2

(0.749)2
= 0.794.

Entrance examination data. As a typical application of our method, we an-
alyzed entrance examination data of 198 candidates, which were obtained from
a university in Japan. The data consisted of two kinds of tests; one which was
administered by the university, and the other that was administered by The
National Center for University Entrance Examinations (NCUEE). For these
examination data, we investigated how well we could predict the scores of the
university examination from those of the NCUEE on five subjects (Japanese,
Social Science, Mathematics, Natural Science, and English). Numerical compu-
tations were carried out under the assumptions that w0 = (0.2, 0.2, . . . , 0.2)′, and
(w −w0)

′Σ−1(w −w0) ≤ 1, where Σ = σI, σ = ( 1
20 ,

1
16 ,

1
14 ,

1
12 ,

1
10 ,

1
8 ,

1
6 ,

1
4). The

obtained results are shown in Table 2, where the upper and the lower numerals in
each cell are corresponding to the optimal solutions and least squares solutions,
respectively. From the last column of the table, the difference of R∗ and RLS

is monotone increasing with respect to σ. When σ = 1
4 , the relative difference

d, defined before, is fairly large as d = (0.567)2−(0.510)2

(0.567)2
= 0.191. Table 3 shows

how w∗
i ’s or wLS

i ’s are changed according to σ’s. From this, the change of w∗
i ’s

is larger than that of wLS
i ’s, which is remarkable in the part of σ’s being large.

7. Concluding remarks

In this paper, we addressed one of the simplest canonical correlation problems
in which the correlation between an observed variable and its linear predictor
was optimized under a given quadratic constraint. We derived some algebraic
properties of the optimal solution, together with a computational algorithm for
it. We also confirmed the effectiveness of the algorithm by analyzing a set of
systematically generated artificial data, and especially examined how our optimal
solutions differ from least squares solutions.

Regarding natural extensions of our algorithm, we can consider at least two
extensions. One is the extension to the algorithm that is applicable to the cor-
relation maximization problem under quadratic and linear constraints. For this
extension, we are expecting that the problem with quadratic and linear con-
straints may be transformed to that with a quadratic constraint. The other
extension is to canonical correlation analysis. Although we have not considerd
this extension in detail, we believe that our current approach will be helpful to
see possibilities of the extension, since our algorithm is just a special case of it.

Appendix: Derivation of (5.3)
We give the solution x̃ for Problem 2 under the condition b′vp = 0. As shown

in the proof of Theorem 4, the solution x̃ must satisfy the following equations;

x̃′P x̃ = 0,
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and
x̃ + αP x̃ = b.

Multiplying both sides of the latter by v′
p, we obtain α = −1/γp, since Pvp =

γpvp and v′
px̃ �= 0. Hence the solution x̃ satisfies the equation

(
I − 1

γp
P

)
x̃ = b.

Apparently the matrix I − 1
γp
P has the eigenvalues δj = 1 − γj

γp
, j = 1, 2, . . . , p,

and vj is an eigenvector of I − 1
γp
P corresponding to the eigenvalue δj . Then,

the Moore-Penrose generalized inverse (I − 1
γp
P )+ of I − 1

γp
P can be defined by

(
I − 1

γp
P

)+

=
p−1∑
j=1

1

δj
vjv

′
j .

The solution x̃ is given by

x̃ =

(
I − 1

γp
P

)+

b + ηvp,

where η is a constant that satisfies the condition x̃′P x̃ = 0; that is, η satisfies
the equation given by

γpη
2 + b′

(
I − 1

γp
P

)+

P

(
I − 1

γp
P

)+

b = 0,

since (I − 1
γp
P )+vp = 0. Hence, the solution x̃ is given by

x̃ =

(
I − 1

γp
P

)+

b +

√√√√√√√b′
(
I − 1

γp
P

)+

P

(
I − 1

γp
P

)+

b

−γp
vp.
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