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THE WALD-TYPE TEST OF A NORMALIZATION OF
COINTEGRATING VECTORS

Eiji Kurozumi*

This paper proposes a test for the normalization of cointegrating vectors. Our
test is constructed using the unrestricted maximum likelihood estimator and then it
may be seen as a Wald-type test. The test statistic is shown to be asymptotically
bounded above by a chi-square distribution with one degree of freedom (χ2

1) and then
we can conduct a conservative test using critical values of χ2

1.
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1. Introduction

Vector autoregressive (VAR) models have often been used in the economet-
ric literature as useful models to describe stationary/non-stationary time series.
Additionally cointegrating vectors are of primary interest for researchers who
investigate the long-run stable relationship between economic variables. In VAR
models it is well known that cointegrating vectors are identifiable only up to
their column space. Although Johansen’s (1988, 1991) maximum likelihood (ML)
method solves the identification problem by imposing the just-identifying restric-
tions on cointegrating vectors, it is difficult to interpret the identified estimator in
an economic sense because Johansen’s identifying restrictions are imposed from
a statistical point of view. See Johansen and Juselius (1994), Boswijk (1996),
Luukkonen et al. (1999) and Pesaran and Shin (2002) among others. To obtain an
interpretable estimator we may impose some restrictions on cointegrating vectors
from an economic point of view, but such restrictions are not necessarily identi-
fiable. We then need to check whether the restrictions imposed on cointegrating
vectors are valid or not. General identifying conditions are given by Boswijk
(1995), Johansen (1995a), Pesaran and Shin (2002), and Boswijk and Doornik
(2003). One of the useful identifying or normalizing conditions is expressed as
c′β = Ir where β consists of n× r cointegrating vectors and c is an n× r known
matrix of full column rank, as investigated by Stock (1987), Johansen (1991,
1995b), and Paruolo (1997) among others. Tests for the validity of this nor-
malization are proposed by Boswijk (1996), Luukkonen et al. (1999), Saikkonen
(1999), and Paruolo (2005). The null hypothesis of the failure of the normaliza-
tion is considered in Boswijk (1996) and Paruolo (2005), while the other papers
propose tests for the null of the validity of the normalization.

In this paper we propose a test for the null hypothesis of the invalid normal-
ization of cointegrating vectors. Since our test is based on the unrestricted ML
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estimator, it may be seen as a Wald-type test. We show that the proposed test
statistic converges in distribution to a chi-square distribution with one degree
of freedom (χ2

1) when the null space of c′β is one-dimensional, and it is asymp-
totically bounded above by χ2

1 when the dimension of the null space is greater
than one; as a result, our test may be conservative in general and hence we can
asymptotically control the size of the test. As a by-product, we also develop a
test for the rank of a sub-matrix of cointegrating vectors; it may be seen as a
generalization of Kurozumi’s (2003, 2005) test.

The rest of the paper is organized as follows. We explain the model and
assumptions in Section 2, and propose the Wald-type test for the null of the
invalid normalization of cointegrating vectors. The asymptotic property of the
test is investigated depending on the dimension of the null space of c′β. The finite
sample property is investigated in Section 3. We compare our test with Boswijk’s
(1996) and Paruolo’s (2005) test, which is based on Johansen’s likelihood ratio
(LR) test. An empirical illustration is given in Section 4, and Section 5 concludes
the paper.

2. Test of a normalization

Let us consider the following n-variate vector error-correction model of order
p:

∆yt = αβ∗′y∗t−1 + µddt +
p−1∑
i=1

Γi∆yt−i + εt(2.1)

for t = 1, . . . , T , where β∗ = [β′, µ′c]
′, α and β are n × r matrices of full column

rank, y∗t = [y′t, c
′
t]
′, ct and dt are deterministic regressors, {εt} ∼ i .i .d .N (0,Σ)

with Σ being a positive definite variance matrix, and all roots of |(1 − z)In −
αβ′z − ∑p−1

i=1 Γiz
i(1 − z)| = 0 are outside the unit circle or equal to 1. We

consider the two most common cases where (ct, dt) = (1, ∅) and (t, 1); the former
specification corresponds to the case where {yt} is not a trending series with
possibly a non-zero mean whereas it is linearly trending for the latter case. The
normality assumption on {εt} is imposed to obtain the ML estimator, and the
asymptotic result in this paper may be obtained under weaker conditions as
explained by Pesaran and Shin (2002) and Boswijk and Doornik (2003). We
assume that 0 < r < n and |α′

⊥Γβ⊥| 	= 0 where Γ = In −∑p−1
i=1 Γi, so that yt is

cointegrated with cointegrating rank r.
The model (2.1) can be estimated by the ML method and the asymptotic

property of the ML estimator is investigated by Johansen (1988, 1991, 1995b). It
is known that the cointegrating vectors β can be consistently estimated up to the
column space spanned by β, and we then need to normalize the estimator of β.
The normalization of the cointegrating vectors is established by assuming that
c′β is nonsingular for an n× r known full column rank matrix c. The normalized
cointegrating vectors are defined as βc = β(c′β)−1, so that βc is unique and
c′βc = Ir. One of the commonly used c is given by c = [Ir, 0]′, but we consider
a general full column rank matrix c in the following. Similarly, β∗ is normalized



TEST OF COINTEGRATING VECTORS 193

as β∗c = β∗(c∗′β∗)−1 where c∗′ = [c′, 0]. The problem we have here is that the
nonsingularity of c′β does not necessarily hold. We then consider the following
testing problem:

H0 : rk(c′β) < r v.s. H1 : rk(c′β) = r,(2.2)

where rk(A) signifies the rank of a matrix A. The null hypothesis can also be
expressed as rk(c∗′β∗) < r. As a related hypothesis, we also consider

Hf
0 : rk(c′β) ≤ f v.s. Hf

1 : rk(c′β) > f,(2.3)

for a fixed f < r. The testing problem (2.3) has been considered in various situa-
tions such as the case when we want to test for the long-run Granger-noncausality
as in Yamamoto and Kurozumi (2006). See Kurozumi (2005) and Paruolo (2005)
for other useful examples. We first develop a test for (2.3) and next consider the
testing problem (2.2).

For the testing problem (2.3), it seems natural to investigate the number
of zero-eigenvalues of c′β. However, since c′β is asymmetric in general, some
of the eigenvalues possibly take complex values and hence it would be incon-
venient to deal with c′β. Instead, we consider the quadratic form of c′β such
as (c′β)Ψ(β′c)Φ−1 for some positive definite and symmetric matrices1 Ψ and Φ,
noting that rk(c′β) = rk((c′β)Ψ(β′c)Φ−1). The advantage of considering the
quadratic form is that all the eigenvalues, which are given by the solutions of

|(c′β)Ψ(β′c) − λΦ| = 0,(2.4)

take non-negative real values, so that the null hypothesis Hf
0 is equivalent to the

hypothesis that the r− f smallest eigenvalues equal zero. This strategy is taken
by Robin and Smith (2000) in different situations.

In the following, β⊥ signifies an orthogonal complement to β such that
β′β⊥ = 0. Let α̂, β̂∗, β̂, β̂⊥, and Σ̂ be the ML estimators of α, β∗, β, β⊥,
and Σ. Note that β̂ consists of the first n rows of β̂∗ while β̂⊥ is constructed such
that β̂′β̂⊥ = 0. Theoretically, we can choose any positive definite and symmetric
matrices Φ and Ψ, but in practice we need to choose them such that the limiting
distributions of the r−f smallest eigenvalues become free of nuisance parameters
under Hf

0 . The sample analogue of (2.4) we consider is given by

|(c′β̂)Ψ̂(β̂′c) − λΦ̂| = 0,(2.5)

where Ψ̂ = α̂′Σ̂−1α̂ and

Φ̂ = c′β̂(β̂′β̂)−1β̂′c+ c′ ¯̂β⊥L
′(Υ′

TS
∗
11ΥT )−1L

¯̂
β
′
⊥c,

where
¯̂
β⊥ = β̂⊥(β̂′⊥β̂⊥)−1, S∗

11 = T−1 ∑T
t=1R

∗
1tR

∗′
1t with R∗

1t being a regression
residual of y∗t−1 on dt and ∆yt−1, . . . ,∆yt−p+1, L = [In−r, 0]′ is (n−r+1)×(n−r),
and ΥT is defined by

ΥT =

[
T−1/2 ¯̂

β⊥ 0

0 1

]
and ΥT =

[
T−1/2 ¯̂

β⊥ 0

0 T−1

]

1 When Ψ and/or Φ are stochastic, they are positive definite almost surely (a.s.).
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for (ct, dt) = (1, ∅) and (ct, dt) = (t, 1), respectively.
Let λ1 ≥ λ2 ≥ · · · ≥ λr be the ordered eigenvalues of (2.5). We first give the

asymptotic behavior of the r − f smallest eigenvalues, λf+1, . . . , λr, under Hf
0 .

Theorem 1. When the rank of c′β equals f (< r), T 2λf+1, . . . , T
2λr con-

verge in distribution to the ordered eigenvalues of

|N ′N − ρIr−f | = 0,(2.6)

where N is (r − f) × (r − f) and vec(N) ∼ N (0, I(r−f)2).

Let us consider the testing problem (2.3). Since the null hypothesis Hf
0 is

equivalent to the hypothesis that the r − f smallest eigenvalues equal zero as
explained above, it is natural to consider

W f
T = T 2

r∑
j=f+1

λj

as a test statistic. Note thatW f
T may be seen as a Wald-type test statistic because

we use only the unrestricted ML estimator to construct the test statistic. The
asymptotic property of this statistic is given by the following corollary.

Corollary 1. (i) Under Hf
0 , W f

T converges in distribution to χ2
(r−f)2.

(ii) Under Hf
1 , W f

T diverges to infinity at a rate of T 2.

Remark 1. We may also consider T 2λf+1 as a test statistic, but we will
not investigate it because the finite sample performance of T 2λf+1 is shown to

be similar to that of W f
T from preliminary simulations.

Remark 2. When c = [Ir, 0] and (ct, dt) = (1, ∅), the testing problem (2.3)
becomes the same as considered in Theorem 3 of Kurozumi (2005). Then, our
testing problem includes Kurozumi’s (2005) as a special case.

Next, we develop a test for (2.2). Noting that H0 = H0
0 ∪H1

0 ∪· · ·∪Hr−1
0 and

H0
0 ⊂ H1

0 ⊂ · · · ⊂ Hr−1
0 , it is sufficient for us to consider only Hr−1

0 . Then, the
test statistic for the testing problem (2.2) is given by the minimum eigenvalue of
(2.5) normalized by T 2:

Wmin
T = T 2λr.

The following corollary gives the asymptotic property of this test statistic.

Corollary 2. (i) Under H0,

Wmin
T

d→
{
χ2

1 when rk(c′β) = r − 1

ρ ≤ χ2
1 when rk(c′β) < r − 1,

where ρ, which is bounded above by χ2
1, is the minimum eigenvalue of (2.6) when

the true rank of c′β equals f < r − 1. (ii) Under H1, W
min
T diverges to infinity

at a rate of T 2.
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From this theorem we can see that if we use critical values of χ2
1, our test

has an asymptotically exact size under the null hypothesis if rk(c′β) = r−1, and
it is conservative if rk(c′β) < r − 1. Then, we can control the size of the test at
least asymptotically.

3. Finite sample evidence

In this section we investigate the finite sample property of the test proposed
in the previous section. For the purpose of comparison, we also investigate the
LR test proposed by Boswijk (1996) and Paruolo (2005), according to which the
null hypothesis is expressed as H ′

0 : β∗ = [c∗⊥φ, ψ] where (φ, ψ) ∈ R(n−r+1)×1 ×
R(n+1)×(r−1). The LR test statistic is calculated by the switching algorithm of
Johansen and Juselius (1992), and it has a similar asymptotic property to Wmin

T ;
its limiting distribution is χ2

1 when rk(c′β) = r− 1, while it is bounded above by
χ2

1 when rk(c′β) < r − 1. The data generating process (DGP) we considered is
basically the same as that of Luukkonen et al. (1999),

y1t = Ay2t + w1t, ∆y2t = w2t,

[
w1t

w2t

]
=

[
b1Ik 0

b2Ik 0

] [
w1,t−1

w2,t−1

]
+

[
ε1t

ε2t

]
,

where εt = [ε′1t, ε
′
2t]

′ ∼ i .i .d .N (0, I2k). We consider two cases where k = 2
(DGP1) and 3 (DGP2). We set b1 = 0.4 and 0.8, while b2 > 0 is determined to
satisfy the relation of R2(b1, b2) = b22/(1−b21−b22) = 0.4 and 0.8, where R2(b1, b2)
is a measure of cross-correlation between w1t and w2t. See Luukkonen et al.
(1999) for details. The process yt = [y′1t, y

′
2t]

′ has VAR(2) representation and the
cointegrating vectors are expressed as β′ = [Ik,−A], so that yt is 4-dimensional
for k = 2 (DGP1) and 6-dimensional for k = 3 (DGP2). The matrices β and c
are chosen as

β′ =

[
1 0 a −1

0 1 1 − a 1

]
, c′ =

[
0 1 0 0

0 0 1 0

]
for DGP1,

β′ =




1 0 0 a 0 1

0 1 0 0 a 1

0 0 1 1 1 − a 0


 , c′ =




0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


 for DGP2.

Then, c′β becomes

[
0 1

a 1 − a

]
and




0 0 1

a 0 1

0 a 1 − a


 ,

so that the rank of c′β is 1 and 2 for a = 0 and a 	= 0, respectively, for DGP1, while
it is 1 and 3 for DGP2. Then, under the null hypothesis, both the test statistics
are asymptotically chi-square distributed for DGP1 while they are bounded above
by χ2

1 for DGP2. We set all the initial values to be zero and the first 100
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Table 1. Nominal size and size-unadjusted power of the tests.

DGP1 DGP2

(ct, dt) = (1, ∅) T = 100 T = 200 T = 100 T = 200

b1 R2 a Wmin
T LR Wmin

T LR Wmin
T LR Wmin

T LR

0.050 0.648 0.543 0.942 0.918 0.310 0.186 0.760 0.687

0.020 0.273 0.187 0.512 0.458 0.079 0.034 0.170 0.125

0.015 0.216 0.145 0.368 0.316 0.060 0.026 0.093 0.063

0.4 0.4 0.010 0.170 0.110 0.225 0.186 0.048 0.020 0.045 0.030

0.005 0.141 0.087 0.128 0.099 0.039 0.016 0.022 0.014

0.000 0.133 0.084 0.084 0.064 0.036 0.014 0.016 0.009

0.050 0.546 0.410 0.884 0.841 0.251 0.109 0.608 0.501

0.020 0.264 0.156 0.437 0.370 0.105 0.036 0.135 0.083

0.015 0.222 0.125 0.316 0.257 0.088 0.030 0.082 0.046

0.8 0.4 0.010 0.193 0.103 0.203 0.158 0.083 0.024 0.046 0.024

0.005 0.172 0.091 0.130 0.093 0.074 0.021 0.024 0.012

0.000 0.161 0.089 0.097 0.070 0.070 0.021 0.019 0.009

0.050 0.997 0.992 1.000 1.000 0.979 0.944 1.000 1.000

0.020 0.851 0.800 0.996 0.992 0.571 0.451 0.961 0.945

0.015 0.718 0.645 0.973 0.964 0.376 0.270 0.864 0.824

0.4 0.8 0.010 0.507 0.437 0.869 0.846 0.187 0.118 0.591 0.530

0.005 0.250 0.190 0.501 0.464 0.063 0.031 0.162 0.129

0.000 0.106 0.072 0.075 0.060 0.024 0.012 0.010 0.007

0.050 0.994 0.987 1.000 1.000 0.946 0.893 1.000 1.000

0.020 0.840 0.785 0.995 0.993 0.519 0.385 0.960 0.942

0.015 0.716 0.643 0.978 0.971 0.352 0.231 0.869 0.831

0.8 0.8 0.010 0.519 0.440 0.893 0.870 0.187 0.112 0.613 0.549

0.005 0.263 0.197 0.553 0.513 0.079 0.036 0.185 0.142

0.000 0.119 0.077 0.083 0.065 0.037 0.015 0.013 0.008

observations are discarded. The level of significance is set to be 0.05 and the
number of replications is 10,000 in all experiments.

Table 1 reports the empirical size and the size-unadjusted power of the tests.
For the case where there is no linear trend in the series, (ct, dt) = (1, ∅), we can
see that Wmin

T tends to overly reject the null hypothesis (a = 0) for DGP1 when
T = 100, while the empirical size of the LR test is closer to the nominal one,
although it is greater than 0.05. However, the problem of the over-rejection of
Wmin

T is mitigated when T = 200. The parameter b1 seems to have only a small
effect on the finite sample performance of both the tests, while R2 does affect
the property of the tests. When the value of R2 increases, the empirical size of
the tests becomes closer to the nominal one and the power of the tests increases
dramatically.

For DGP2, the LR test is too conservative and it suffers from reduced power.
The Wald-type test also becomes conservative, but not as much as the LR test, so
that Wmin

T is more powerful than the LR test. Note that the small empirical size
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Table 1. (continued).

DGP1 DGP2

(ct, dt) = (t, 1) T = 100 T = 200 T = 100 T = 200

b1 R2 a Wmin
T LR Wmin

T LR Wmin
T LR Wmin

T LR

0.050 0.487 0.364 0.855 0.806 0.208 0.096 0.591 0.491

0.020 0.231 0.139 0.346 0.283 0.071 0.026 0.092 0.057

0.015 0.205 0.119 0.247 0.195 0.063 0.022 0.052 0.031

0.4 0.4 0.010 0.185 0.103 0.167 0.125 0.055 0.019 0.030 0.016

0.005 0.165 0.095 0.113 0.081 0.054 0.019 0.018 0.010

0.000 0.161 0.092 0.093 0.067 0.055 0.019 0.017 0.010

0.050 0.408 0.258 0.751 0.672 0.192 0.065 0.413 0.294

0.020 0.245 0.128 0.292 0.224 0.115 0.032 0.075 0.038

0.015 0.228 0.115 0.219 0.160 0.105 0.030 0.052 0.023

0.8 0.4 0.010 0.214 0.108 0.162 0.115 0.102 0.029 0.035 0.016

0.005 0.205 0.105 0.126 0.083 0.098 0.029 0.028 0.011

0.000 0.203 0.104 0.114 0.074 0.099 0.028 0.026 0.011

0.050 0.988 0.973 1.000 1.000 0.936 0.862 1.000 1.000

0.020 0.705 0.618 0.980 0.970 0.380 0.263 0.904 0.868

0.015 0.544 0.452 0.920 0.899 0.235 0.136 0.725 0.660

0.4 0.8 0.010 0.356 0.276 0.726 0.686 0.113 0.062 0.390 0.323

0.005 0.197 0.134 0.329 0.288 0.052 0.022 0.083 0.059

0.000 0.129 0.083 0.083 0.063 0.036 0.014 0.014 0.009

0.050 0.974 0.947 1.000 1.000 0.858 0.740 1.000 0.999

0.020 0.672 0.580 0.978 0.970 0.332 0.204 0.888 0.843

0.015 0.524 0.426 0.924 0.903 0.211 0.110 0.716 0.647

0.8 0.8 0.010 0.352 0.263 0.755 0.711 0.117 0.053 0.397 0.326

0.005 0.200 0.130 0.362 0.317 0.062 0.023 0.089 0.062

0.000 0.140 0.086 0.088 0.067 0.043 0.015 0.014 0.009

results in power reduction and this deviation from the nominal size is caused by
two factors; the small sample bias and the test being asymptotically conservative.
To evaluate the degree of power reduction caused by the latter factor, we increase
sample size to 1,000 such that the small sample bias is negligible and the empirical
size becomes close to the theoretical conservative one for both the tests. The
simulation result is summarized in Table 2 for the parameter a ranging from 0 to
0.01 in increments of 0.02. We observe that the empirical size of both the tests
is only 0.005 to 0.007. The Wald-type test is slightly more powerful than the
LR test in almost all the cases but the difference is not as much addressed as in
the small sample cases such as T = 100 and 200. This result implies that the
degree of power reduction caused by being asymptotically conservative is similar
for both the Wald-type and LR tests and that the difference of power between
the two tests in small samples is mainly due to the small sample bias.

We also calculate the size-adjusted power of the tests for T = 100 and 200 to
see the difference of the theoretical performance of the two tests. In Table 3 we
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Table 2. Nominal size and size-unadjusted power of the tests.

DGP2, T = 1, 000 (ct, dt) = (1, ∅) (ct, dt) = (t, 1)

b1 R2 a Wmin
T LR Wmin

T LR

0.010 0.777 0.765 0.609 0.589

0.008 0.601 0.583 0.398 0.379

0.006 0.352 0.337 0.195 0.183

0.4 0.4 0.004 0.134 0.126 0.055 0.053

0.002 0.022 0.022 0.012 0.012

0.000 0.005 0.005 0.006 0.006

0.010 0.688 0.668 0.495 0.468

0.008 0.497 0.478 0.309 0.288

0.006 0.284 0.268 0.138 0.126

0.8 0.4 0.004 0.099 0.091 0.042 0.039

0.002 0.020 0.019 0.012 0.011

0.000 0.006 0.006 0.007 0.007

0.010 1.000 1.000 1.000 1.000

0.008 1.000 1.000 1.000 1.000

0.006 1.000 1.000 0.999 0.998

0.4 0.8 0.004 0.979 0.978 0.943 0.937

0.002 0.605 0.596 0.408 0.395

0.000 0.005 0.006 0.006 0.006

0.010 1.000 1.000 1.000 1.000

0.008 1.000 1.000 1.000 1.000

0.006 1.000 1.000 1.000 0.999

0.8 0.8 0.004 0.993 0.992 0.976 0.973

0.002 0.730 0.719 0.540 0.525

0.000 0.005 0.007 0.006 0.006

observe that the Wald-type test is more powerful than the LR test in almost all
the cases, but the difference is only slight. Since the difference of the two size-
adjusted powers is small, we may see that the Wald-type test has the theoretical
property similar to the LR test.

For the case where there is a linear trend in the series, (ct, dt) = (t, 1),
the overall property of the tests seems to be preserved compared with the non-
trending case.

4. An empirical application

In this section, we apply our test and the LR test by Boswijk (1996) and
Paruolo (2005) for normalizing restrictions on the cointegrating vectors to a Fin-
ish dataset, which is used in Luukkonen et al. (1999). The dataset is comprised
of the own-yield of harmonized broad money (IOWN), one- and three-month
money market interest rates of money (I1M and I3M), and the five-year bond
rate (IBOND), from January 1980 to December 1995. See Luukkonen et al.
(1999) for details. Of practical interest is how the own-yield of money is in-
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Table 3. Size-adjusted power of the tests.

DGP1 DGP2

(ct, dt) = (1, ∅) T = 100 T = 200 T = 100 T = 200

b1 R2 a Wmin
T LR Wmin

T LR Wmin
T LR Wmin

T LR

0.050 0.497 0.458 0.918 0.903 0.346 0.310 0.842 0.824

0.020 0.141 0.134 0.434 0.418 0.099 0.091 0.291 0.274

0.4 0.4 0.015 0.100 0.094 0.291 0.282 0.076 0.072 0.186 0.178

0.010 0.072 0.069 0.166 0.158 0.062 0.057 0.107 0.100

0.005 0.057 0.055 0.083 0.080 0.053 0.050 0.064 0.062

0.050 0.354 0.327 0.834 0.817 0.207 0.180 0.700 0.670

0.020 0.103 0.098 0.332 0.326 0.076 0.076 0.210 0.196

0.8 0.4 0.015 0.078 0.075 0.221 0.220 0.067 0.065 0.146 0.138

0.010 0.063 0.058 0.132 0.132 0.057 0.057 0.092 0.088

0.005 0.054 0.052 0.070 0.073 0.050 0.053 0.059 0.058

0.050 0.993 0.990 1.000 1.000 0.985 0.976 1.000 1.000

0.020 0.782 0.758 0.993 0.992 0.641 0.608 0.982 0.978

0.4 0.8 0.015 0.610 0.589 0.965 0.961 0.456 0.426 0.926 0.919

0.010 0.389 0.378 0.839 0.832 0.252 0.235 0.736 0.725

0.005 0.149 0.145 0.441 0.439 0.100 0.096 0.304 0.298

0.050 0.988 0.981 1.000 1.000 0.953 0.934 1.000 1.000

0.020 0.762 0.739 0.992 0.991 0.549 0.513 0.978 0.975

0.8 0.8 0.015 0.602 0.587 0.968 0.965 0.385 0.359 0.922 0.913

0.010 0.389 0.381 0.860 0.854 0.215 0.200 0.738 0.722

0.005 0.156 0.151 0.479 0.480 0.095 0.092 0.323 0.312

(ct, dt) = (t, 1) Wmin
T LR Wmin

T LR Wmin
T LR Wmin

T LR

0.050 0.295 0.262 0.792 0.774 0.199 0.180 0.694 0.675

0.020 0.090 0.082 0.250 0.246 0.067 0.067 0.175 0.172

0.4 0.4 0.015 0.074 0.066 0.163 0.162 0.058 0.058 0.113 0.113

0.010 0.061 0.054 0.100 0.099 0.052 0.053 0.075 0.077

0.005 0.053 0.049 0.061 0.061 0.048 0.050 0.056 0.056

0.050 0.172 0.154 0.644 0.618 0.116 0.100 0.493 0.462

0.020 0.066 0.061 0.182 0.175 0.059 0.057 0.124 0.116

0.8 0.4 0.015 0.061 0.054 0.130 0.123 0.055 0.054 0.089 0.083

0.010 0.056 0.051 0.084 0.082 0.053 0.051 0.069 0.064

0.005 0.052 0.048 0.059 0.058 0.051 0.049 0.056 0.054

0.050 0.975 0.961 1.000 1.000 0.946 0.923 1.000 1.000

0.020 0.562 0.537 0.970 0.966 0.425 0.395 0.949 0.942

0.4 0.8 0.015 0.389 0.370 0.895 0.884 0.273 0.251 0.831 0.817

0.010 0.216 0.208 0.664 0.656 0.139 0.129 0.551 0.532

0.005 0.090 0.086 0.261 0.261 0.070 0.068 0.184 0.178

0.050 0.945 0.926 1.000 1.000 0.867 0.829 1.000 1.000

0.020 0.514 0.498 0.968 0.962 0.351 0.322 0.934 0.924

0.8 0.8 0.015 0.353 0.345 0.894 0.887 0.229 0.214 0.808 0.796

0.010 0.194 0.195 0.687 0.675 0.131 0.120 0.537 0.523

0.005 0.084 0.084 0.284 0.281 0.071 0.068 0.181 0.177
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Table 4. Results of an empirical application.

(a) Estimated cointegrating vectors (r = 2)

IOWN I1M I3M IBOND Constant

−0.854 −96.983 41.057 108.559 −6.401

−10.970 −198.224 247.965 −77.691 3.873

(b) p-values of the tests for normalizations with respect to the own-yield of money

c the Wald test the LR test LRS(
1 0 0 0

0 1 0 0

)
0.810 0.810 invalid(

1 0 0 0

0 0 1 0

)
0.956 0.960 invalid(

1 0 0 0

0 0 0 1

)
0.529 0.562 invalid

(c) p-values of the tests for normalizations with respect to interest rates and bond rate

c the Wald test the LR test LRS(
0 1 0 0

0 0 1 0

)
0.000 0.000 valid(

0 1 0 0

0 0 0 1

)
0.000 0.000 valid(

0 0 1 0

0 0 0 1

)
0.000 0.000 valid

The estimated cointegrating vectors in Panel (a) are normalized according to Johansen

(1991). Entries corresponding to the Wald and LR tests are p-values of these tests, while

those in the column of “LRS” are the results of Luukkonen et al. (1999).

fluenced by the market interest rates and bond rate. This implies that one of
the cointegrating vectors, if it exists, should be normalized with respect to the
own-yield of money.

The results of the tests are summarized in Table 4. We fit a VAR(3) model
with cointegrating rank r = 2 according to the results in Luukkonen et al. (1999).
Panel (a) shows the estimated cointegrating vectors that are normalized accord-
ing to Johansen’s (1991) rule, which is difficult to interpret from an economic
point of view. We thus consider other normalizations using a pre-specified matrix
c. We first consider normalizing one of the cointegrating vectors with respect to
the own-yield of money; the matrix c is then chosen such that c = [e1, c2] where
e1 = [1, 0, 0, 0]′ and c2 is a 4 × 1 vector with i-th element equal to 1 (i = 2,
3, or 4) and the other elements equal to zero. From Panel (b) we can see that
both the Wald-type and LR tests cannot reject the null hypothesis of the invalid
normalization even at 10% significance level; p-values of the tests exceed 50%.
This is consistent with the results in Luukkonen et al. (1999), whose tests reject
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the null hypothesis of the valid normalization for these c (see the column “LRS”
in Table 4). These results imply that the own-yield of money is not included in
the cointegrating relationship. On the other hand, the other normalization rules
considered in the paper can be seen to be valid from Panel (c). These results
imply that we should avoid normalizing the cointegrating vectors by imposing
restrictions on the coefficient of the own-yield of money, and should normalize
the cointegrating vectors with respect to interest rates and bond rate.

5. Conclusion

In this paper we proposed the Wald-type test of a normalization of coin-
tegrating vectors. The test statistic is constructed using only the unrestricted
ML estimator. We showed that our test statistic converges in distribution to a
random variable that is bounded above by, or equal to, a chi-square distribution
with one degree of freedom, depending on the deficiency of c′β. As a by-product,
we also proposed the test for the null hypothesis of rk(c′β) = f for f < r. The
finite sample simulations show that we should carefully interpret the result of
Wmin

T in empirical analysis for small sample sizes such as 100; the LR test is
recommended in those cases. Since size distortion of Wmin

T is mitigated when
T = 200 and Wmin

T is more powerful than the LR test for DGP2, our test may
complement the LR test. We then recommend using both Wmin

T and the LR test
as well as the tests proposed by Luukkonen et al. (1999) in practical analysis to
see whether the identifying restrictions imposed on the cointegrating vectors are
valid or not.

Appendix
Proof of Theorem 1. (i) We first consider the case where (ct, dt) =

(1, ∅). As did Johansen (1988, 1991, 1995b) we normalize the ML estimators of
β∗ and α as β̃∗ = β̂∗(η̄′β̂∗)−1 and α̃ = α̂β̂∗′η̄, respectively, where η′ = [β′, 0].
Then, in the same way as Section 13 of Johansen (1995b), we have

BT (β̃∗ − β∗) d→
(∫ 1

0
GG′ds

)−1 ∫ 1

0
GdV ′, where BT =

[
Tβ′⊥ 0

0 T 1/2

]
,

G(r) = [(β̄⊥CW (r))′, 1]′, C = β⊥(α′
⊥Γβ⊥)−1α′

⊥, W (r) is an n-dimensional Brow-
nian motion with a variance matrix Σ, V (r) = (α′Σ−1α)−1α′Σ−1W (r), and G(·)
and V (·) are independent of each other. Since β̃ is the first n rows of β̃∗ we have

Tβ′⊥(β̃ − β) = L′BT (β̃∗ − β∗)
d→ L′

(∫ 1

0
GG′ds

)−1 ∫ 1

0
GdV ′.(A.1)

We can also see that α̃ and Σ̂ are consistent as shown by Johansen (1995b).
Since (c′β̂)Ψ̂(β̂′c)Φ̂−1 is invariant to the normalizations of α̂ and β̂, we can

replace them by α̃ and β̃. Then, the eigenvalues are obtained by the following
determinant equation:

|(c′β̃)Ψ̃(β̃′c) − λΦ̃| = |H ′||(c′β̃)Ψ̃(β̃′c) − λΦ̃||H| = 0,(A.2)
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where Ψ̃ and Φ̃ are defined as Ψ̂ and Φ̂ using α̃ and β̃, and H is a nonsingular
matrix. Note that when rk(c′β) = f we can find an r×f full column rank matrix
δ such that sp(δ) = sp(c′β). We use H = [δ, T δ⊥] in the following.

Since δ⊥ is orthogonal to δ, we have δ′⊥c
′β = 0, or cδ⊥ ∈ sp(β⊥). Then, we

can find an (n−r)× (r−f) matrix h such that cδ⊥ = β⊥h, or h = β̄′⊥cδ⊥. Then,
(A.1) implies

Tδ′⊥c
′(β̃ − β) = Th′β′⊥(β̃ − β)

d→ h′L′
(∫ 1

0
GG′ds

)−1 ∫ 1

0
GdV ′

= δ′⊥c
′β̄⊥L

′
(∫ 1

0
GG′ds

)−1 ∫ 1

0
GdV ′ ≡ x′, say.(A.3)

By defining Ψ ≡ α′Σ−1α, we obtain

H ′(c′β̃)Ψ̃(β̃′c)H
d→

[
δ′c′βΨβ′cδ δ′c′βΨx

x′Ψβ′cδ x′Ψx

]
,(A.4)

because Ψ̃
p→ α′Σ−1α = Ψ, δ′(cβ̃)

p→ δ′cβ, and (A.3). Let T → ∞ and λ → 0
such that ρ = T 2λ is fixed as in Johansen (1995b, p. 159). Then,

λH ′Φ̃H =
ρ

T 2
H ′Φ̃H

d→
[

0 0

0 ρδ′⊥c
′β̄⊥L′(

∫ 1
0 GG

′ds)−1Lβ̄′⊥cδ⊥

]
,(A.5)

because δ′(cβ̃⊥)
p→ δ′c′β⊥, Tδ′⊥(c′β̃⊥) = Tδ′⊥c

′β⊥ + op(T ), and Υ′
TS

∗
11ΥT

d→∫ 1
0 GG

′ds, which is obtained because ΥTR
∗
1[Tr]

d→ G(r). Then, (A.4) and (A.5)

imply that the r − f smallest eigenvalues of (A.2) normalized by T 2 converge in
distribution to those of the equation,

0 =

∣∣∣∣∣ δ
′c′βΨβ′cδ δ′c′βΨx

x′Ψβ′cδ x′Ψx− ρδ′⊥c′β̄⊥L′(
∫ 1
0 GG

′ds)−1Lβ̄′⊥cδ⊥

∣∣∣∣∣
= |δ′c′βΨβ′cδ|

×
∣∣∣∣∣x′{Ψ − Ψβ′cδ(δ′c′βΨβ′cδ)−1δ′c′βΨ}x

− ρδ′⊥c′β̄⊥L′
(∫ 1

0
GG′ds

)−1

Lβ̄′⊥cδ⊥

∣∣∣∣∣
∝

∣∣∣∣∣(x′J)(J ′x) − ρδ′⊥c′β̄⊥L′
(∫ 1

0
GG′ds

)−1

Lβ̄′⊥cδ⊥

∣∣∣∣∣(A.6)

because |δ′c′βΨβ′cδ| 	= 0 under Hf
0 , where J is an r × (r − f) matrix such

that JJ ′ = Ψ − Ψβ′cδ(δ′c′βΨβ′cδ)−1δ′c′βΨ and J ′Ψ−1J = Ir−f . See Johansen
(1988, p. 246) and Kurozumi (2005). Note that vec(x′J) is an (r − f)2 random
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vector and its variance conditioned on G(·) is given by Vx′J ≡
δ′⊥c

′β̄⊥L′(
∫ 1
0 GG

′ds)−1Lβ̄′⊥cδ⊥⊗Ir−f from (A.3), using the relation of J ′Ψ−1J =

Ir−f . This implies that V
−1/2
x′J (x′J) | G(·) consists of (r − f)2 independent

standard normal random variables. Note that the conditional distribution of
N ≡ V

−1/2
x′J (x′J) is free of the conditioning variable G(·), and hence the uncon-

ditional distribution of each element is also standard normal. Then, multiplying

(A.6) by V
−1/2
x′J from both sides, we can see that

0 = |(c′β̃)Ψ̃(β̃′c) − λΦ̃|
= |V −1/2

x′J ||H ′||(c′β̃)Ψ̃(β̃′c) − λΦ̃||H||V −1/2
x′J |/|δ′c′βΨβ′cδ|

d→ |N ′N − ρIr−f |.

This implies that ρ = T 2λ converges in distribution to the roots of (2.6).
The theorem is proved in the same way when (ct, dt) = (t, 1), in which we

only have to modify the limiting result (A.1) such that

Tβ′⊥(β̃ − β)
d→ L′

(∫ 1

0
GG′ds

)−1 ∫ 1

0
GdV ′,

where G(r) = G0(r) −
∫ 1
0 G0ds with G0(r) = [(β̄′⊥W (r))′, r]′.

Proof of Corollary 1. Part (i) is immediately obtained because the

limiting distribution of W f
T is a trace of N ′N . To prove part (ii), let us suppose

that the true rank of c′β equals, say, g > f , under the alternative. Let H∗ =
[δ, δ⊥] where δ and δ⊥ are r×g and r× (r−g) matrices such that sp(δ) = sp(c′β)
and sp(δ⊥) = sp(c′β)⊥ as in the proof of Theorem 1. Then, in the same way as
(A.4) and (A.5), we obtain

H∗′(c′β̃)Ψ̃(β̃′c)H∗ p→
[
δ′c′βΨβ′cδ 0

0 0

]
(A.7)

and

H∗′Φ̃H∗ d→ H∗′ΦH∗,(A.8)

where Φ = c′β(β′β)−1β′c + c′β̄⊥L′(
∫ 1
0 GG

′ds)−1Lβ̄′⊥c. Note that H∗′ΦH∗ is
positive definite (a.s.) because |H∗| 	= 0 and Φ is positive definite (a.s.). Using
(A.7) and (A.8), we have

|H∗′||(c′β̃)Ψ̃(β̃′c) − λΦ̃||H∗|
d→

∣∣∣∣∣ δ
′c′βΨβ′cδ − λδ′Φδ −λδ′Φδ⊥

−λδ′⊥Φδ −λδ′⊥Φδ⊥

∣∣∣∣∣
= | − λδ′⊥Φδ⊥|
× |δ′c′βΨβ′cδ − λ(δ′Φδ − δ′Φδ⊥(δ′⊥Φδ⊥)−1δ′⊥Φδ)|.
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This implies that the g largest eigenvalues converge in distribution to the roots
of

|δ′c′βΨβ′cδ − λ(δ′Φδ − δ′Φδ⊥(δ′⊥Φδ⊥)−1δ′⊥Φδ)| = 0.(A.9)

Note that both the first and second terms in (A.9) are positive definite (a.s.) from
the definition of δ and the fact that H∗′ΦH∗ is positive definite (a.s.). Then, we
can see that all the roots of (A.9) take positive values (a.s.). Therefore, the test
statistic diverges to infinity at a rate of T 2.

Proof of Corollary 2. The convergence, Wmin
T

d→ χ2
1 for rk(c′β) =

r − 1, is proved in Corollary 1.
When rk(c′β) = g < r − 1, the matrices δ and δ⊥ in the proof of Theorem

1 are r × g and r × (r − g), and we obtain (A.6) similarly. In this case, J and
x′J are r× (r− g) and (r− g)× (r− g) random matrices. Then, we can see that
ρr = T 2λr, the smallest eigenvalue multiplied by T 2, converges in distribution to
ρmin, the smallest eigenvalue of |N ′N − ρIr−g| = 0, where N is (r − g) × (r − g)
and vec(N) ∼ N (0, I(r−g)2). Let us decompose N into N = [N1, N2] where N1

is (r − g) × 1 and N2 is (r − g) × (r − g − 1). Note that we can choose a vector
z∗(N2) for given N2 such that z∗(N2)

′N2 = 0 and z∗(N2)
′z∗(N2) = 1. Then, we

can see that

ρmin = min
z

(z′N ′Nz)/(z′z) ≤ z∗(N2)NN
′z∗(N2) = (z∗(N2)

′N1)
2,

where the first equality holds by equation (6) of Magnus and Neudecker (1988,
p. 204). Because z∗(N2) is uniquely defined by a given N2, and N1 is independent
of N2, we can see that

z∗(N2)
′N1 | N2 ∼ N (0, z∗(N2)

′z∗(N2)) = N (0, 1),

and then (z∗(N2)
′N1)

2 | N2 ∼ χ2
1, which implies that the unconditional distribu-

tion of (z∗(N2)
′N1)

2 is also a chi-square distribution with one degree of freedom.
Thus, the statement of the theorem holds for the case where rk(c′β) < r − 1.

Part (ii) is proved in the same way as Corollary 1.
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