
J. Japan Statist. Soc.
Vol. 37 No. 2 2007 285–298

JOINT DISTRIBUTIONS ASSOCIATED WITH
COMPOUND PATTERNS IN A SEQUENCE OF MARKOV
DEPENDENT MULTISTATE TRIALS AND ESTIMATION

PROBLEMS

Kiyoshi Inoue* and Sigeo Aki**

Let Λi, 1 ≤ i ≤ � be simple patterns, i.e., finite sequences of outcomes from a
set Γ = {b1, b2, . . . , bm} and let Λ be a compound pattern (a set of � distinct simple
patterns). In this paper, we study joint distributions of the waiting time until the
r-th occurrence of the compound pattern Λ, and the numbers of each simple pat-
tern observed at that time in the multistate Markov dependent trials. We provide
methods for deriving the probability generating functions of the joint distributions
under two types of counting schemes (non-overlap counting and overlap counting) for
the compound pattern Λ. Besides, the present work is useful in elucidating the pri-
mary difference between non-overlap counting and overlap counting. As applications,
when Λ is a set of runs, the corresponding joint distributions are investigated and a
practical example is mentioned. Also, the Chen-Stein approximation is derived for
the waiting time distribution, and its asymptotic behaviour is discussed. Finally, we
address the parameter estimation in the waiting time distributions of the compound
pattern along with problems of identifiability.

Key words and phrases: Chen-Stein approximations, Markov chain, maximum like-
lihood estimate, multistate trials, non-overlap counting, overlap counting, parameter
estimation, patterns, probability generating function, runs.

1. Introduction

The distribution theory of patterns has recently received attention in var-
ious areas of statistics and applied probability, for example, the reliability of
engineering systems, hypothesis testing, continuity measurement in health care
and quality control (see Antzoulakos (2001), Fu (1996), Inoue (2004), Fu and
Lou (2003), Inoue and Aki (2002), Fu and Chang (2002) and Han and Hirano
(2003)). Especially the waiting time distribution of patterns has been broadly
used in a wide range of areas such as moving window detection, machine mainte-
nance, start-up demonstration tests and matching in DNA sequence (see Chao et
al. (1995), Shmueli and Cohen (2000), Ewens and Grant (2001) and Robin and
Daudin (1999, 2001)).

Traditionally, the distributions of patterns were studied via combinatorial
analysis. For example, Mood (1940) wrote: “The distribution problem is, of
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course, a combinatorial one, and the whole development depends on some identi-
ties in combinatory analysis”. However, it is very difficult to find the appropriate
combinatorial identities to derive the probability distributions. This perhaps is
the main reason why many exact distributions of patterns remain unknown even
for the simple case where the underlying sequence is identically and indepen-
dently distributed (i.i.d.).

With the exception of Aki and Hirano’s (1989) study, very little work has
appeared in the statistical literature on the parameter estimation for the distri-
butions of patterns. In parameter estimation, there are not any papers which
treat the problems of identifiability. Since the estimation problems have so far
been restricted to simple cases where the problems of identifiability do not arise,
it has not been neccessary to consider whether the parameters are identifiable or
not.

In this paper, departing from the traditional combinatorial approach, we
present methods for deriving the distributions of patterns based on the method
of conditional probability generating functions. The problems of identifiability
are also discussed under additional constraints.

Let Z1, Z2, . . . be a time homogeneous Markov chain defined on the state
space Γ = {b1, b2, . . . , bm}, transition probabilities pbibj = P (Zt+1 = bj | Zt = bi)
for t ≥ 1, i, j = 1, 2, . . . ,m and initial probabilities pbi = P (Z1 = bi) for i =
1, 2, . . . ,m.

According to Fu and Lou (2003) (see Fu and Chang (2002) and Fu (2001)),
we will define a simple pattern and a compound pattern, respectively.

Definition 1.1. We say that Λ is a simple pattern if Λ is composed of a
specified sequence of length k; i.e. Λ = (a1, a2, . . . , ak), ai ∈ Γ, 1 ≤ i ≤ k (k,
the length of the pattern is fixed , and the elements in the pattern are allowed
to be repeated). Let Λ1 and Λ2 be two simple patterns with length k1 and k2
respectively. We say that Λ1 and Λ2 are distinct if neither is a subsequence
(segment) of the other.

Definition 1.2. We say that Λ is a compound pattern if it is a set of
(≥ 2) distinct simple patterns; i.e. Λ = {Λi : 1 ≤ i ≤ }, where Λi =
(ai,1, ai,2, . . . , ai,ki). When  = 1, we identify the compound pattern Λ with the
simple pattern Λ1.

In the sequel, we assume that the length of the simple pattern is greater than
1. This is the most common situation in practice.

We define

Tr = inf{n : number of trials required

to have r simple patterns in total among Λ}

as the waiting time for the r-th (r ≥ 1) occurrence of a compound pattern Λ.
For Λi (i = 1, 2, . . . , ), let N(Tr : Λi) be the number of occurrences of Λi in
Z1, Z2, . . . , ZTr .
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In Section 2, we investigate the joint distribution of (Tr, N(Tr : Λ1), . . . ,
N(Tr : Λ
)) under two types of counting schemes (non-overlap counting and
overlap counting) for the compound pattern Λ, and propose methods for deriving
the joint probability generating function (p.g.f.) of (Tr, N(Tr : Λ1), . . . , N(Tr :
Λ
)). The approach departs from the traditional combinatorial approach and
provides a very efficient computational tool, which is also useful in elucidating
the primary difference between non-overlap counting and overlap counting. In
Section 3, we study the special case where Λ is a set of runs of certain lengths.
Some explicit closed-form expressions for joint p.g.f.’s are given, which are, to
the best of our knowledge, new. Also, the Chen-Stein approximation for the
waiting time distribution is provided, which is a useful tool for investigating its
asymptotic behaviour. In Section 4, we address parameter estimation in the
waiting time distributions of the compound pattern and discuss problems of
identifiability.

2. Main results

In this section, we are going to study the joint distribution of (Tr, N(Tr :
Λ1), . . . , N(Tr : Λ
)) under non-overlap counting and overlap counting. Each one
of the two counting schemes is treated separately.

For a simple pattern Λi (i = 1, . . . , ), let Λi,j = (ai,1, . . . , ai,j), 1 ≤ j ≤ ki−1.
Then, for a compound pattern Λ, we define a set by

Ω = {∅}
⋃

{Λi,j : 1 ≤ i ≤ , 1 ≤ j ≤ ki − 1}
⋃

Λ.

Here, by relabelling the states in the set Ω, we rewrite Ω as

Ω = {α0, α1, . . . , αs,Λ1, . . . ,Λ
},
(convention: α0 = ∅, which is regarded as an empty subpattern of length 0)

where {α1, . . . , αs} = {Λi,j : 1 ≤ i ≤ , 1 ≤ j ≤ ki − 1} and αω is a subpattern of
length xiω i.e., αω = (αiω ,1, . . . , αiω ,xiω

) for ω = 1, 2, . . . , s.

2.1. Non-overlap counting
The joint p.g.f. of (Tr, N(Tr : Λ1), . . . , N(Tr : Λ
)) will be denoted φr(t,u)

by

φr(t,u) = E[tTru
N(Tr:Λ1)
1 · · ·uN(Tr:Λ�)


 ],

where u = (u1, . . . , u
). Let t0 be any positive integer. Suppose that we
observe currently αω (ω = 0, 1, . . . , s) at the (t0 − 1)-th trial and we have

Zt0−1 = bj (j = 1, . . . ,m). Then, we denote by φ
(bj)
r (αω; t,u) the p.g.f. of

the conditional distribution of (Tr, N(Tr : Λ1), . . . , N(Tr : Λ
)) from the (t0 − 1)-
th trial given the above conditions. Let Pω,bv be the longest pattern among
{(αiω ,1, . . . , αiω ,xiω

, bv), (αiω ,2, . . . , αiω ,xiω
, bv), . . . , (bv)}

⋂
Ω and let P0,bv be the

longest pattern among {(bv)}
⋂

Ω. We define a mapping f : (Ω \ Λ) × Γ → Ω by
f(αω, bv) = Pω,bv .
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From the definitions of φr(t,u) and φ
(bj)
r (αω; t,u), we obtain the next theo-

rem.

Theorem 2.1. Under non-overlap counting , the p.g.f. and the conditional
p.g.f.’s of (Tr, N(Tr : Λ1), . . . , N(Tr : Λ
)) satisfy the following recursive rela-
tions:

φr(t,u) =
m∑
v=1

pbv tφ
(bv)
r (f(α0, bv); t,u) r ≥ 1,(2.1)

φ
(bj)
r (αω; t,u) =

m∑
v=1

pbjbv tφ
(bv)
r (f(αω, bv); t,u)(2.2)

r ≥ 1, 0 ≤ ω ≤ s, 1 ≤ j ≤ m,
φ

(ai,ki )
r (Λi; t,u) = uiφ

(ai,ki )

r−1 (α0; t,u) r ≥ 2, 1 ≤ i ≤ ,(2.3)

φ
(ai,ki )

1 (Λi; t,u) = ui 1 ≤ i ≤ .(2.4)

Proof. The proof of (2.1) is immediately completed by observing that

E[tTru
N(Tr:Λ1)
1 · · ·uN(Tr:Λ�)


 ] =
m∑
v=1

pbvE[tTru
N(Tr:Λ1)
1 · · ·uN(Tr:Λ�)


 | Z1 = bv].

Suppose that we observe currently αω (ω = 0, 1, . . . , s) at the (t0 − 1)-th trials
and we have Zt0−1 = bj (j = 1, . . . ,m). Given the condition, we observe the
t0-th trial. For every bj (j = 1, . . . ,m), the conditional probability that we
observe Zt0 = bv is pbjbv . If we have Zt0 = bv, then the p.g.f. of the conditional
distribution of (Tr, N(Tr : Λ1), . . . , N(Tr : Λ
)) from the t0-th trial becomes

φ
(bv)
r (f(αω, bv); t,u). Hence we have (2.2). From the definitions of φ

(bj)
r (αω; t,u),

it is easy to check the equations (2.3) and (2.4). The proof is completed.

2.2. Overlap counting
Let Λ be a simple pattern of length k. Suppose that the simple pattern Λ

is formed. If overlap counting is employed, we should count the next pattern
Λ which is overlapping with the previous pattern Λ, by at most length (k − 1),
which is a primary difference between non-overlap counting and overlap counting
(see Fu and Lou (2003)). For example, when Γ = {0, 1} and Λ = (1, 1, 0, 1, 1), in
the sequence

0 1 1 0 1 1 0 1 1 1 0 1 1

the pattern (1, 1, 0, 1, 1) is counted as occurring in positions 2–6, 5–9 and 9–13
for overlap counting, then we have (T1, T2, T3) = (6, 9, 13).

For i = 1, 2, . . . , , let Λ∗
i be the longest pattern among {(ai,2, . . . , ai,ki),

(ai,3, . . . , ai,ki), . . . , (ai,ki)}
⋂

(Ω \ Λ). Suppose we have a simple pattern Λi (i =
1, 2, . . . , ). Taking account of the overlapping structure of the simple pattern Λi

(i = 1, 2, . . . , ), easily we see that

φ
(ai,ki )
r (Λi; t,u) = uiφ

(ai,ki )

r−1 (Λ∗
i ; t,u) r ≥ 2, 1 ≤ i ≤ .(2.5)
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We have the following theorem by replacing equation (2.3) by equation (2.5)
under overlap counting.

Theorem 2.2. Under overlap counting , the p.g.f. and the conditional
p.g.f.’s of (Tr, N(Tr : Λ1), . . . , N(Tr : Λ
)) satisfy the recursive relations: (2.1),
(2.2), (2.4), (2.5).

Remark that Λ∗
i (i = 1, 2, . . . , ) is equal to ∅ when the simple pattern Λi

(i = 1, 2, . . . , ) has no overlapping structure. Apparently, the results presented
in Theorems 2.1 and 2.2 are the same since equation (2.5) reduces to equation
(2.3).

3. Distributions of runs as special cases

In this section we assume that Γ = {F1, . . . , Fλ, S1, . . . , Sν} and Λ = {Λi :
1 ≤ i ≤ ν} with Λi = (Si, Si, . . . , Si︸ ︷︷ ︸

ki

), i = 1, 2, . . . , ν. Then we see that

Ω =


∅, (Si), (Si, Si), . . . , (Si, Si, . . . , Si︸ ︷︷ ︸

ki

) : i = 1, 2, . . . , ν


 .

Let Z1, Z2, . . . be a time homogeneous Markov chain defined on the state space
Γ with the transition probabilities

pbibj = P (Zt+1 = bj | Zt = bi), for t ≥ 1, bi, bj ∈ Γ, i, j = 1, 2, . . . , λ+ ν

and the initial probabilities

pbi = P (Z1 = bi), for bi ∈ Γ, i = 1, 2, . . . , λ+ ν.

In this section, when no confusion is likely to arise, we will use φ
(Fi)
r (t,u) and

φ
(Si)
r (t,u) instead of φ

(Fi)
r (∅; t,u) and φ

(Si)
r ((Si); t,u), respectively.

3.1. Non-overlap counting
Using Theorem 2.1, we can obtain the following corollary.

Corollary 3.1. The p.g.f. φr(t,u) and the conditional p.g.f.’s φ
(Fi)
r (t,u),

i = 1, 2, . . . , λ, φ
(Si)
r (t,u), i = 1, 2, . . . , ν satisfy the following recursive relations:

φr(t,u) =
λ∑

i=1

pFitφ
(Fi)
r (t,u) +

ν∑
i=1

pSitφ
(Si)
r (t,u),(3.1)

φ(Fi)
r (t,u) =

λ∑
j=1

pFiFj tφ
(Fj)
r (t,u)(3.2)

+
ν∑

j=1

pFiSj tφ
(Sj)
r (t,u), i = 1, 2, . . . , λ,
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φ(Si)
r (t,u) = Rki−2(pSiSit)


 λ∑

j=1

pSiFj tφ
(Fj)
r (t,u) +

∑
j �=i

pSiSj tφ
(Sj)
r (t,u)


(3.3)

+Rki−1(pSiSit)


 λ∑

j=1

r−1∑

=1

(pSiSit)
ki
−1pSiFj tu



iφ

(Fj)
r−
 (t,u)

+
∑
j �=i

r−1∑

=1

(pSiSit)
ki
−1pSiSj tu



iφ

(Sj)
r−
 (t,u)




+ (pSiSit)
kir−1uri , i = 1, 2, . . . , ν,

where

Rx(t) =

{
1 + t+ t2 + · · · + tx, x = 0, 1, 2, . . .

0, otherwise.
(3.4)

We will define the double generating functions Φ(t,u , z) and Φ(bi)(t,u , z)
(bi ∈ Γ, i = 1, 2, . . . , λ+ ν) as

Φ(t,u , z) =
∞∑
r=1

φr(t,u)zr

and

Φ(bi)(t,u , z) =
∞∑
r=1

φ(bi)
r (t,u)zr.

Proposition 3.1. The double generating functions Φ(t,u , z) and
Φ(Fi)(t,u , z), i = 1, 2, . . . , λ Φ(Si)(t,u , z), i = 1, 2, . . . , ν satisfy the following
system of equations:

Φ(t,u , z) =
λ∑

j=1

pFj tΦ
(Fj)(t,u , z) +

ν∑
j=1

pSj tΦ
(Sj)(t,u , z),(3.5)

Φ(Fi)(t,u , z) =
λ∑

j=1

pFiFj tΦ
(Fj)(t,u , z)(3.6)

+
ν∑

j=1

pFiSj tΦ
(Sj)(t,u , z), i = 1, 2, . . . , λ,

Φ(Si)(t,u , z) =
Rki−2(pSiSit) + (pSiSit)

ki−1uiz

1 − (pSiSit)
kiuiz

(3.7)

×

 λ∑

j=1

pSiFj tΦ
(Fj)(t,u , z) +

∑
j �=i

pSiSj tΦ
(Sj)(t,u , z)




+
(pSiSit)

ki−1uiz

1 − (pSiSit)
kiuiz

, i = 1, 2, . . . , ν.
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For the special case of λ = 1 and ν = 1, Koutras (1997) studied the marginal
distribution of Tr, which is called Type I Markov negative binomial distribution
of order k (see Inoue and Aki (2003)).

In the case of i.i.d. trials,

pbibj = P (Zt+1 = bj | Zt = bi) = pbj ,(3.8)

for t ≥ 1, bi, bj ∈ Γ, i, j = 1, 2, . . . , λ+ ν,

so the double generating function Φ(t,u , z) may be expressed in an appealing
form.

Proposition 3.2. Under the condition (3.8), the double generating func-
tion Φ(t,u , z) is given by

Φ(t,u , z) =

∑ν
i=1

(pSit)
kiuiz

Rki−1(pSit)

1 −∑λ
i=1 pFit−

∑ν
i=1

pSitRki−2(pSit) + (pSit)
kiuiz

Rki−1(pSit)

,

or equivalently

Φ(t,u , z) =

∑ν
i=1

(pSit)
kiuiz

Rki−1(pSit)

1 − t+∑ν
i=1

(1 − uiz)(pSit)
ki

Rki−1(pSit)

.

Expanding the double generating function Φ(t,u , z) in a Taylor series around
z = 0 and picking out the coefficient of zr, we get the explicit expression for the
joint probability generating function φr(t,u). More specifically, we have the
following result.

Proposition 3.3. Under the condition (3.8), the joint probability generat-
ing function φr(t,u) can be expressed as

φr(t,u) =




∑ν
i=1

(pSit)
kiui

Rki−1(pSit)

1 −∑λ
i=1 pFit−

∑ν
i=1

pSitRki−2(pSit)

Rki−1(pSit)



r

,

or equivalently

φr(t,u) =




∑ν
i=1

(pSit)
kiui

Rki−1(pSit)

1 − t+∑ν
i=1

(pSit)
ki

Rki−1(pSit)



r

.

For the special case of r = 1, the marginal distribution of T1 is called the
sooner geometric distribution of order (k1, . . . , kν) (see Balakrishnan and Koutras
(2002)).
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3.2. Overlap counting
Using Theorem 2.2, we have the following equations

φ(Si)
r (t,u) = Rki−2(pSiSit)


 λ∑

j=1

pSiFj tφ
(Fj)
r (t,u) +

∑
j �=i

pSiSj tφ
(Sj)
r (t,u)


(3.9)

+
r−1∑

=1

(pSiSit)
ki+
−2u
i

×

 λ∑

j=1

pSiFj tφ
(Fj)
r−
 (t,u) +

∑
j �=i

pSiSj tφ
(Sj)
r−
 (t,u)




+ (pSiSit)
ki+r−2uri , i = 1, 2, . . . , ν,

Φ(Si)(t,u , z) =
Rki−2(pSiSit) − pSiSituizRki−3(pSiSit)

1 − pSiSituiz
(3.10)

×

 λ∑

j=1

pSiFj tΦ
(Fj)(t,u , z) +

∑
j �=i

pSiSj tΦ
(Sj)(t,u , z)




+
(pSiSit)

ki−1uiz

1 − pSiSituiz
, i = 1, 2, . . . , ν.

Replacing (3.3) by (3.9) and (3.7) by (3.10), respectively, in a similar fashion
as in the conclusion of Subsection 3.1, we could treat the case where overlap
counting is employed. Easily we can state the following two results.

Corollary 3.2. The p.g.f. φr(t,u) and the conditional p.g.f.’s φ
(Fi)
r (t,u),

i = 1, 2, . . . , λ, φ
(Si)
r (t,u), i = 1, 2, . . . , ν satisfy the recursive relations: (3.1),

(3.2) and (3.9).

Proposition 3.4. The double generating functions Φ(t,u , z) and
Φ(Fi)(t,u , z), i = 1, 2, . . . , λ Φ(Si)(t,u , z), i = 1, 2, . . . , ν satisfy the system of
equations: (3.5), (3.6) and (3.10).

In the special case of λ = 1 and ν = 1, Koutras (1997) derived the double
generating function of the marginal distribution of Tr, which is called Type III
Markov negative binomial distribution of order k (see Inoue and Aki (2003)).
Under the condition (3.8), we can establish a compact formula for the double
generating function Φ(t,u , z).

Proposition 3.5. Under the condition (3.8), the double generating func-
tion Φ(t,u , z) is given by

Φ(t,u , z) =

∑ν
i=1

(pSit)
kiuiz

Rki−1(pSit) − pSituizRki−2(pSit)

1 −∑λ
i=1 pFit−

∑ν
i=1

pSitRki−2(pSit) − (pSit)
2uizRki−3(pSit)

Rki−1(pSit) − pSituizRki−2(pSit)

,
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or equivalently

Φ(t,u , z) =

∑ν
i=1

(pSit)
kiuiz

Rki−1(pSit) − pSituizRki−2(pSit)

1 − t+∑ν
i=1

(1 − uiz)(pSit)
ki

Rki−1(pSit) − pSituizRki−2(pSit)

.

Expanding the double generating function Φ(t,u , z) in a Taylor series around
z = 0 and picking out the coefficient of zr, we may obtain the explicit form of
the joint probability generating function φr(t,u). The next proposition provides
the details.

Proposition 3.6. Under the condition (3.8), the joint probability generat-
ing function φr(t,u) can be expressed as

φr(t,u) =
r−1∑
n=0

∑
x1+2x2+···+rxr=n

(
x1 + x2 + · · · + xr
x1, x2, . . . , xr

)

× Pr−nQ
x1
1 · · ·Qxr

r(
1 −∑λ

i=1 pFit−
∑ν

i=1

pSitRki−2(pSit)

Rki−1(pSit)

)1+x1+···+xr
,

or equivalently

φr(t,u) =
r−1∑
n=0

∑
x1+2x2+···+rxr=n

(
x1 + x2 + · · · + xr
x1, x2, . . . , xr

)

× Pr−nQ
x1
1 · · ·Qxr

r(
1 − t+∑ν

i=1

(pSit)
ki

Rki−1(pSit)

)1+x1+···+xr
,

where

Pn =
ν∑

i=1

(pSit)
ki+n−1[Rki−2(pSit)]

n−1uni
[Rki−1(pSit)]

n
, n ≥ 1,

Qn =
ν∑

i=1

(pSit)
ki+n−1[Rki−2(pSit)]

n−1uni
[Rki−1(pSit)]

n+1
, n ≥ 1,

and Rx(·) is as given in (3.4).

As indicated by Koutras and Alexandrou (1997), the waiting time distribu-
tions of runs play an important role in a wide range of areas. Especially sooner
waiting time distributions of runs were applied to a variety of different areas (see
Balakrishnan and Koutras (2002), Shmueli and Cohen (2000) and Balakrishnan
et al. (1997)).

We would like to mention a class of multiple failure mode (MFM) systems (see
Chao et al. (1995)). According to Boutsikas and Koutras (2002), the consecutive
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k1, k2, . . . , kν-out-of-n:MFM system consists of n linearly arranged components,
and enter failure mode s whenever at least ks consecutive components are failed in
mode s, (s = 1, 2, . . . , ν). Clearly, this reliability system is associated with sooner
waiting time problems in a sequence of multistate trials. The exact reliability
of the consecutive k1, k2, . . . , kν-out-of-n:MFM system with Markov dependent
components can be evaluated through the results in case of λ = 1 in this section.
Here, we regard F1 as a working state and S1, . . . , Sν as failure modes.

In closing, we establish the approximation formula for the tail probability
P (T1 > n) of the sooner geometric distribution of order (k1, . . . , kν) by applying
the Chen-Stein method. For fixed n, let Wx, x ∈ I = {1, 2, . . . , n − kmin +
1} be indicator variables taking on the value 1 if and only if

∏x+k1−1
t=x Zt =

Sk1
1 or

∏x+k2−1
t=x Zt = Sk2

2 or,
∏x+kν−1

t=x Zt = Skν
ν (if n − kmax + 1 < x < n −

kmin + 1, the conditions involving indices exceeding n are disregarded), where
kmin = min1≤i≤ν ki and kmax = max1≤i≤ν ki. It is evident that P (T1 > n) =
P (
∑

x∈IWx = 0). Introducing the neighborhood of the dependence Bx = {y ∈
I : |y − x| < kmax}, taking into account the relations,

E[Wx] ≤
ν∑

i=1

pkiSi
, E[WxWy] ≤ (pS1 + · · · + pSν )E[Wx], |Bx| ≤ 2kmax − 1,

and applying Theorem 1 of Arratia et al. (1989), we deduce that

|P (T1 > n) − e−µ|

≤ (1 − e−µ)

µ

n−kmin+1∑
x=1


∑

y∈Bx

E(Wx)E(Wy) +
∑

y∈Bx\{x}
E(WxWy)


 ,

where µ =
∑ν

i=1(n− ki + 1)pkiSi
. Therefore, we have the following approximation

formula for the tail probability P (T1 > n) of the sooner geometric distribution
of order (k1, . . . , kν):

|P (T1 > n) − e−µ|(3.11)

≤ (1 − e−µ)

{
(2kmax − 1)

ν∑
i=1

pkiSi
+ (2kmax − 2)

ν∑
i=1

pSi

}
.

The formula (3.11) offers a useful tool for the investigation of the asymptotic
behaviour of P (T1 > n). For example, assume that 0 < pSi < 1, (i = 1, 2, . . . , ν)
are fixed and ki = ki,n, (i = 1, 2, . . . , ν) are functions of n such that limn→∞ ki,n =

∞, (i = 1, 2, . . . , ν). Under the conditions limn→∞(n − ki,n + 1)p
ki,n
Si

= µi,
(i = 1, 2, . . . , ν), we readily obtain

lim
n→∞

P (T1 > n) = exp

(
−

ν∑
i=1

µi

)
.

For several choices n, k1, k2, p1 and p2, the performance of the aforemen-
tioned bounds (3.11) is illustrated in Table 1.
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Table 1. Exact and approximate values for the tail probability.

n (k1, k2) (p1, p2) Lower Bound P (T1 > n) Upper Bound

100 (10, 9) (0.20, 0.25) 0.9967 0.9997 1.0026

100 (13, 9) (0.40, 0.25) 0.9844 0.9994 1.0137

200 (12, 10) (0.35, 0.20) 0.9914 0.9996 1.0073

200 (13, 10) (0.40, 0.20) 0.9803 0.9992 1.0172

300 (15, 10) (0.35, 0.25) 0.9943 0.9998 1.0050

300 (16, 14) (0.42, 0.20) 0.9948 0.9998 1.0047

4. Estimation problems and numerical examples

In this section we assume that Γ = {0, 1, 2, . . . , ν} and the sequence Z1, Z2, . . .
are i.i.d. trials with probabilities pi = P (Zt = i) for i = 0, 1, . . . , ν and t ≥ 1. We
denote the p.g.f. of the marginal distribution of Tr by ϕr(t). It is easy to see that

ϕr(t) = φr(t,u) |u1=···=u�=1. Let T
(1)
r , T

(2)
r , . . . , T

(N)
r be the random sample of

size N from the waiting time distribution. Then we will calculate the maximum
likelihood estimates (MLE’s) of the parameters pi, (i = 1, 2, . . . , ν) in the waiting
time distributions of compound patterns based on the independent observations.
However, the problems of identifiability arise.

4.1. The problems of identifiability
To begin with, we introduce the notion of identifiability: the parameter θ is

said to be identifiable, if for all pairs of distinct parameter values, say θ and θ
′
,

the sample distributions, say Pθ and Pθ′ , are also distinct, i.e., Pθ = Pθ′ implies

θ = θ
′
. The problems of identifiability often arise when we treat the estimation

of parameters in the waiting time distributions of the patterns.

Example 4.1. Let Γ = {0, 1, 2} and let Λ = {Λ1,Λ2} be a compound pattern
with Λ1 = (1, 2, 0) and Λ2 = (2, 1, 0). Using Theorem 2.1, we can obtain the p.g.f.
of sooner waiting time distribution as

ϕ1(t) =
2p0tp1tp2t

1 − t+ 2p0tp1tp2t
.(4.1)

The p.g.f. is invariant under the symmetry p1 ↔ p2. This implies that Pp1 = Pp2 .
In the sequel, for known parameters ai(> 0), (i = 2, 3, . . . , ν), we assume the
additional constraints

pi = aip1, i = 2, 3, . . . , ν,(4.2)

which restore the parameter identifiability.

4.2. The likelihood function and maximum likelihood estimate
From Theorems 2.1 and 2.2, we can obtain the p.g.f. ϕr(t) of the waiting

time distribution of the compound pattern. Let C(t, i) denote the coefficient of
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ti in the Taylor expansion of t for ϕr(t) around t = 0. Under the constraint (4.2),

the likelihood function of p1 based on T
(1)
r , T

(2)
r , . . . , T

(N)
r can be written as

L(p1) =
N∏
i=1

C(t, T (i)
r ).(4.3)

It is well known that the MLE is obtained by maximizing the likelihood function.
The following is an example illustrating how to obtaining the MLE.

Example 4.2 (Continuation of Example 4.1). We consider the estimation
of parameter p1 under the constraint p2 = p1. Table 2 is a simulated data set of
sooner waiting time with p1 = p2 = 0.33 and N = 20.

Expanding the p.g.f. (4.1) in a Taylor series around t = 0, picking out the
coefficient of ti based on the data in Table 2 and using the formula (4.3), we can
obtain the likelihood function L(p1). However, the likelihood function L(p1) is
omitted here since it is not represented in a simple form. In Fig. 1, we give the
graph of the likelihood function based on the data in Table 2.

By maximizing the likelihood function numerically, we have the MLE p̂1 =
0.3333.

Table 2. A simulated data set of sooner waiting time with p1 = p2 = 0.33.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
(i)
1 16 5 6 9 11 5 4 3 14 4 14 3 10 15 54 10 11 3 21 21

L(p1)

0

1e-29

2e-29

3e-29

4e-29

5e-29

0.1 0.2 0.3 0.4 0.5

p1

Figure 1. The likelihood function L(p1) based on the data in Table 2.
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