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NONPARAMETRIC TEST FOR EIGENVALUES OF
COVARIANCE MATRIX IN MULTIPOPULATION

Hidetoshi Murakami*, Emiko Hino* and Shin-ichi Tsukada**

We propose a nonparametric procedure to test the hypothesis that the j-th
largest eigenvalues of a covariance matrix are equal in multipopulation. We apply
the Mood test by using the principal component scores and deal the equality of
eigenvalues with the equality of variance. We investigate the significance level and
the power of test by simulation and show that this nonparametric test is useful for
symmetric populations.

Key words and phrases: Eigenvalues, k-sample Mood test, nonparametric test, prin-
cipal component score.

1. Introduction

Principal component analysis (PCA) is one of the most common and im-
portant methods in multivariate analysis, and many books on PCA have been
published (Anderson (2003), Jackson (2003) and Jolliffe (2002)). Since it is diffi-
cult to obtain the exact distribution of eigenvalues of a covariance matrix under
the nonnormal population, we have not seen testing of the hypothesis that the
j-th largest eigenvalues are equal under multipopulation. For two populations,
Sugiyama and Ushizawa (1998) proposed the nonparametric procedure which is
the Ansari-Bradley test by using the principal component scores. In this paper,
we extend the testing procedure under the multipopulation.

Suppose that x
(i)
1 , . . . ,x

(i)
Ni

are the random observations from a p-dimensional
distribution Λp(µi,Σi) with mean µi and covariance matrix Σi, where i =

1, . . . , k. Let λ
(i)
j be the j-th largest eigenvalue of covariance matrix Σi in the

i-th population. For fixed j, we consider testing the hypothesis

H0 : λ
(1)
j = · · · = λ

(k)
j

H1 : not H0.

Let h
(i)
j be the sample eigenvector corresponding to the j-th largest sample eigen-

value l
(i)
j of the i-th sample covariance matrix given by

S(i) =
1

Ni − 1

Ni∑
α=1

(x(i)
α − x̄(i))(x(i)

α − x̄(i))′,
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where x̄(i) is the i-th sample mean vector. As λ
(i)
j is the asymptotic variance of

principal components

y
(i)
jα = h′(i)

j (x(i)
α − x̄(i)), α = 1, . . . , Ni,

we then apply the Mood test (1954) for equality of variance to test the hypothesis
in Section 2. In Section 3, we investigate the significance level and the power of
test by simulation.

2. Testing procedure

We deal with testing the equality of the i-th largest eigenvalues in the k-
population using the principal component scores

Y1 = {y(1)
j1 , y

(1)
j2 , . . . , y

(1)
jN1

},

Y2 = {y(2)
j1 , y

(2)
j2 , . . . , y

(2)
jN2

},
...

Yk = {y(k)
j1 , y

(k)
j2 , . . . , y

(k)
jNk

}.

The variance of principal component y
(i)
jα is as follows:

Var[y
(i)
jα ] = λ

(i)
j − 2

Ni − 1

p∑
q �=j

m
(i)22
qj

λ
(i)
q − λ

(i)
j

+ O(N−2
i ),

where m
(i)22
qj = E[x

(i)2
q x

(i)2
j ] = E[x

(i)2
qα x

(i)2
jα ]. Therefore, the null hypothesis is

equivalent with the equality for variance of the principal component when all
eigenvalues are equal for j = 1, . . . , p. If all eigenvalues except the eigenvalue of
null hypothesis are not equal, the equality for variance of the principal compo-
nent and the null hypothesis are not accurately equivalent, but are asymptotically
equivalent. We may treat testing the null hypothesis as the equality for variances
of the principal component in the case that the sample sizes Ni are sufficiently
large. In addition, we also need even larger sample sizes when the eigenval-
ues are close. Takeda (2001) treated this methodology under the multivariate
contaminated normal distribution.

The Ansari-Bradley test is known as a method of testing the variance. One of
the assumptions for the Ansari-Bradley test is that the sample values are indepen-
dent. However, there exist weak correlations between each principal component
scores. Sugiyama and Ushizawa (1998) proved that the degree of dependence
between each principal component score was weak when the sample size was
sufficiently large under the multivariate normal distribution. Then they showed
that the Ansari-Bradley test could be applicable to test the equality for variance
of Y1 and Y2 (cf. Ansari and Bradley (1960)). It is well known that the asymp-
totic relative efficiency of the Mood test is higher than that of the Ansari-Bradley
test (Gibbons and Chakraborti (2003)). Therefore, we apply the Mood test for
a k-population.
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Let R
(i)
jm be the increasing order rank of y

(i)
jm in the combined N = N1 + · · ·+

Nk observations. The statistic of the Mood test is as follows:

Mk =
180

N(N + 1)(N2 − 4)

k∑
i=1

Ni

(
M̄j

(i) − N2 − 1

12

)2

,

where

M̄j
(i)

=
1

Ni

Ni∑
m=1

(
R

(i)
jm − N + 1

2

)2

.

The limiting distribution of the Mood statistic, named Mk, for k-population is a
χ2 distribution with k − 1 degrees of freedom under the null hypothesis (Tsai et
al . (1975)).

3. Simulation study

In this section, we examine the power of tests for equality of the j-th eigen-
values, using a significance level of 5%. To compare the power of tests, we carry
out simulations for multivariate normal populations and multivariate contami-
nated normal populations. We assume that the number of population is three
and investigate the behavior of the Mk statistic under the trivariate distribution.
The simulation is repeated a million times in each case.

When N is even, we give the Ansari-Bradley statistic, namely ABke, for
k-population as follows:

ABke =
48(N − 1)

N(N2 − 4)

k∑
i=1

Ni

(
Āj

(i) − N + 2

4

)2

.

If N is odd, we give the Ansari-Bradley statistic, namely ABko, as follows:

ABko =
48N2

N(N + 1)(N2 + 3)

k∑
i=1

Ni

(
Āj

(i) − (N + 1)2

4N

)2

.

Here, Āj
(i)

denotes

Āj
(i)

=
1

Ni

Ni∑
m=1

(
N + 1

2
−
∣∣∣∣R(i)

jm − N + 1

2

∣∣∣∣
)
.

The limiting distribution of the Ansari-Bradley statistic for the k-population
is also the χ2 distribution with k − 1 degrees of freedom (Tsai et al . (1975)).
Therefore we set the critical value of the Ansari-Bradley statistic and the Mood
statistic as 5.991 for k = 3. We simulate under the normal populations N(0,Σi)
and the contaminated normal populations 0.95 × N(0,Σi) + 0.05 × N(0, 3Σi)
in the following cases. Cases 1 and 2 are the cases under the null hypothesis.
Under the alternative hypothesis; Cases 3, 4 and 5, the variance of Yi is different
to each other.
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Case 1

λ
(1)
1 = 6, λ

(1)
2 = 3, λ

(1)
3 = 1 λ

(2)
1 = 6, λ

(2)
2 = 3, λ

(2)
3 = 1 λ

(3)
1 = 6, λ

(3)
2 = 3, λ

(3)
3 = 1

Σ1 Σ2 Σ3
 6 0 0

0 3 0

0 0 1





 6 0 0

0 3 0

0 0 1





 6 0 0

0 3 0

0 0 1




Case 2

λ
(1)
1 = 6, λ

(1)
2 = 3, λ

(1)
3 = 1 λ

(2)
1 = 6, λ

(2)
2 = 3, λ

(2)
3 = 1 λ

(3)
1 = 6, λ

(3)
2 = 3, λ

(3)
3 = 1

Σ1 Σ2 Σ3
 6 0 0

0 3 0

0 0 1





 5.4776 −0.7244 −1.1998

−0.7244 3.2010 0.1941

−1.1998 0.1941 1.3215




 2.75 −1.9874 −0.4874

−1.9874 4.6856 −0.875

−0.4874 −0.875 2.5643




Case 3

λ
(1)
1 = 10, λ

(1)
2 = 3, λ

(1)
3 = 1 λ

(2)
1 = 8, λ

(2)
2 = 3, λ

(2)
3 = 1 λ

(3)
1 = 6, λ

(3)
2 = 3, λ

(3)
3 = 1

Σ1 Σ2 Σ3
 10 0 0

0 3 0

0 0 1





 7.7359 −0.8718 −0.8953

−0.8718 3.1000 −0.1836

−0.8953 −0.1836 1.1642




 2.75 −1.9874 −0.4874

−1.9874 4.6856 −0.875

−0.4874 −0.875 2.5643




Case 4

λ
(1)
1 = 9, λ

(1)
2 = 5, λ

(1)
3 = 2 λ

(2)
1 = 6, λ

(2)
2 = 3, λ

(2)
3 = 1 λ

(3)
1 = 6, λ

(3)
2 = 3, λ

(3)
3 = 1

Σ1 Σ2 Σ3
 9 0 0

0 5 0

0 0 2





 5.4776 −0.7244 −1.1998

−0.7244 3.2010 0.1941

−1.1998 0.1941 1.3215




 2.75 −1.9874 −0.4874

−1.9874 4.6856 −0.875

−0.4874 −0.875 2.5643




Case 5

λ
(1)
1 = 9, λ

(1)
2 = 5, λ

(1)
3 = 2 λ

(2)
1 = 7.5, λ

(2)
2 = 4, λ

(2)
3 = 1.5 λ

(3)
1 = 6, λ

(3)
2 = 3, λ

(3)
3 = 1

Σ1 Σ2 Σ3
 9 0 0

0 5 0

0 0 2





 3.625 −2.3776 −0.6276

−2.3776 5.9249 −1.0625

−0.6276 −1.0625 3.4501




 2.75 −1.9874 −0.4874

−1.9874 4.6856 −0.875

−0.4874 −0.875 2.5643



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The following tables present the power of the Ansari-Bradley test and the
Mood test. Tables 1(a)–(e) show the results of the normal population, and Ta-
bles 2(a)–(e) present the results of the contaminated normal population. We set
N1 = N2 = N3 = 50 for Tables 1(a) and 2(a), N1 = N2 = N3 = 100 for Ta-
bles 1(b) and 2(b), N1 = N2 = N3 = 200 for Tables 1(c) and 2(c), and N1 = 50,

Table 1(a). Normal population (N1 = N2 = N3 = 50).

Case 1 Case 2 Case 3 Case 4 Case 5

j = 1 Mk 0.041 0.041 0.242 0.224 0.169

ABke 0.042 0.042 0.201 0.184 0.144

j = 2 Mk 0.048 0.047 0.049 0.335 0.253

ABke 0.048 0.047 0.049 0.271 0.211

j = 3 Mk 0.056 0.056 0.056 0.564 0.445

ABke 0.055 0.055 0.055 0.465 0.370

Table 1(b). Normal population (N1 = N2 = N3 = 100).

Case 1 Case 2 Case 3 Case 4 Case 5

j = 1 Mk 0.046 0.046 0.478 0.428 0.327

ABke 0.047 0.046 0.395 0.348 0.269

j = 2 Mk 0.049 0.049 0.050 0.615 0.488

ABke 0.049 0.049 0.050 0.511 0.403

j = 3 Mk 0.053 0.052 0.053 0.867 0.763

ABke 0.052 0.052 0.052 0.776 0.664

Table 1(c). Normal population (N1 = N2 = N3 = 200).

Case 1 Case 2 Case 3 Case 4 Case 5

j = 1 Mk 0.048 0.048 0.802 0.732 0.600

ABke 0.048 0.048 0.704 0.625 0.502

j = 2 Mk 0.049 0.049 0.050 0.903 0.807

ABke 0.049 0.049 0.049 0.823 0.710

j = 3 Mk 0.051 0.051 0.051 0.993 0.974

ABke 0.051 0.050 0.051 0.976 0.936

Table 1(d). Normal population (N1 = 50, N2 = 40, N3 = 30).

Case 1 Case 2 Case 3 Case 4 Case 5

j = 1 Mk 0.038 0.038 0.168 0.181 0.116

ABke 0.039 0.039 0.147 0.153 0.105

j = 2 Mk 0.046 0.046 0.048 0.309 0.206

ABke 0.047 0.046 0.048 0.255 0.179

j = 3 Mk 0.059 0.059 0.059 0.540 0.379

ABke 0.058 0.058 0.058 0.450 0.322
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N2 = 40 and N3 = 30 for Tables 1(d) and 2(d), N1 = 200, N2 = 150 and
N3 = 100 for Tables 1(e) and 2(e).

From the results of the simulation, we can see the validity of the proposed
nonparametric methods whether the covariance matrices are diagonal or not.
When j = 1, 2, the Mood test Mk and the Ansari-Bradley test ABke may be

Table 1(e). Normal population (N1 = 200, N2 = 150, N3 = 100).

Case 1 Case 2 Case 3 Case 4 Case 5

j = 1 Mk 0.047 0.047 0.613 0.641 0.420

ABke 0.048 0.047 0.518 0.538 0.349

j = 2 Mk 0.049 0.049 0.050 0.852 0.641

ABke 0.049 0.049 0.050 0.761 0.545

j = 3 Mk 0.052 0.052 0.052 0.985 0.898

ABke 0.051 0.051 0.052 0.956 0.823

Table 2(a). Contaminated normal population (N1 = N2 = N3 = 50).

Case 1 Case 2 Case 3 Case 4 Case 5

j = 1 Mk 0.040 0.040 0.233 0.215 0.163

ABke 0.042 0.042 0.198 0.178 0.141

j = 2 Mk 0.048 0.047 0.048 0.329 0.248

ABke 0.048 0.047 0.048 0.268 0.208

j = 3 Mk 0.055 0.055 0.055 0.555 0.438

ABke 0.054 0.054 0.054 0.460 0.366

Table 2(b). Contaminated normal population (N1 = N2 = N3 = 100).

Case 1 Case 2 Case 3 Case 4 Case 5

j = 1 Mk 0.044 0.044 0.462 0.411 0.311

ABke 0.045 0.045 0.386 0.337 0.260

j = 2 Mk 0.047 0.047 0.048 0.601 0.473

ABke 0.048 0.048 0.048 0.501 0.395

j = 3 Mk 0.051 0.050 0.050 0.858 0.751

ABke 0.051 0.050 0.050 0.769 0.655

Table 2(c). Contaminated normal population (N1 = N2 = N3 = 200).

Case 1 Case 2 Case 3 Case 4 Case 5

j = 1 Mk 0.045 0.045 0.789 0.715 0.582

ABke 0.047 0.047 0.693 0.612 0.489

j = 2 Mk 0.046 0.047 0.047 0.895 0.794

ABke 0.047 0.048 0.048 0.815 0.699

j = 3 Mk 0.048 0.048 0.048 0.992 0.971

ABke 0.049 0.048 0.048 0.974 0.931
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Table 2(d). Contaminated normal population (N1 = 50, N2 = 40, N3 = 30).

Case 1 Case 2 Case 3 Case 4 Case 5

j = 1 Mk 0.038 0.038 0.143 0.158 0.098

ABke 0.040 0.040 0.131 0.139 0.094

j = 2 Mk 0.047 0.047 0.047 0.279 0.180

ABke 0.047 0.047 0.047 0.233 0.159

j = 3 Mk 0.058 0.058 0.058 0.504 0.342

ABke 0.056 0.056 0.056 0.421 0.292

Table 2(e). Contaminated normal population (N1 = 200, N2 = 150, N3 = 100).

Case 1 Case 2 Case 3 Case 4 Case 5

j = 1 Mk 0.045 0.045 0.593 0.617 0.401

ABke 0.046 0.046 0.505 0.521 0.338

j = 2 Mk 0.047 0.047 0.047 0.836 0.621

ABke 0.048 0.048 0.048 0.745 0.531

j = 3 Mk 0.050 0.050 0.050 0.982 0.887

ABke 0.050 0.050 0.050 0.951 0.812

conservative under the null hypothesis. The power of the Mood test Mk is greater
than the power of the Ansari-Bradley test ABke for every j-th eigenvalue in both
the case that the sample sizes are equal or unequal. We have expected these
results from the asymptotic relative efficiency of two tests. However, the power
of both tests didn’t depend on the distribution which was either a normal or a
contaminated normal distribution.

Additionally, the simulation results indicate that it is difficult to keep the
significance level when the sample sizes are small. Therefore, the sample size
Ni should be greater than 50 for the case of k = 3 and p = 3. In Case 3, the
difference of eigenvalue is only j = 1. Therefore the power of tests increases only
the case for the largest eigenvalue. It might require sufficiently large sample size,
larger than 100 from tables. The difference of eigenvalues on Case 5 is greater
than the difference on Case 4. Then the powers of tests on Case 5 are higher on
Case 4.

4. Conclusion and discussion

In this paper, we propose the nonparametric test by using principal com-
ponent scores under the multipopulation and apply the testing procedure under
the normal population and the contaminated normal population when the pop-
ulation eigenvalues are separated and the sample sizes are large. Though the
convergence for significance level of the procedure using Ansari-Bradley test and
the procedure using Mood test is almost the same tendency, the power of Mood
test is greater than the power of Ansari-Bradley test.

From the asymptotic relative efficiency of nonparametric test, we have ex-
pected that using the Mood test for k-population is more suitable than using the
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Ansari-Bradley test for k-population. This result is showed by simulation.
It will also be important to develop where the principal component scores

are evaluated from correlation matrices.
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