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CONJUGATE LOCATION-DISPERSION FAMILIES

Toshio Ohnishi* and Takemi Yanagimoto*

We make a conjugate analysis for the five location-dispersion families including
the normal, the transformed gamma and the von Mises distributions. The five families
are introduced through the requirement for the existence of conjugate prior densities.
We show in a unified way that a Pythagorean relationship holds with respect to
posterior risks, which clarifies the optimality of the posterior mode under a Kullback-
Leibler loss. An explicit form of the posterior mode is given, and a type of linearity is
observed. We construct an empirical Bayes estimator of a location vector explicitly.

Key words and phrases: Addition identity, conjugate prior, empirical Bayes
estimator, Kullback-Leibler separator, location-dispersion family, posterior mode,
Pythagorean relationship.

1. Introduction

A conjugate prior density, when it exists, provides us with a convenient tool
for the Bayesian estimation problem. A primary interest has been taken in the
conjugate analysis of the mean parameter of the natural exponential family. This
is probably because a conjugate prior can be naively defined under mild regularity
conditions.

In this paper we pursue a conjugate analysis of the location parameter. There
are a considerable number of existing works on Bayesian analysis of the loca-
tion family, which include Mardia and El-Atoum (1976), Diaconis and Ylvisaker
(1985), Spiegelhalter (1985), Polson (1991), Bischoff (1993), Angers (1996),
Garvan and Ghosh (1997), Leblanc and Angers (1999), Rodrigues et al. (2000)
and Ohnishi and Yanagimoto (2003). Among them, Diaconis and Ylvisaker
(1985) is one which discussed formally a conjugate prior for the location family.
Their paper, however, concentrated on the analytical aspect; no explicit form of
a conjugate prior density was given. Mardia and El-Atoum (1976) noted that a
von Mises prior density is conjugate for a von Mises sampling density, which was
followed by Rodrigues et al. (2000).

Some researchers are critical of the use of a conjugate prior since recent nu-
merical development permits us to assume a general prior. In our view, the role of
a conjugate prior corresponds to that of the exponential family with a quadratic
variance function (Morris (1983b)) or that of the Tweedie distribution, i.e., the
exponential family with a power variance function (Jørgensen (1997), Chapter 4).
In fact, a statistical model having an error distribution of an analytically con-
venient form is useful in practice, though numerical computations are possible
under a general error distribution. Our conjecture is that the search of the lo-
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cation family admitting a conjugate prior leads us to a practically useful model,
and we obtain an affirmative result. That is, the derived density in the location
family is a conjugate prior for the generalized linear model based on the Tweedie
distribution as discussed in Ohnishi (2006).

The definition of a conjugate prior is something complicated, as discussed
in Diaconis and Ylvisaker (1979) and Huang and Bier (1999). We can find two
definitions in the literature. One is that a prior density is closed under sampling,
that is, the posterior density has the same form as a prior density. The other
is that the posterior mean of the parameter of interest is of linear form. In
this study, we call a prior density conjugate when it is closed under sampling.
Although the induced estimator of the location parameter is not always of linear
form, we will find that a type of linearity is observed in all the cases. Rodrigues
et al. (2000) noted this fact in the von Mises case.

Our interest will be focused on a location-dispersion family whose density is
given by

p(x− µ; τ) = exp{−τd(x− µ) + a(τ)},(1.1)

where µ and τ > 0 are the location and the dispersion parameters, respectively,
d(t) is a non-negative function, and exp{−a(τ)} is the normalizing constant. See
Jørgensen (1997, p. 17) for a review of this family, where the function d(t) is
called the (unit) deviance function. This family presents us a general form of
location families, which covers most of the existing ones such as the normal and
the von Mises distributions.

We will seek a conjugate prior density for (1.1), though a Bayesian approach
in relation to a noninformative prior was discussed by Garvan and Ghosh (1997).
The prior density we assume has the form

π(µ−m; δ) = exp{−δd(m− µ) + a(δ)} = p(m− µ; δ),(1.2)

where m and δ are hyperparameters. An advantage of this prior density is that
the normalizing constant depends only on δ. Our problem is to determine an
explicit form of d(t) such that (1.2) is conjugate for (1.1).

The organization of the rest of this paper is as follows. In Section 2, a
differential equation is characterized by the conjugacy condition. By solving the
differential equation, we present the five location-dispersion families allowing for
a conjugate analysis. Section 3 shows three properties of these five location-
dispersion families in a unified way. One of them is an addition identity which
the deviance function satisfies. In Section 4 we discuss the Bayes estimation
under a conjugate prior density. The Kullback-Leibler separator is adopted as
a loss. Deriving a Pythagorean relationship with respect to posterior risks, we
prove the optimality of the posterior mode. Section 5 proposes an empirical Bayes
estimation of the location vector. In the final section, we discuss the conjugacy
condition of prior densities. Also an interpretation of the addition identity in
Section 3 is given from a viewpoint of statistical physics.
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2. Conjugate location-dispersion families

In this section we introduce the five families of sampling densities each of
which has a conjugate prior density. A differential equation is obtained as a nec-
essary condition for the existence of a conjugate prior density. The five families
are derived through its solution.

We deal with two cases of location-dispersion families: One is a family on
R and the other is that on I = [0, 2π). Our discussion includes the von Mises
distribution which is defined on I. Let us introduce the following two families of
(unit) deviance functions as

DR =


d(t) ∈ D

∣∣∣∣∣∣∣
∫
R

exp{−τd(t)}dt exists for any τ ∈ R
+

lim
t→±∞

d′(t) exp{−τd(t)} = 0 for any τ ∈ R
+


 ,(2.1a)

DI =


d(t) ∈ D

∣∣∣∣∣∣∣
∫
I
exp{−τd(t)}dt exists for any τ ∈ R

+

d(t) = d(t + 2π) for any t ∈ R


 ,(2.1b)

where
D = {d(t) ≥ 0 | d(0) = d′(0) = 0 and d′′(0) = 1}.

The latter condition in each of (2.1a) and (2.1b) guarantees∫
K

{−τd′′(t)} exp{−τd(t)}dt =

∫
K

{τd′(t)}2 exp{−τd(t)}dt,

where K denotes either R or I, and we shall use this notation throughout the
present paper. The above equality is the so-called information unbiasedness and
will be seen in the proof of Proposition 3.2.

Consider the sampling density (1.1) on K having a location parameter µ ∈ K

and a dispersion parameter τ ∈ R
+. The family of these densities is said to be

the location-dispersion family generated by the deviance function d(t). It follows
from (2.1a) or (2.1b) that if d(t) is in DK then d(−t) is also in DK.

We assume the prior density (1.2) for the location parameter µ in (1.1). This
prior density belongs to the location-dispersion family generated by d(−t). We
investigate a necessary condition that the prior density (1.2) is conjugate.

Proposition 2.1. Suppose that the prior density (1.2) is conjugate for the
sampling density (1.1). Then, the following differential equation

d′′(t) = αd(t) + βd′(t) + 1(2.2)

holds where α and β are some constants.

Proof. Set

g(µ)(= g(µ;x,m, τ, δ)) = τd(x− µ) + δd(m− µ).(2.3)
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Since the prior density (1.2) is conjugate, g(µ) is expressed as

g(µ) = ad(b− µ) + c,(2.4)

where a, b and c are independent of µ. It follows from (2.3) that ∂2g/∂τ∂δ = 0.
Differentiation of (2.4) with respect to τ and δ gives

Ad′′(b− µ) + Bd′(b− µ) + Cd(b− µ) + D = 0,(2.5)

where

A = a
∂b

∂τ

∂b

∂δ
, B =

∂a

∂τ

∂b

∂δ
+

∂a

∂δ

∂b

∂τ
+ a

∂2b

∂τ∂δ
, C =

∂2a

∂τ∂δ
and

D =
∂2c

∂τ∂δ
.

Set µ = b in (2.5), and we have D = −A. Here we used the condition in
the definition of D. Differentiating both the sides of (2.5) with respect to µ
and setting µ = b, we obtain B = −d(3)(0)A. Similarly, we get d(4)(0)A +
d(3)(0)B + C = 0, therefore C = [{d(3)(0)}2 − d(4)(0)]A. Setting α = −C/A =
d(4)(0) − {d(3)(0)}2 and β = −B/A = d(3)(0), we obtain

d′′(b− µ) = αd(b− µ) + βd′(b− µ) + 1.

Since this equality holds for any µ, the differential equation (2.2) is derived. �

The equation determining b is given by τd′(x−b)+δd′(m−b) = 0. If g(µ) has
its minimum, the posterior mode µ̂map exists and satisfies this equation. Thus
we write b = µ̂map. We can also obtain the expression of a and c respectively as
g′′(µ̂map) and g(µ̂map).

Note that the solution to the differential equation (2.2) is not always in DK,
i.e., the function (1.1) with d(t) being the solution to (2.2) is not always a density.
The following proposition gives all the solutions in DR or DI . The proof is given
in Appendix.

Proposition 2.2.
(i) The deviance functions in DR which are solutions to the differential equation

(2.2) are expressed as

d(t) =
t2

2
,(2.6a)

d(t) =
1

κ

(
eκt

κ
− t− 1

κ

)
,(2.6b)

d(t) =
1

κ + γ

(
eκt

κ
+

e−γt

γ
− 1

κ
− 1

γ

)
,(2.6c)

d(t) =
1

κ

(
e−κt

κ
+ t− 1

κ

)
,(2.6d)
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where κ and γ are positive constants.
(ii) The deviance function in DI which is a solution to the differential equation

(2.2) is expressed as

d(t) =
1 − cos(ξt)

ξ2
,(2.6e)

where ξ is a positive integer.

It is interesting that the location-dispersion family generated by (2.6b), (2.6c)
or (2.6d) can be used as a conjugate prior density for a generalized linear model.
In fact, Ohnishi (2006) discussed a conjugate analysis of the logarithmic link re-
gression model based on the Tweedie distribution (Jørgensen (1997), Chapter 4).
It is our understanding that the conjugacy condition aids us with the search for
a suitable likelihood function.

For notational convenience, let us write the set of the deviance functions
in Proposition 2.2 as Dc, i.e., Dc = {(2.6a), (2.6b), (2.6c), (2.6d), (2.6e)}. Corre-
spondingly, we give the following definition:

Definition 2.1. Let Pc denote the set consisting of the five location-dis-
persion families generated by the five deviance functions in Dc. Each member of
Pc is said to be a conjugate location-dispersion family.

Now, we prove that each member of Pc has a conjugate prior density by
using the differential equation (2.2).

Proposition 2.3. Suppose that d(t) ∈ Dc. Then, the posterior density
corresponding to the prior density (1.2) is expressed as

π(µ | x; τ,m, δ) = exp[−g′′(µ̂map)d(µ̂map − µ) + a(g′′(µ̂map))](2.7)

= π(µ− µ̂map; g
′′(µ̂map)),

where g(µ) is the function (2.3) and µ̂map is the posterior mode. Thus, the prior
density (1.2) is conjugate for the sampling density (1.1).

Proof. Since the function d(t) satisfies the differential equation (2.2), a
mathematical induction shows that for each k ≥ 2 there exist two constants αk

and βk such that

d(k)(t) = αkd(t) + βkd
′(t) + d(k)(0).(2.8)

It follows that d(k)(t) = αk−1d
′(t) + βk−1d

′′(t) for k ≥ 3. This, together with the
definition of µ̂map, implies that

g(k)(µ̂map) = (−1)k{τd(k)(x− µ̂map) + δd(k)(m− µ̂map)}
= (−1)k{−αk−1g

′(µ̂map) + βk−1g
′′(µ̂map)}

= (−1)kβk−1g
′′(µ̂map).
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Expanding g(µ) in the Taylor series around µ = µ̂map, we have

g(µ) = g(µ̂map) +
1

2!
g′′(µ̂map)(µ− µ̂map)

2 +
∑
k≥3

1

k!
g(k)(µ̂map)(µ− µ̂map)

k

= g(µ̂map) + g′′(µ̂map)


 1

2!
(µ̂map − µ)2 +

∑
k≥3

βk−1

k!
(µ̂map − µ)k


 .

Since d(k)(0) = αk−1d
′(0) + βk−1d

′′(0) = βk−1 for k ≥ 3, the Taylor series of d(t)
is given by

d(t) =
1

2
t2 +

∑
k≥3

βk−1

k!
tk.(2.9)

Thus we obtain the expression

g(µ) = g′′(µ̂map)d(µ̂map − µ) + g(µ̂map)(2.10)

as in (2.4), which completes the proof. �

Let us present explicitly the five conjugate location-dispersion families. We
obtain (i) a normal, (ii) a gamma, (iii) a hyperbola, (iv) an inverted gamma and
(v) a von-Mises family.

Example 2.1. Let N denote the location-dispersion family generated by
(2.6a), which is the family of normal densities.

Example 2.2. We call the location-dispersion family generated by (2.6b) the
gamma family and write it as G(κ). Let the random variable y have a gamma
density

τ τ

Γ(τ)θτ
yτ−1 exp

(
−τy

θ

)
.(2.11)

Then x = log y has the density {τ τ/Γ(τ)} exp{τ(x− µ− ex−µ)} with µ = log θ.
Thus we find that G(1) is the family of log-transformed gamma densities.

Example 2.3. The location-dispersion family generated by (2.6c) is called
the hyperbola family, and the symbol H(κ, γ) is used. As presented in Barndorff-
Nielsen (1978) and Jensen (1981), a density of the hyperbola distribution is given
by

1

2K0(τ)
e−τ cosh(x−µ),(2.12)

where K0(τ) stands for the modified Bessel function of the third kind with index
zero. The family of densities (2.12) is the location-dispersion family H(1, 1).
Hence we use the term ‘hyperbola family.’
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Example 2.4. We call the location-dispersion family generated by (2.6d) the
inverted gamma family and use the symbol IG(κ). The variable transformation
s = −t in (2.6d) leads to (2.6b). It is found that IG(1) is the family of log-
transformed inverted gamma densities. It should be noted that the location-scale
family generated by (2.6d) with κ = 1 is the Gumbel distribution.

Example 2.5. Let M(ξ) denote the location-dispersion family generated by
(2.6e). A member of the family M(1) is a von Mises density

1

2πI0(τ)
eτ cos(x−µ),(2.13)

where I0(τ) is the modified Bessel function of the first kind with index zero. We
call M(ξ) the von Mises family. Analogies between the von Mises density (2.13)
and the hyperbola density (2.12) were suggested in Barndorff-Nielsen (1978) and
Jensen (1981). Here we note that the dispersion parameter τ can be zero or even
be negative in the von Mises family. When τ = 0, the density is that of the
uniform distribution on I. A negative value of τ can be interpreted as follows.
Set ξ = 1 for simplicity. Since τ cos(x− µ) = −τ cos(x− µ− π), the two points
in the parameter space, (µ, τ) and (µ + π,−τ), mean the identical density. A
negative dispersion parameter τ implies a shift in the location parameter µ. This
fact will be recalled in Example 5.5 in Section 5.

3. Properties of the conjugate location-dispersion families Pc

Three properties of the conjugate location-dispersion families are obtained in
a unified way. A treatment using the differential equation (2.2) aids our deeper
understanding of conjugate prior densities in Pc. In this and subsequent sections
we will assume that d(t) is in the set Dc which is introduced in the previous
section.

First, we show that an addition identity holds for d(t).

Proposition 3.1. The following addition identity

d(s + t) = d(s)d̃(t) + d′(s)d′(t) + d(t)(3.1)

holds where d̃(t) is expressed as

d̃(t) = d′′(t) − βd′(t) = 1 + αd(t)(3.2)

with α and β being constant coefficients in (2.2).

Proof. Expanding d(s + t) in the Taylor series around t = 0 and using
(2.8), we obtain

d(s + t) = d(s) + d′(s)t +
∑
k≥2

d(k)(s)

k!
tk
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= d(s)


1 +

∑
k≥2

αk

k!
tk


+ d′(s)


t +

∑
k≥2

βk
k!

tk


+ d(t).

First, let us show that d′′(t) − βd′(t) = 1 +
∑

k≥2 αkt
k/k!. Note that d′′(0) −

βd′(0) = 1 and d′′′(0) − βd′′(0) = 0. This is seen from the differential equation
(2.2) and the definition of D. Differentiating both sides of (2.8) and setting t = 0,
we have d(k+1)(0) = βk for k ≥ 2. Similarly, we get from (2.2) that d(k+2)(0) =
αk+βkd

′′′(0) for k ≥ 2. Noting that d′′′(0) = β, we obtain d(k+2)(0)−βd(k+1)(0) =
αk for g ≥ 2. Thus, the required Taylor expansion is derived. Secondly, the
differentiation of both sides of (2.9) gives that d′(t) = t+

∑
k≥2 βkt

k/k!. Finally,

the second equality in (3.2), another expression of d̃(t), is derived directly through
(2.2). �

The explicit forms of the function d̃(t) and the coefficients α and β are given
in Table 1. Four familiar examples of the addition identity (3.1) are presented
as follows.

(1)
1

2
(x + y)2 =

1

2
x2 + xy +

1

2
y2,

(2) ex+y − (x + y) − 1 = ex − x− 1 + (ex − 1)(ey − 1) + ey − y − 1,

(3) 1 − cos(x + y) = (1 − cosx) cos y + sinx sin y + 1 − cos y,

(4) cosh(x + y) − 1 = (coshx− 1) cosh y + sinhx sinh y + cosh y − 1.

The last two are essentially the same as the addition formulas for the cosine
function and the hyperbolic cosine function (Abramowitz and Stegun (1974),
p. 72 and p.83).

The identity (3.1) will be used in proving the optimality of the posterior
mode. In fact, it makes simpler the proof of Proposition 4.1, as will be seen in
the next section. Note that the identity (3.1) can be interpreted by using terms of
the statistical physics. This interesting fact will be discussed in the final section.

Secondly, we calculate the Kullback-Leibler separator for p(x− µ; τ) in Pc.

Proposition 3.2. The Kullback-Leibler separator Dτ (µ1, µ2) from p(x −
µ1; τ) to p(x− µ2; τ) is expressed as

Dτ (µ1, µ2) = b(τ)d(µ1 − µ2),(3.3)

Table 1. Explicit forms of d̃(t) and the coefficients in (2.2).

Family d(t) d̃(t) α β

Normal N (2.6a) 1 0 0

Gamma G(κ) (2.6b) 1 0 κ

Hyperbola H(κ, γ) (2.6c)
κγ

κ + γ

(
eκt

κ
+

e−γt

γ

)
κγ κ− γ

Inverted gamma IG(κ) (2.6d) 1 0 −κ

von Mises M(ξ) (2.6e) cos(ξt) −ξ2 0
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where b(τ) is the Fisher information due to the location parameter µ.

Proof. The regularity conditions in (2.1a) or (2.1b) affirm the following
equalities:∫

K

d′(t) exp{−τd(t) + a(τ)}dt = 0,(3.4) ∫
K

{τd′(t)}2 exp{−τd(t) + a(τ)}dt =

∫
K

τd′′(t) exp{−τd(t) + a(τ)}dt.

When deriving the former equality, we used the fact that the density vanishes
at t = ±∞ in the case of DR or has the same value both at t = 0 and t = 2π
in the case of DI . In the latter equality we used the integration by parts, and
this is the Fisher information b(τ) of the density exp{−τd(x − µ) + a(τ)}. The
expression (3.2) together with these two equalities gives∫

K

d̃(t) exp{−τd(t) + a(τ)}dt =
b(τ)

τ
.(3.5)

Integrating by substituting t = x− µ1 and using the addition identity (3.1), we
have an expression of Dτ (µ1, µ2) as

Dτ (µ1, µ2) = τ

∫
K

{d(µ1 − µ2 + t) − d(t)} exp{−τd(t) + a(τ)}dt

= τ

∫
K

{d(µ1 − µ2)d̃(t) + d′(µ1 − µ2)d
′(t)} exp{−τd(t) + a(τ)}dt.

Therefore the expression (3.3) is derived from (3.4) and (3.5). �

This proposition will be used to derive a Pythagorean relationship which
holds in Pc in Section 5.

The Kullback-Leibler separator from exp{−τ1d(x − µ1) + a(τ1)} to
exp{−τ2d(x− µ2) + a(τ2)} is

D((µ1, τ1), (µ2, τ2)) = a(τ1) − a(τ2) − a′(τ1)

(
1 − τ2

τ1

)
+

τ2
τ1

b(τ1)d(µ1 − µ2).

Compare the two estimators (µ̂1, τ̂1) and (µ̂2, τ̂1) where the estimator of τ is
common. Then, we have

D((µ̂1, τ̂1), (µ, τ)) − D((µ̂2, τ̂1), (µ, τ)) =
τ

τ̂1
b(τ̂1){d(µ̂1 − µ) − d(µ̂2 − µ)}.

As long as we estimate τ by τ̂1, the loss function is essentially d(µ̂ − µ). This
fact reflects a certain orthogonality between µ and τ . Although this argument is
not sufficient since the posterior mode contains τ , it seems natural to start from
the estimation problem under the loss d(µ̂− µ).

Thirdly, we show that each density in the conjugate location-dispersion fam-
ily has a maximum entropy property. The key of the proof is the addition identity
(3.1) in Proposition 3.1.
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Proposition 3.3. The density (1.1) is the one with the maximum entropy
under the condition that the means of d(x) and d′(x) are given.

Proof. The addition identity (3.1) gives another expression of p(x− µ; τ)
as

exp{−τ d̃(−µ)d(x) − τd′(−µ)d′(x) − τd(−µ) + a(τ)}.
By applying Theorem 13.2.1 in Kagan et al. (1973), we obtain the required
result. �

4. Conjugate analysis in Pc

We discuss the Bayes estimation in Pc assuming a conjugate prior density.
The optimality of the posterior mode under the Kullback-Leibler loss is shown
in a unified way by using a Pythagorean relationship with respect to posterior
risks. Since the location and the dispersion parameters are orthogonal with each
other, we will focus on the estimation of the location parameter and assume that
the dispersion parameter is known.

We adopt d(µ̂−µ) as a loss, though the squared error loss (µ̂−µ)2 is often used
in the Bayes estimation. It is equivalent to the Kullback-Leibler loss Dτ (µ̂, µ).
Recall the expression (3.3) and that the Fisher information b(τ) is positive. The
Kullback-Leibler loss is regarded as one of the intrinsic losses by Robert (2001,
p. 82). This adoption seems natural especially in the von Mises family M(1)
where d(µ̂− µ) = 1 − cos(µ̂− µ).

The following proposition states that the posterior mode satisfies a
Pythagorean relationship with respect to posterior risks. The optimality of the
posterior mode follows as its corollary. In this sense the Pythagorean relationship
makes it clear how the posterior mode is superior to the other estimators.

Proposition 4.1.
(i) The posterior mode µ̂map satisfies the equality

Epost[d(µ̂− µ) − d(µ̂− µ̂map)d̃(µ̂map − µ) − d(µ̂map − µ)] = 0(4.1)

for any estimator µ̂ having a finite posterior risk , where Epost[·] denotes the
posterior expectation and d̃(t) is the function (3.2).

(ii) It holds that

Epost[d̃(µ̂map − µ)] =
b(g′′(µ̂map))

g′′(µ̂map)
> 0,

where b(τ) is the Fisher information and g(µ) is the function defined by
(2.3).

Proof. (i) Setting s = µ̂− µ̂map and t = µ̂map − µ in (3.1), we have

Epost[d(µ̂− µ) − d(µ̂− µ̂map)d̃(µ̂map − µ) − d(µ̂map − µ)]

= d′(µ̂− µ̂map)Epost[d
′(µ̂map − µ)].
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The regularity conditions in the definition (2.1a) or (2.1b) of DK gives the equality∫
K

g′(µ)e−g(µ)dµ = 0.(4.2)

Here we employed a similar calculation to that we had used when deriving (3.4).
Differentiating both sides of (2.10) with respect to µ, we have

g′(µ) = −g′′(µ̂map)d
′(µ̂map − µ).(4.3)

Note that g′′(µ̂map) is positive and is independent of µ and also that the posterior
density is proportional to exp{−g(µ)}. It follows from (4.2) and (4.3) that

Epost[d
′(µ̂map − µ)] = 0,

which yields the equality (4.1).
(ii) The representation (2.7) of the posterior density together with (3.5) com-

pletes the proof. �

Corollary 4.2. The posterior mode µ̂map is optimum under the Kullback-
Leibler loss Dτ (µ̂, µ).

Recall that the posterior mode has a certain optimum property. See Corollary
1.2 in Lehmann and Casella (1998, Chapter 4). We find that the posterior mode
is optimal in the two senses in Pc.

Yanagimoto and Ohnishi (2005b) proposed a modified version of the poste-
rior mode, which is invariant with respect to parameter transformation. This
estimator, called the standardized posterior mode, is derived by discarding the
Jacobian factor. In the location family case the standardized posterior mode
coincides with the original posterior mode.

We conclude this section with five examples. In each example we make a
comment on the assumed conjugate prior density and give an explicit form of
the posterior mode. In order to emphasize the optimality of the estimator we
will write µ̂B in place of µ̂map. Note that the linearity of µ̂B is observed in all
examples, though some modification may be necessary.

Example 4.1. Normal family N ;

The assumed conjugate prior density is a normal prior one, a usual choice.
We have the well-known result µ̂B = (τx + δm)/(τ + δ).

Example 4.2. Gamma family G(1);

A familiar choice of a prior density on the mean parameter θ of a gamma
density (2.11) is that 1/θ has a gamma density. See Carlin and Louis (2000,
p. 86) and Robert (2001, p. 177) for examples. Our prior density for G(1) is in
IG(1) and essentially the same as the familiar one. The optimal estimator is
given by µ̂B = log{(τex + δem)/(τ + δ)}.
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Example 4.3. Hyperbola family H(1, 1);

The assumed prior density has the same form as the sampling density (2.12).
As will be seen in Example 4.5, there is a striking analogy between this and the
von Mises cases. Using the addition formula for the hyperbolic cosine function,
we obtain

µ̂B = sinh−1

[
τ sinhx + δ sinhm

{τ2 + δ2 + 2τδ cosh(x−m)}1/2

]
.

In the general case H(κ, γ) the Bayes estimator satisfies d′(µ̂B)/d̃(µ̂B) = (τd′(x)+
δd′(m))/(τ d̃(x) + δd̃(m)).

Example 4.4. Inverted gamma family IG(1);

The assumed prior density is in G(1). The optimal estimator is given by
µ̂B = log{(τ + δ)/(τe−x + δe−m)}, which is to be compared with Example 4.2.

Example 4.5. von-Mises family M(1);

This example is the result in Mardia and El-Atoum (1976). Our prior density
for M(1) is also in M(1). The von Mises prior density was employed in Guttorp
and Lockhart (1988), Bagchi (1994) and Rodrigues et al. (2000). We obtain

µ̂B =




sin−1

[
τ sinx + δ sinm

{τ2 + δ2 + 2τδ cos(x−m)}1/2

]
if τ cosx + δ cosm ≥ 0,

π − sin−1

[
τ sinx + δ sinm

{τ2 + δ2 + 2τδ cos(x−m)}1/2

]
otherwise,

where the range of the arc sine function is chosen as [−π/2, π/2]. The addi-
tion formula for the cosine function was used to obtain the above result. This
expression is analogous to the latter part of Example 4.3.

5. Estimation of the location vector in Pc

The estimation of the vector parameter is becoming increasingly important in
the analysis of models with high-dimensional vector parameters. We construct an
estimator in each member of Pc through the parametric empirical Bayes method
(Morris (1983a)). The key is a mean Pythagorean relationship in applying the
method of moments.

The following mean Pythagorean relationship is known to hold for a density
pe(x;µ) with mean µ in an exponential family:

E[D(pe(y;x), pe(y;m)) − D(pe(y;x), pe(y;µ))

− D(pe(y;µ), pe(y;m)) | pe(x;µ)] = 0.

In the above E[· | p] and D(·, ·) denote the expectation with respect to the density
p and the Kullback-Leibler separator, respectively. The mean Pythagorean rela-
tionship in the estimation problem is discussed in Yanagimoto (2000), Ohnishi
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and Yanagimoto (2003) and Yanagimoto and Ohnishi (2005a). This relation-
ship can be extended to the conjugate location-dispersion family. We have the
following lemma.

Lemma 5.1. The following mean Pythagorean relationship holds for any
m ∈ K.

E[τd(x−m) − τd(x− µ) − b(τ)d(µ−m) | p(x− µ; τ)] = 0.(5.1)

Proof. Recalling Proposition 3.2, we see that

b(τ)d(µ−m) = Dτ (µ,m) = τE[d(x−m) − d(x− µ) | p(x− µ; τ)].

The second equality comes from the definition of the Kullback-Leibler sepa-
rator. �

Let us obtain an equality, which enables us to construct an estimate of the
dispersion parameter of the prior density.

Proposition 5.2. It holds that

E[E[d(x−m) | p(x− µ; τ)] | π(µ−m; δ)] = a′(τ) +
b(τ)

τ
h(δ),(5.2)

where h(δ) is defined by

h(δ) =

∫
K

d(t) exp{−δd(−t) + a(δ)}dt.(5.3)

Proof. A calculation yields E[d(x − µ) | p(x − µ; τ)] = a′(τ). And this
quantity does not depend on µ. Noting that d(µ−m) does not depend on x, we
see that

E[E[d(µ−m) | p(x− µ; τ)] | π(µ−m; δ)] = h(δ).

By combining these with the extended mean Pythagorean relationship (5.1), we
obtain (5.2). �

We now proceed with the estimation of the location vector. Suppose that
the p-dimensional random vector x = (x1, . . . , xp)

T has the sampling density
p(x − µ; τ) =

∏
p(xi − µi; τ). Suppose further that a location vector µ has the

prior density π(µ−m ; δ) =
∏

π(µi−mi; δ). Here τ and m = (m1, . . . ,mp)
T are

assumed to be known. In the parametric empirical Bayes method an estimate of
the hyperparameter is usually obtained as a maximum likelihood estimate or a
method of moments estimate (Carlin and Louis (2000), p. 62). Here we estimate
the unknown hyperparameter δ based on the method of moments. The method
of moments was used by Bagchi (1994) in the von Mises case, although his work
is slightly different from ours. The expression (5.2) yields the equality

E

[
E

[
1

p

p∑
i=1

d(xi −mi)

∣∣∣∣∣ p(x − µ; τ)

] ∣∣∣∣∣ π(µ−m ; δ)

]
= a′(τ) +

b(τ)

τ
h(δ).
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Thus the following estimating equation for δ is obtained:

1

p

p∑
i=1

d(xi −mi) = a′(τ) +
b(τ)

τ
h(δ).(5.4)

When this estimating equation has no solution, we define the estimate of δ as
follows:

δ̂ = arg inf
δ

∣∣∣∣∣1p
p∑

i=1

d(xi −mi) − a′(τ) − b(τ)

τ
h(δ)

∣∣∣∣∣ .
Five examples of the estimation of δ are presented, which correspond respectively
to Examples 4.1–4.5 in the previous section.

Example 5.1. Normal family N ;

The estimate of δ is given by δ̂−1 = [‖x − m‖2/p − τ−1]+ where [x]+ =
max{0, x}.

Example 5.2. Gamma family G(1);

The estimating equation (5.4) is expressed as

1

p

p∑
i=1

(exi−mi − xi + mi − 1) − ψ(τ) =
1

δ − 1
− ψ(δ),

where ψ(t) = log t− (d/dt) log Γ(t). Here δ is assumed to be larger than one for
the existence of the function h(δ) defined by (5.3). Note that the right-hand side
in the above equation is strictly decreasing in δ > 1. The adopted estimator δ̂ is
given by [

1

p

p∑
i=1

(exi−mi − xi + mi − 1) − ψ(τ)

]+

=
1

δ̂ − 1
− ψ(δ̂).

If the left-hand side is equal to zero, then we set δ̂ = ∞.

Example 5.3. Hyperbola family H(1, 1);

The estimating equation (5.4) has a simple form

1

p

p∑
i=1

cosh(xi −mi) =
K ′

0(τ)

K0(τ)

K ′
0(δ)

K0(δ)
.

Since the right-hand side is strictly decreasing in δ > 0 and has the infimum
−K ′

0(τ)/K0(τ), this equation has the unique solution when
∑

cosh(xi−mi)/p >
−K ′

0(τ)/K0(τ). Otherwise, we set δ̂ = ∞.
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Example 5.4. Inverted gamma family IG(1);

The hyperparameter δ is assumed to be larger than one for the same reason
in Example 5.2. The adopted estimator δ̂ is given by[

1

p

p∑
i=1

(emi−xi + xi −mi − 1) − ψ(τ)

]+

=
1

δ̂ − 1
− ψ(δ̂).

When the left-hand side is equal to zero, we set δ̂ = ∞.

Example 5.5. von Mises family M(1);

We obtain a simple estimating equation with respect to δ as

1

p

p∑
i=1

cos(xi −mi) =
I ′0(τ)

I0(τ)

I ′0(δ)
I0(δ)

,

which is to be compared with the estimating equation in Example 5.3. Our
treatment here may be different from the treatments in Examples 5.1–5.4. Re-
call Example 2.5 where we noted that the dispersion parameter can be zero or
negative. Note again that δ̂ cos(µ − m) = −δ̂ cos(µ − m − π). A negative δ̂
implies that m + π1, with 1 ∈ R

p being the vector of ones, is closer to µ than
m is. The right-hand side of the above estimating equation is strictly increasing
in δ ∈ R, and it has the supremum and the infimum, ±I ′0(τ)/I0(τ). Thus when
the inequality ∣∣∣∣∣1p

p∑
i=1

cos(xi −mi)

∣∣∣∣∣ < I ′0(τ)

I0(τ)

holds, the estimating equation has the unique solution, which defines δ̂. Other-
wise, we set

δ̂ =




∞ if
1

p

p∑
i=1

cos(xi −mi) ≥
I ′0(τ)

I0(τ)
,

−∞ if
1

p

p∑
i=1

cos(xi −mi) ≤ −I ′0(τ)

I0(τ)
.

The performance of the resulting empirical Bayes estimator was examined by
Ye and Ohnishi (2006). They showed that the empirical Bayes estimator is far
superior to the maximum likelihood estimator in a practical situation.

6. Discussions

Two topics are discussed, both of which are related to Pythagorean relation-
ships. One pertains to extensions of a conjugate prior density. The other is about
an interpretation of the addition identity (3.1) in the light of statistical physics.
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First, we show that the prior density assumed in this paper is derived through
two different procedures. One is a simple extension of a conjugate prior density
employed by Ibrahim and Chen (1998, 2000) in pursuing applications. Their
prior density, which is called a power prior density, has the form

π(θ; δ) ∝
{

n0∏
i=1

q(yi; θ)

}δ

r(θ)(6.1)

for a general sampling density q(x; θ). Here (y1, . . . , yn0) can be regarded as a
prior dataset, δ is called a power parameter and r(θ) is an appropriate function.
In the case where the sampling density is of the form (1.1), the prior density
(1.2) is a power prior density because it is proportional to {p(m− µ, τ)}δ/τ .

The other procedure, proposed by Yanagimoto and Ohnishi (2005a), assumes
the following prior density using the Kullback-Leibler separator

πKL(θ; θ0, δ) ∝ exp{−δD(q(y; θ0), q(y; θ))}r(θ),(6.2)

where θ0 and δ are hyperparameters. This prior density can be looked upon
as an extended conjugate prior density because it is conjugate in the case of
an exponential family {pe(x;µ)}. It follows from Proposition 3.2 that our prior
density in Pc is derived through this procedure.

We see that the two prior densities (6.1) and (6.2) coincide with each other
if the normed log-likelihood is proportional to the Kullback-Leibler separator. In
fact, in the exponential family the equality

log

∏
pe(yi; µ̌)∏
pe(yi;µ)

= n0D(pe(y; µ̌), pe(y;µ))(6.3)

holds where µ̌ =
∑

yi/n0. Let us show that the proportionality holds also in Pc.
Set g̃(µ)(= g̃(µ; y1, . . . , yn0)) =

∑
d(yi − µ) and write the maximum likelihood

estimate of µ based on (y1, . . . , yn0) as µ̌. A similar treatment to the proof of
Proposition 2.3 gives g̃(µ) = g̃(µ̌) + g̃′′(µ̌)d(µ̌ − µ). Therefore, Proposition 3.2
yields the proportionality as

log

∏
p(y − µ̌; τ)∏
p(y − µ; τ)

=
τ g̃′′(µ̌)

b(τ)
Dτ (µ̌, µ).(6.4)

It should be noted that the equalities (6.3) and (6.4) are Pythagorean rela-
tionships. Set n0 = 1 for simplicity, and we have µ̌ = y1. The two equalities can
be written formally by using the Dirac δ-function δ(x) as

D(δ(z − µ̌), pe(z;µ)) = D(δ(z − µ̌), pe(z; µ̌)) + D(pe(z; µ̌), pe(z;µ)),

D(δ(z − µ̌), p(z − µ; τ)) = D(δ(z − µ̌), p(z − µ̌; τ))

+
τ

b(τ)
D(p(z − µ̌; τ), p(z − µ; τ)).

Here we suggest that these Pythagorean relationships are closely related to the
conjugacy of prior densities.
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Next, we present a notable interpretation on the addition identity (3.1) from
a viewpoint of statistical mechanics. Recall that the identity played an important
role in proving the Pythagorean relationship in Proposition 4.1. Let kB and T
be respectively the Boltzmann constant and the absolute temperature, and set
ρτ (t) = exp{−τd(t) + a(τ)}. If we regard d(t) as an energy function, then
ρτ (t) with τ = 1/(kBT ) is the density of the canonical distribution in statistical
mechanics. The canonical distribution is a key concept in statistical mechanics,
see Reif (1998, Chapter 4) for example.

An implication of (3.1) can be explained as follows: Consider the situation
where we keep the absolute temperature of the system of interest at T = 1/(τkB)
and the energy of the system located at x is given by d(x − µ1) with µ1 being
a controllable parameter. At the equilibrium state the probability density of
the system’s being at the point x is given by the density ρτ (x − µ1) of the
canonical distribution. Suppose that we change the parameter value from µ1

to µ2 instantaneously without changing the probability density. The addition
identity (3.1) together with (3.4) and (3.5) permits us to calculate the increment
of the average energy as∫

K

{d(x− µ2) − d(x− µ1)}ρτ (x− µ1)dx =
b(τ)

τ
d(µ1 − µ2).(6.5)

The quantity d(µ1 − µ2) is the energy of the system located at µ1 under the
new energy function d(x − µ2). The equality (6.5) states that the increment of
the average energy is proportional to d(µ1 − µ2). It should be noted here that
x = µ1 is the point at which the system is the most likely to be located under
the probability density ρτ (x− µ1).

Appendix A
Proof of Proposition 2.2. (i) Since the deviance function is expressed

as d(t) =
∫ t
0 d′(s)ds, we have only to solve the differential equation

d′′′(t) = αd′(t) + βd′′(t) with d′(0) = 0 and d′′(0) = 1.(A.1)

This differential equation is converted into an equivalent first order linear system
of differential equations with a constant coefficient matrix

d

dt

(
d′(t)

d′′(t)

)
=

(
0 1

α β

)(
d′(t)

d′′(t)

)
.

We solve this differential equation according to Arrowsmith and Place (1982,
Chapter 2). The characteristic equation of the above 2×2 matrix, λ2−βλ−α = 0,
determines the form of the solution. After deriving an explicit form of d′(t), we
check whether d(t) is in DK.

First, suppose that the quadratic equation λ2 − βλ−α = 0 has a single real
root λ = λ1. The solution to (A.1) is d′(t) = teλ1t. Noting that d(t) =

∫ t
0 seλ1sds,

we see that λ1 must be zero in order for d(t) to be in DR and obtain (2.6a).
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Secondly, suppose that the quadratic equation has two different real roots
λ = λ1 and λ = λ2, where the inequality λ1 < λ2 is assumed without loss of
generality. The solution to (A.1) is d′(t) = (eλ2t − eλ1t)/(λ2 − λ1). A routine
calculation leads us to the fact that d(t) ∈ DR exists only for the three cases, (1)
λ1 = 0 < λ2, (2) λ1 < 0 < λ2 and (3) λ1 < 0 = λ2. In case (1) we set κ = λ2 > 0
and obtain (2.6b). In case (2) we set κ = λ2 > 0 and γ = −λ1 > 0, which derives
the deviance function (2.6c). In case (3) we set κ = −λ1 > 0 and obtain (2.6d).

Finally, suppose that the quadratic equation has the two conjugate complex
roots, λ = ρ±

√
−1ξ. Here we mean by

√
−1 the imaginary unit. Then we have

d′(t) = ξ−1eρt sin(ξt). Note, however, that d(t) derived from this differential
equation is not in DR.

(ii) The deviance function d(t) ∈ DI is sought in the same way. It can be
shown that we have the desired function only when λ2 − βλ − α = 0 has two
conjugate pure-imaginary roots, λ = ±

√
−1ξ with ξ ∈ N. The function (2.6e) is

thus obtained. �
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sūri , Institute of Statistical Mathematics, 54, 177–190 (in Japanese).


