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A TEST OF EQUALITY OF MEAN VECTORS OF
SEVERAL HETEROSCEDASTIC MULTIVARIATE
POPULATIONS

Yoshihide Kakizawa*

This paper deals with a test of equality of mean vectors of several heteroscedastic
multivariate populations. We derive not only the asymptotic expansion up to N~*
of the nonnull distribution of James’s (1954) statistic, but also those of two corrected
statistics due to Cordeiro and Ferrari (1991) and Kakizawa (1996). The derivation we
considered here is based on the differential operator method developed in Kakizawa
and Iwashita (2005).

Key words and phrases: Asymptotic expansion, Bartlett’s type adjustment, differ-
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1. Introduction

A statistical hypothesis in multivariate analysis is usually tested on the as-
sumption that the observations are independently and normally distributed with
a common covariance matrix. A question of theoretical and practical importance
is the robustness of inference methods with respect to violation of normality or
equality of covariance matrices (see Ito (1969)). Since Kano (1995) and Fujikoshi
(1997), there have been many works to examine the effect of nonnormality upon
standard multivariate test statistics on a general linear hypothesis of one-way
MANOVA model, multivariate linear regression model and GMANOVA model.
See Yanagihara (2001), Fujikoshi (2002a, 2002b), Wakaki et al. (2002), Kakizawa
and Iwashita (2005, 2008), Kakizawa (2005, 2006) and Gupta et al. (2006) for
recent developments in asymptotic expansions of the null or nonnull distributions
of some test statistics according to situations under consideration. On the other
hand, there is little progress in the multivariate nonnormal heteroscedastic case
(see Kakizawa and Iwashita (2005) for the multivariate Behrens-Fisher problem).
The present paper is the multivariate extension to Yanagihara (2000), who de-
rived an asymptotic expansion of the null distribution of James’s (1954) statistic
under heteroscedastic univariate nonnormal populations.

Suppose that {Yl(l), R Yjsfll)}, .. ,{Yl(q), e Yjs,?} are ¢ independent
samples from p-variate distributions with mean vector p(® and positive defi-
nite covariance matrix (%) (a =1,... ,q), where N = Ny +--- + N, is the total

number of observations. Define the sample mean vector and covariance matrix
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of Y{¥,.... Y vy

N,
v@ _ @ _ 1 (@) _ 57(0)\ v (@)  57(a)y
ZY and SY_N_1;(Y Y )Y, Y Y.
For testing H : p™® = .. = p@ vs A : u@ ~£ 40 for some a,d € {1,...,q},

the following test statistic was proposed by James (1954, (7-18)) under normality:

q oy —~
7 =NY (Y -¥ym(¥"-Y)
a=1
where
Na'® (@) _ 2/ gla)y—1
Pa = i/ Wy = pa(Sy ")
q - q
Wy =3, Y =wyt S w v
a=1 a=1
His test statistic can be explained as follows. If covariance matrices &1, ... %@

are known, then the likelihood ratio criterion under assumptions of multivariate
normality becomes

q
NI (Y Gy AT — i),
a=1
where
q q o
A(a) _ pg(z(a))—l’ A= ZA(G)7 ﬁ’O _ A—l ZA(G) Y(a)
a=1

The feasible statistic T} is given by replacing unknown covariance matrices

M) .., 2@ by their unbiased estimators S(l), e ,Sg). James (1954, (7-3)
(7-5) and (7-18)) also noted that T? can be written as

T = (NVEYT) vy {(NYEY),

where
Y(l) _ T(q)
Y = :
Y(q 1) Y(q)
and
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B dlag(WX(/l)’ e 7W1(/q_1)){(1q_11/q*1> ® WY_I} dlag(W)(/l)a R 7W)(/q_1))7

(g — 1) times
: / : 1) (¢-1) .
with 1,1 = (1,...,1)". Here, diag(Wy-’,... ,Wy" ) denotes the block diagonal

matrix whose b-th diagonal block is Wéb). The purpose of this paper is not only
to derive the asymptotic expansion of the nonnull distribution Pr(T3 < z) for
x > 0, but also to consider two corrected statistics due to Cordeiro and Ferrari
(1991) and Kakizawa (1996). The derivation we considered here is based on the
differential operator method developed in Kakizawa and Iwashita (2005, 2008)
and Kakizawa (2005, 2006) under general distributions.

We end this section by giving some comments on the problem of testing the

hypothesis C'pu) = ... = C'u?, where €’ is an s x p known matrix of rank
s (< p). No special treatment for this problem is needed since it reduces to the
hypothesis ﬁ(l) = .. = ﬁ(q) on the transformed data Yi(a) = C' Yi(a)7 where

ﬁ(a) = C'p'? . In that case /171-(&) — ﬁ(a) is independently distributed with mean
vector 0 € R?® and positive definite covariance matrix E(Ca )= o'y , provided

that X(@) is positive definite (it is easy to see that rank(Egl)) = rank(Ly,,, C) =
rank(C) = s, where Ly is the lower triangular matrix with positive diagonal

elements satisfying Ly Liy,) = (@),

2. Nonnull distribution of T}
Let {Yl(l)7 ceey Yjs,ll)}, R Yl(Q), e Y]E,?} be ¢ independent samples from
population distributions with mean vector u(“) and positive definite covariance

matrix (9 (¢ = 1,... ,q), where ¢ > 2 is a given integer. In other words, the
model considered is a multivariate one-way classification model

Y:L(a):lvl/(a)—i_Uz(a) (a:]_”q’ Z:la,Na)

We assume that the Ui(a)’s are independently distributed according to a common
p-variate distribution of U@ = (Ul(a), e ,U,ga))’ with mean vector 0, positive

definite covariance matrix £(* and v-th order cumulant Cum(U ](f), U J(f)) =
(a)

o o (v > 3). Here and subsequently we use j, k, without or with suffixes,
to denote indices, each such index running from 1 to p unless explicitly stated
otherwise. We always use a, without or with suffixes, to denote indices, each
such index running from 1 to ¢. Further, we use b, without or with suffixes, to
denote indices, each such index running from 1 to ¢ — 1. Let

K

Na
1_ Sl - TN U@~ Ty,

Nq
T _ 1 (a) (a) _
U _E; U and S = 5 3 ;

Remark 1. Foreacha =1,...,q, the sample covariance matrix S§,a) = S[(Ja)
is positive definite with probability one if N, — 1 > p, provided that under each
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distribution of U@ e RP, every flat of dimension p — 1 has probability zero
(see Eaton and Perlman (1973)). However, such a non-asymptotic result can be
replaced by a higher-order one, as in (4.1) below.

2.1. Limiting distribution

Let .
W[(Ja) _ Z(Sl(]a)) L WUZZW((Ja)
a=1
Under a local alternative
@) c(a)
(2.1) Av:p¥=p+ 1 (a=1....09),

we can write James’s (1954) statistic as

T3 = (N'2Y) Vi (NV2YT) = (NV2T 4 &%) Vi {(NV2T + ),

where
TV g9 e _ @
ﬁ* ey y E* e
ﬁ(q—l) _ ﬁ(q) ela—1) _ g(a)
and

Vil = diagWY, .. WYy
— diag(WS", . W (101 ) @ W diag(WY, L W),
We notice that
Vo = diag{(W) 7 V)T {1ty ) © (W) 7
= diag(pr 2, oS + {(1ema1yy) @ 0250}
by simple matrix algebra, which is an unbiased, consistent estimator of
EINTU(T")] = diag(SW, ..., 80 ) 4 {(1,41/_;) @ 2D} = ¥*,

where
(@) p;22(a).

It is easy to see that the limiting nonnul distribution of
(2.2) T3 = (NY2U" + &) VY (NPT +¢%)
is the same as that of

(N'PT" + e (=) Y (NPT + %),



A TEST OF EQUALITY OF MEAN VECTORS 257

which is asymptotically the noncentral chi-square distribution with f = p(¢ — 1)
degrees of freedom and noncentrality parameter w2 = limy oo (e*)'(X*) " te*
(limpy_ oo is the limit when all N,’s are large, in such a way that the total number
N of observations goes to infinity) even in a general nonnormal case, including a
purely discrete case. This is the standard (first-order) asymptotic theory using
the central limit theorem, together with Slutsky’s theorem, which is the main
reason that James’s (1954) statistic T; proposed under normality can be also
applicable for the general distribution of U(®)’s.

In what follows, we always assume, for simplicity, that (p1,... , pq)’ is a fixed
g-dimensional vector in Ri with R, = (0,00), where p2’s are positive rational
numbers satisfying p? + -+ + pg = 1. In that case, the noncentrality parameter

w2, is equal to () (T*)le* = w? (say).

Remark 2. Tt is convenient for us to introduce a pg x 1 vector and a pg X pg
symmetric matrix

AL RO2) ... A(La)

s ~ - ~
~ AL AR2) ... AR9)
E = ) A= ’
~ld r N:
A A@2) ... Alg9)
where
gl = (@) = Al el -3,
K(ahw) = (Kg(ll;;%)) = §a1a2A(al) - A(al)AilA(QQ)

(Ql,QQ = 17 y 4, jl)j? == 17' .. 7p)7 with
q

2 ATy AW,
a=1

By simple matrix algebra, we obtain
(2.3) (=97 = diag(AW, ..., Ale=D)
—diag(AW, ... AU {(1,41)_ ) @ AT}
x diag(AW, ... Al~1)
AGD RO L ROe-1)
ACD A2 . R(2a-1)

K(q;Ll) K(q;L?) T\(qfll,qfl)
Then,
AD (D —F) 1
(2.4) (T te* = : =

A= (gla=1) _7) gla—1]
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and
_ Zg[b] = AD () _F) = ¢ld,
b=1
It follows that the noncentrality parameter w? = (*)'(X*)~le* is expressed as
::{(Z*)—l *}/E*{( *)—1 *}
( Pl OF0] 4 Z (Ehlys@gl]

b1ba=1

hQ

o
I
—

(e —g)YA@ (el 7).

I
M=

e
Il
—

Furthermore, we notice the relations

-1 _ -1 _
— ZA(ﬁ,b) =ABD  _NTAGH —[@h) (g=1,... ¢—1)
b=1 b=1

and

q—1
Z Ab1b2) _ A(2:9)

b1ba=1

2.2. Asymptotic expansion

For any symmetric matrix A of order p, vech(A) is the p(p+1)/2-dimensional
vector formed by stacking the columns of A after deleting the upper triangular
part of A. The class of population distributions of U(®)’s is restricted to the dis-
tributions such that U@ = (U(a)l, {vech(U @ U@’ — 2@ VY satisfies Cramér’s
condition (e.g. Bhattacharya and Rao (1976, page 207), hereafter abbreviated as
BR)

(2.5) limsup |E[exp(iEU@)]| <1 (& € RPHPPH/2)

€l —oe

with a finite 8th absolute moment E[|| U(®||®] < co. This is the validity condition
for an asymptotic expansion up to N, ! of a smooth function of the sample mean
- vaz‘ll U@ (e.g. Bhattacharya and Ghosh (1978) and Chandra and Ghosh
(1980)) via fundamental theory due to BR (1976, Theorem 20.1).
We define

trg = tr(I, — A"TA@),  trg, = tr{(I, — ATTA@)2}

q
YA@) (el _F) (note that w? = Z 5,@) )

a=1

on
2
Il
—~
O
g
|
o)
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~

ERD) = (@ _g)(AW) — AWATIA@)) (el _7F)

aa

fora=1,...,q. Further, with

(@) Kn (@) N
~(a _ M1jo.gs ~(a _ 31,12733734
J1,J2,93 4 and Rj1d2.d3,50 = )
Pa I
we define
- B 1
(a,a)~Ja] _
Z Z K’Jldz,]S J1je Z’f
a=1 j1j2j3=1
B_N" N ) el el 3]
~la a a a
K3 _Z Z Rj1yi2,33% 51 i Cia ZH ’
a=1j1j273=1

N ) "
~(a a a a,a
Ky= Z Z H]17J2733,J4 Jij2 Ajaj4 Z K4

<@ Flaoald _ Z w2 (a),

J1,J2,J3:J4" " J1J2 ]5 J4

Il
MQ
M=

1 j1j2j3ja=1

P
[4 _ ~(a) ~a ~{a] ~{a ~{a] —
Ky _Z Z Kj1g2.93,32€ 1 €2 s S ZH ’

a=1 j1j2j3j4=1

q p q

_ ~(a) ~(a’) A (a,a”) ¥ (a,a’) 7 (a,a’

K33’1 - Z Z K31,32,J3Kk4,k5,k6AJ1k4 AJzk5 Ajskos = Z K331 @, a
aa'=1 j1j2j3kakske=1 aa’'=1

q p q
_ ~(a) ~(a’) K (a,0) ¥ (a,a) 7 (a',a") _ § : /
K3372 - Z Z ﬁj17j27j3’€k47k5,k6Aj1j2 Aj3k4 Akskﬁ - /<;3372(a, a )’
aa'=1 j1j2j3kakske=1 aa’=1
2 _ N % (0 =) K@) F(ea) ol e
~(a ~(a a,a a a
K33,1 - Z Z /{J17J2,J3K1€4,k5,/€6A31k4 A]zks j3 Ckg Z R331 @ a ’
aa’=1 j1j2j3kskske=1 aa'=

q p
2] _ ~(a) ~(a’) A (@,0) ¥ (a,a )ﬂ{a ]4‘1 ] 2] /
K33,2 - Z Z H]L]2y]3l€k47k5,k6AJ1]2 A jaka ke Z H33,2(a” a )’
aa’'=1 j1j2j3k4k5k6=1 aa’=1

q
~(a)  ~(a)) A (aa )A{a] “{a} “{a/]%a’] — 4]
33 - Z Z KJ1732,J3H/€4,1€5,/€6A]11€4 g2 €3 Cks Chg — Z ”33(“ a)

aa'=1 j1j2j3kakske=1 aa’=1

The following asymptotic expansion is the nonnormal extension of Ito (1969,
(4.13)).

THEOREM 1. Under the local alternative (2.1),

1 3r

(2.6)  Pr(T% <) = Gy(z;w? —I—Z N2 ZWMGH%(JU w?) +o(N7Y),
r=1 £=0



260 YOSHIHIDE KAKIZAWA

where G, (x;w?) denotes the distribution function of the noncentral chi-square

distribution with v degrees of freedom and noncentrality parameter w?, and each
coefficient is given by
(3] (3] (3]
K K K
71,0:—73, 7T1,1—K[1] = 1]+ 5 7T1,3:—T3,
1 (tra)? Ky K35 L K[4] 4] (55))?
77270 = _Z ; —g + 72 )
(2]
1 trea Ky K33 1 1< 2 2 K339
7T271:_§Z 2ty T Ty 52 ; K[]+K:£?,]1+ 2
a=1 @ a=1 Pa
4 4 1] 33
(o sy s
12 8 6 '
1 2trgq +(trg)? Ky Kazo
1L 368 + tr, ) 3K o (K?
2 4 4 1] -3 3
B R T B W,
4 2 8 8 6 12
_ Ks31 | Kszpo
2,3 3 + 9
1 K262 + tr, Y Kz[f} 2] 3K:>%]2 (1]
- aa a Ca . _K _ 992 (K 2
+ {2 ; P 9 33,1 5 (K37)
2 4 4 1] -3 3
rse ey |
24 g 3 8 2 18 7
K[ I\2
v = { o sl U5

p2 12 U 6 8

[4] (1] 7 (3] [3]\2
a5 = (K33 + Ky K ) _(K5Y)

+{1 L2 K [41_5K£”K£3}}+<K£,3}>2
a=1

2 3 6

(K
18

Furthermore, for any c1,co,c3 € R, the adjusted statistics

2,6 =

T3.=Ti 1=+ D eI = Be(T))
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(see Cordeiro and Ferrari (1991)) and
2 1< 1J2C5, C;
Ti** = T? 1 - N ch(Tg)jil + 2 1726 S (T})]l+]272

N? i+ o — 1
j=1 i 12

the latter being a monotone transformation M B.(T?%) (say) of T% (see Kakizawa
(1996)), admit an asymptotic expansion of the nonnull distribution, as follows:

3
(2.7) Gy(:?) + o O MG on(eso?)
/=0
6
+ > (ras + )Gralai) + olN )
where
w5 = feu,
T = —fo1 + f(f +2)e2 + cw?,
w5 = —f(f +2)e2+ [(f +2)(f + 4z + {—c1 + 2(f + 2)ea}w?,
m5 = —f(f +2)(f +4)es +{=2(f + 2)e2 +3(F + 2)(f + Des}’ + e,
w5 = =3(f + 2)(f + 4)es® + {—c2 + 3(f + 4)es}w’,
7E = —=3(f + 4)czwt + ez,
7§ = —cawb.

Remark 3. If ¢ = 2, then Theorem 1 is nothing but the multivariate
Behrens-Fisher problem that Kakizawa and Iwashita (2005, subsection 5.2) con-
sidered.

Remark 4. In the special case p = 1 with variance o2 and the s-th cumulant
/117,)_, 1= (0a)°ks (s =3,4,...), we have
~——

s times
1 a2

K4:/<4Zp2 <—2— 5 > = Kqdy,

ot Pa Ogq

_ 2 _ _
K Lo, A _)\,quap?l,i%l A1
33,1 = F3 Zpa 2 2 2 2 | 72 2
La=1 Pa g aa/ =1 a%a \Pa og 0q0q/
= K% d1 - dg),

2
1 a2 02 /1 A!
K339 = K3 ps <— - ) - — <— - ) = w3(dy — dy),
3 Z @ 0(21 Jg ; Oq pg Ug 3
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where A = Y?_, p2 /o2 In that case, an asymptotic expansion (2.6) for the null
distribution of James’s (1954) statistic coincides with Yanagihara (2000).

Let us rearrange the coefficients of m, ,’s given by Theorem 1 as follows:

3] (1] (1] (3] (3]

TO=Tig,  TL1=T), M2 =Tph iy, M3 =7y,
T2,0 = Wéog) + 7T[4} + 7r£6%)7 2,1 = 7T£0]1 + 77[2] gql’

Mo = oy + [2] b Ty, 2 _Wg)g Ty + o+ s,
T4 = wéll [4] .+ 7r£611, 5 = 7r£4]5 + Wé,]fw 2,6 = Wé%’

[d ]

where each .
Especially,

is a homogeneous polynomial of degree d = 0,1,2,3,4,6 in €.

-—=+

1. (trg)? KiK.
T2,0 |e=0= — Z( o) . L = —fiy,

2
14T T 6
1 2trgq +(trg)? Ky Kasg
~ A= —— - - ~ "7 - T = — 2 19
2,0 + 2,1 |e=0 az_l P + 1 3 F(f +2)0s,
K K
T2,0 + 21 + M2 |e=0= —% - % =—f(f+2)(f+4)93 (say).

Let ¥ = (91, 92,73). As a corollary of Theorem 1, we have

COROLLARY 2. T2%(9) = By(T?) or MBy(T?) admits an asymptotic ex-
pansion

3r
1
Pr[T%(9) < z] = Gy(z;w° +ZN = ZHMGeru(x w?) +o(N 7

under the local alternative (2.1), where

Mo = ﬂS}o, Iy = ﬂﬂa o = 7r“2 E]z I3 = 7753%

My = 7r£4% + b, Do) = mh) + w? + Th,

Mz = oy + {—01 +2(f + 2)02}0® + 7bh + mh,

Moys = wh + {=2(f + 200> + 3(f +2)(f + s} + 7h's + Dow* + 7L,

Moy = mhy — 3(f + 2)(f + 4030 + 1oy + {02 + 3(f + 4)03}0* + mhh,

H25—7T[4 (f—|—4)193w +7r£’}5+193w, HQG—W[] ’193(4).

Especially,
P[T5(9) <« | H] = Gy(z) +o(N ™),

where G¢(x) denotes the distribution function of the central chi-square distribu-
tion with f degrees of freedom.
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2.3. An improved statistic and its power function
By virtue of Chibisov (1972) (see also Magdalinos (1992)), constructing an
appropriate consistent estimator ¥ = (1, 91, ¥3) of ¥ = (¥1, 2, 93) implies that

P[T3(®) <= | H] = Gy(z) +o(N),

and that the test procedure for rejecting H : pt) = ... = p(@ if 72 (19) By(T7)
or M By (T;) exceeds the a percentile X?c ., of the central chi-square dlstrlbutlon
of f degrees of freedom has the power under the local alternative (2.1)

2 3r

PHTHB) > 1l = 1-G1 0 aiw?) =Y 17 Do esGpean( i) +o(N ).
r=1 £=0
This power is also obtained by the size corrected test procedure with the rejection
region 77 > X?‘,a{l +(2/N) Z?’:l ﬁj(xia)j_l} on the basis of the Cornish-Fisher
expansion, whose validity can be shown as in Hall (1992, Section 3.5).
It remains to construct a consistent estimator of ¥ = (¥1,92,793). Rewrite
three summarized cumulants K4, K331 and K332 as

q p [U(a)U( )U( )U(a)] (o)~ (aa q 2traa —i—(tra)2
Ky = Z Z 8 S A§1}2)A§334) o Z

Y

a=1 jij2jaja=1 a—1 Pa

q P
Kizp= Y >

aa’=1 j1jojskakske=1

EUCUSv@eo v vl

J1 J2 K(a,a/)x(a,a’)x(a,a’)
4 4
papa’

Jika “Tjoks “Tjske

EUCv@v@eo vl vl

q P
_ J1 J2 ~(a7a)~(a7al)~(alva/)
Kss2 = Z Z oA Ajide Mgk Dk -
aa'=1 jij2jskakske=1 ala’
In view of the definition, a set {(trgq,trq);a =1,..., ¢} depends only on A@ =
p2(2@)=1 (¢ = 1,...,q), which are easily estimable by replacing covariance
matrices XU, ... 2@ by their unbiased estimators S(l), e ,S)(g). That is,

fr = tr(l, = Wy WAY)  and g = tr{(1, — Wy W4)?)

are estimators of tr, and tr,,, respectively. Furthermore, we can construct esti-
mators of Ky+> 7, pr2{2tr4q +(trs)?} = My (say), K331 and K332 as follows:

11
2 {E Z(Mff”)?} ,

=1
q 1 No Ny (
Kygi= 3 — ZZ )
aa’=1 PaPar N, Na, i=14'=1
K330 = T Za :
aa'=1 PaPar Na N i=1¢'=1
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3. Differential operator approach

As pointed out in Fujikoshi (2002b) for multivariate test statistics on mean
vectors, it is crucial to find a convenient device for giving an asymptotic expan-
sion of the characteristic function according to situations under consideration.
Unlike Kano (1995) and Fujikoshi (1997, 2002a, 2002b), our approach for obtain-
ing an asymptotic expansion (2.6) or (2.7) is based on the differential operator
developed by Kakizawa and Iwashita (2005, 2008) and Kakizawa (2005, 2006),
as follows:

Notation. Let

~1)
v =) =
ﬂy(qfl)
be an f x 1 vector of variables and
F(l’l) F(1’2) “ e F(Lq*l)
F(271) F(272) “ e F(27q71)

= (’Yflig) =

11 rl-12) ... 1l-1,¢-1)

be an f x f symmetric matrix of variables, where each ’y(bl) = (7](-?1)) and
[0ub2) — (fyj(.f;;bQ)) (b1,ba = 1,...,qg— 1) is a p x 1 vector of variables and a
p X p matrix of variables satisfying (I'(®1:02))" = T'(b2:1) ' respectively. We write
0 1 0
f= d 0F, = =(1468iip)=—— 1,90 = 1,...
i1 a,yzkl an 112 2( + 1”2)87:12‘2 (21,7,2 ) 7f)

with 0;,4, being the Kronecker delta, that is, 6;,4, = 1 iff i1 = i2, and 0 otherwise.
We define an f x 1 vector of differential operators by

o
* *\ . . b1) __ (b1)
(3.1) "= (o)) = : with  8®) = (9;")),

ala—1)

an f x f matrix of differential operators by
8(171) 8(172) e 8(17(]71)
(271) (272) o e (27 _1)

_ 0 0 0\=4 with a(bl,bz) _ (a(bl-’bQ))

: : : J1j2

a(q_lvl) a(q_lvz) e a(q_Lq_l)
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a p X 1 vector of differential operators by

q—1
(3.3) 9@ — (aj(;l)) _ Z 91

b1=1
and a p X p matrix of differential operators by
(3.4) otun — (o1 = S o

bibz=1

applied to any analytic function of v* and I'*. We write i = v/—1.

LEMMA 3. Let h(y*,T%) be an arbitrary multivariate polynomial of finite
degree with coefficients in R, which may depend on N but are of order O(1).
Then,

Eexp{in(N'?T", Viy)} = Eexp{ih(y*,T*)}

yr—0,r* = +o(N71),

provided that E(|| U@ ||*) < co, where

q
S B O

p
a ~(a a,a a 1 a a a
=0 = Y R <a<’.>a<>+_a<>a<>a<>>,

J1,J2,J3 J1j32 —J3 6 Jr J2 I3

J1,J2,]3,]4 J132 "J3J4 Jij2 12 1 J4

p
SR (awa)a(aa) 1ol g0 . L g ol )a(“)).

J1j2j3ja=1
PRrROOF. In line with Kakizawa and Iwashita (2005), we obtain

Eexp{ih(N'V?T", Viy)} = Eexp{ih(NV?T7, Vu,)} + o(N )
=0 exp{lh(‘y*, F*)} |'Y*:07F*:2* —|—O(]\/v_1)7

where ﬁ; and Vy, are, respectively, defined by U and Vy with Ui(a)’s replaced
by truncated random vectors

“ U»(a) U-(a) < N;/Z
Uiﬂ)_{oz AT <

||U(a)||>N;/2 (a:1,...,q;i:1,2,...,Na),
(2
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and
© = Eexp[(NY2T;)'9" + tr{( Vi, — £%)0"}.

Now, we have

q—
(N1/2U /6* Z 1N1/2 U( ) _p(;qul/Q qu))/a(b)
; (a)ys
= (N2T) (00 )
a=1
and

tr{(Viy, = 80"} = trldiag(py 2S5, — 50, 02 155}1 Y-S
+tr[{(1111) @ (o7 28 — 5(@)}07]

—Ztr{ @) (pa 201)}.

Using the independence of Ul-(al)’s and Ui(@)’s (hence Uj(al)’s and Uj(@)’s) for
a1 # ag, we obtain

Eexp[(NYT 7Y (01 0) + tr{(5) — ) (p20())]

<

e =

e
I
—_

@(a)(pgla(a) —26(a a) )—i—O(N 1)’

|
:Q

Q
Il
—

with ©(®)(8,9; N) being the differential operator

el 1 o 1
14+ +—{@;a>+@§)+§(e§>)2}]

a ]' a
0 (8,0; N) = exp <§a’z< >a> 17z

given by Kakizawa and Iwashita (2005), where

D_ N~ e 1
65 )= Z 51,)]2 J3 <aj1j28j3 + gaﬁaﬁajs) J @Sza) = tr(z(“)az(a)a),
J1j2j3=1
@_1 =
@2 = 9 Z K i1 2.93.54 <8j1j26j3j4 + aj1j2aj3aj4 + 128]18]28J36J4> - U
J1j2jzja=1

Let i(a) =i+ (a—1)pfora=1,... ,qandi=1,... ,p. In view of (3.1) and
(3.2), we notice

oM =ar,, and O =05, (biba=1,...,q-1).

v
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Following Kakizawa and Iwashita (2005), we consider a multivariate polynomial
(the details will be explained in Section 4 below)

4
Ho(’)’*,r*) _ (")’*)/(Z*)_l’)/* + Zﬂy(’y*)/(z*)_l{A(F*)(E*>_1}V’Y*
v=1

with (71, me, 3, m4) = (—1,1,—-3/8,9/64) and A(I"*) = I'* —X*. Tt is not difficult
to verify the relations
(35) 8;1(b1)j2(b2) eXp{ltH()('Y* + E:*, F*)} ‘I‘*:E*
1 [S*]o(br)s2(b2) _ 78j1(b1)8j2(b2)
2 2it
x exp{it(y" + &) () (v +eM)} t#0
0, t=0

(36) a_;(bl)jz(bg)a_;;(bg)ﬁl(b;;) eXp{ltHo(’y* + E*, F*)} ‘F*:E*

1 [_([E*]jl(bl)ji‘s(bS)[E*]jZ(b2)j4(b4)

4
+ [E*]jl(bl)J4(b4)[2*]]’2(@)13@3))

+ ([E*]jl(bl)h(bz) _ a;(ibl)a;(bﬂ)

= 2it
x| [5¥]93(ba)ga(ba) _ m
2it
< explit(y” +e7)/(E) "+, 40
\ 0’ t = 05
where
#171 (b1)j2(b2) _ % (b1,b2)
(3.7) [ ]Jl( 1)j2(b2) — Aj1;22

(see (2.3)). We can also apply formulae (see Kakizawa and Iwashita (2005))

op {%w*)’ﬁ*a*} exp{it(y" +€7)/(57) 7 (" + &)} |yemo= chy(t;w?)

1 * * o)k * *
(3.8) exp{§(8 )’E o }ajl(bl)...ajv(bv)

x exp{it(v" + ") () (v + €} =0
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_ - 2)O* 2
= chy(t;w )le(b1)~--jv(bv) (E ’m>

(ve N and by,... ,b, € {1,...,q—1}), where

.t 2
chy(t;w?) = (1 — 2it) /2 exp (11w2it> .

With ¢ = (1 — 2it)~!, we have the general expression of

. .t
@, (E 1o 2it>

m

Z —1)vh I
th!(v - 2h)! 2h|11}—2h

xmwhmmW%mwvrwmm~«vrvm

for v = 2m(# 0) or 2m + 1 with m being a nonnegative interger, where [¥*]7/1/2
and [(X*)~1e*];, denote the (Ji, J2)-th element of (3*)~! (see (2.3) or (3.7)) and
the Ji-th element of (X*)~le* (see (2.4)), respectively. Here, (n)on[1v—2n before
terms with indices means a sum of n similar terms obtained by index permutation,
where v!/{2"h!(v—2h)!} is the number of the partitions of {1,... ,v} into h pairs
and v — 2h singletons.

Remark 5. Strictly speaking, formulae (3.5) (3.6) and (3.8) only apply when
bi,...,by € {1,...,q— 1}, but if we interpret operators (3.3) and (3.4) as

q—1
J1(q Z i) and a;‘:(q)jz(q) - Z 8;1(1?1)]‘2(1)2)’
bi=1 brbo=1

respectively, they can be shown to hold universally (see Remark 2) even when
some b, is equal to q. Especially, we have

8;1(a1)j2(a2) eXp{itH0(7* +¢€”, P*)} |F*:Z*

1 (v T i)
2 J1J2 21t

x exp{it(y* + %)/ (E%) 7 (v + ")}, t#0

0, t=0,

;1(a1)j2(a2)3;3(a3)j4 a4 exp{ltHO( —|—€*7F*)} ‘F*:Z*
1 A (a1,a3) 3 (a2,a4) X (a1,a4) 3 (a2,a3)
4 [_(Ajljl's ’ AJ2124 Yt AJ1;4 ! AJ2§3 ’ )

) +&@m_§ﬁ£&m>@@w_§£ﬁﬂﬂ”
J1J2 2it J3J4 2it

x exp{it(y* +&*) (Z*) T (v* + &%)}, t#0
0, t=0
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(a1,az2,a3,a4 € {1,... ,q}) and

1 * * )k * * . * * s\ — % "
eXp{?“’ /28 } e 05y DAY + 7Y (5L + €7} oo
(v=2m(#0) or 2m+1 and ay,...,a, €{1,...,q}),

where

m v!
R Y,
J1--Jo hgo 2hh'(v - 2h)' 2h|11}—2h

< K(al,tm) o N(a2h717‘12h)g{a2h+1] B _g{av]
J1j2 J2h—1J2n T J2h41 Jv

4. Proof of Theorem 1
Under the local alternative (2.1), we can write
T3 = (NY2TU" + &) VL (NV2TU" 4 ¢*)

(see (2.2)). Motivated by the identity (I, — A+ A?)(I, + A) = I, + A3, we have
(I, + A)~! =~ I, — A + A?, provided that tr(A?) is sufficently small (we assume
that A is a p X p symmetric matrix). Further, we know

1 3 02 ? _ 2 3.3, 9
<Ip 2A+8A> =I,-A+A SA +64A.
Thus, we set down
* 1~ 372 w\—1/2( A71/2F7* *
S = Ip—§A+§A (%) (NY2U +¢e"),

where A = (%) 7Y2(Vy — £9)(*) Y2 and (5*)~Y/2 is the inverse matrix of the
symmetric square root matrix (£*)1/2 of ¥*,

Writing ¢ = N3/2{T? — (8X)'(8)}, it is easy to see that P(|¢| > N'/2py) =
o(N~1) for some sequence py — 0. Actually, we used the following three claims
which are stated without proof:

Cramv 1. Using BR (1976, Corollary 17.12) or the Edgeworth expansion
up to order N, ! of the normalized sum of a sequence of iid random vectors

N2 Zi\i‘l le(a) (e.g. BR (1976, Theorem 20.1)), we have

(4.1) P

Na
N;1/2 Zuz(a)
i=1

> (37, log Na)1/2] = o(N 1),

where

ul(a) _ (Ui(a)/, {vech( Ui(a) Ui(a)/ _ E(a))}/)/ (i=1,...,N,)
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are independently distributed according to U@ given in Subsection 2.2, and 72
is the largest eigenvalue of Cov(U(@).

CrLAM 2. Based on the product of the Edgeworth expansions up to order

N; ! of the normalized sum Ni/zﬁ(a) (a=1,...,q) (this step is a consequence
of BR (1976, Theorem 20.1) for the equal sample size case; otherwise it is a
modification of BR (1976, Theorem 20.6)), (£*)~'/2T " admits a valid Edgeworth
exapansion up to order N~!, hence

Pl|(5)"ANYPT 4 €%)| > (3log N)'?] = o(N 7).

CLAM 3. HNa_l/2 S Ne UEQ)H < (3721og N,)Y/? (a =1,... ,q) implies that
the spectral norm of A is bounded by 1/2 (say) for all sufficiently large N.

By virtue of Chibisov (1972) and Magdalinos (1992), an asymptotic expan-
sion for the nonnull distribution of 77 is the same as that of (S)'(SZ) up to
order N1 when it exists.

We now show that the distribution of (S8¥)'(S¥) admits a valid asymptotic
expansion. Recall

(82)(82) = Hy(N'PT" +&*, Vu) =Tj  (say).
From Lemma 3, the characteristic function of T } is expanded as

(4.2)  Elexp{it(82)(82)}] = Zexp{itHo(v* + €*,T*)} |+—or+=x +o(N 1)
2 3r
1 _
= Chf(t;WQ) <1 + E_l W ;0 ﬂ'r’gg0€> + O(N 1).

Details of the calculation of each coefficient are given in Appendix A. On
the other hand, since (S*)'(S*) is a smooth function of {N,* Zf\i‘l Uga),a =
1,...,q}, the distribution of (S*)'(S*) admits a valid expansion under Cramér’s
condition (2.5) and moment condition E(|[U@||*) < oo, hence E(||U@|?) < cc.
More precisely, based on the valid Edgeworth expansion up to order N~! of
(N2 Ne 4™ a = 1,... g} (e.g. BR (1976, Theorems 20.1 and 20.6)), to-
gether with the B-G transformation argument (e.g. Bhattacharya and Ghosh
(1978) and Bhattacharya and Denker (1990, Section 2 in Part I)), we can show
that there exist polynomials ¢,(y) in f = p(¢ — 1) variables y1,... ,yy (the coef-
ficients in the ¢,(y)’s are independent of N), such that

sup | Elexp{it(S7)'(57)}]

[t|I<K

2
- /Rf exp(ity'y)ér, (y — (£*) /%) {1 Ly ey } dy
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for any K > 0 and

2
sup |Pr(SX € A) — /gb[f 712641 + ar(y) dy| =o(N71)
AcA ] NT/2
for every class A C Bf satisfying
(4.3) sup [ 1,y - ()7 dy = O()
AcA J(8A)

as n — 0, where ¢y, (y) is the probability density function of Ny (0, Iy) and (9A)"
is the set of points within a distance 7 from boundary of A, denoted by dA. Note
that the set

A, ={yec R/ :y/y <z} (x >0)
is convex and by BR (1976, Theorem 3.1) the class C of all Borel measurable
convex subsets of R/ satisfies (4.3). In principle, there exist coefficients Tt
independent of IV, such that

/A ‘z’ff(y_(z*)il/2 ' {1+Z NT’/Q}

deg(gr)

(23 w? +Z 'r/2 Z TrtG py2e(30%)

and

2
[, evtnsen v e {14 3250

2 deg(qr)
. 1 ~
— [ explita) d gy @) + Y iy D Fesgprarai) o
R r=1 (=0

where g, (x;w?) is the probability density function of the noncentral chi-square
distribution with v degrees of freedom and noncentrality parameter w?. The
unicity property of the Fourier-Stieltjes transform then implies that a formal
inversion of (4.2) must be valid.

To deal with Tﬁ , and Ti s We consider

3
e (8)

j=1

3. =(82) |1~

£

and
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3
— S
tar 30 DS (s (8P (82,
J1j2=1
for which we can show that N?’/Q(Ti* - T}*) and N3/2(T37** - Tg**) have the

same property as ( = N¥2{T2? — (5)'(52)}. We next define

3

Sto= |1 eSSV (59),

7j=1

which is also a smooth function of {N; S e nga), a=1,...,q}. Write

C* = N3/2{j—/“%* — (S:,a),(s(ia)} and C** = N3/2{j—3** - (S:,E)I(S:,S)}

Noting P[||S] > (3log N)'/?] = o(N~1), it is easy to see that ¢ = (i or Cu
satisfies P(|¢| > N'/2pl) = o(N~1) for some sequence ply — 0. By virtue of
Chibisov (1972), an asymptotic expansion of the nonnull distribution of T%* or
Ti** is the same as that of (87.)'(S7.) up to order N~!. Using the validity of
the Edgeworth expansion of S, the existence of an asymptotic expansion of the
distribution of (87.)'(S87.) is guaranteed, as in the proof for (57)'(SZ). Although
the Edgeworth expansion of S;, may be given explicitly, it is further required to
calculate its integral over the convex set A,. This is the reason why we consider
an indirect way to evaluate the characteristic function of

2

3 3
(52.)/(5:.) = ROICIGIRES 2 DI
i=1 j=1

by means of the differential operator given in Lemma 3, and to use the uniqueness
theorem of the Fourier-Stieltjes transform.

Let
H(7 7F ):H0(7 7F )_ NHI(’Y 7F )+WH2<’Y 7F )7
where
3 .
Hy(v*,T*) =Y ej{Ho(v",T")}
j=1
and
3 .
Hy(v*,T%) = Y cjer{Ho(v*, TP+
jk=1

Lemma 3 enables us to evaluate

(4.4) Elexp{it(8;.)"(S:.)}]
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= Zexp{itH (v* + €, T"* )} |y*=0,r* =3+ +o(N h

1 1
_ L2 ¢ l -1
= el (t50) {1 b S Y (il } Fo(N),
=0 =0
Details of the calculation of each coefficient are given in Appendix B. O

Appendix A: Evaluation of (4.2)
Let t # 0, hence ¢ = (1 — 2it)~! # 1. With help of Remark 5, we have only
to evaluate

Cg(t) = EgEle(itHo) |7*:0,F*:E*7

Cn(t) = EOEne(ltHO) "Y*ZO,F*:E’H

C4(t) = EOEQC(ltHO) |’Y*:O,F*:Z*7
1_ o .

C33(t) == 5505%6(17‘:_}_{0) |’Y*=O,F*=E*7

where
e(itHy) = exp{itHo(v* + €*,T'")}.

The final results show that the formulae remain valid even if ¢ = 0.
We first evaluate C3(t) = 23:1{0&) () + C§a2) (t)}, where

p
(a) —— ( ) * * .
0371 (t) =0 Z ]17]27]56J1( )g2(a )8j3(a)€(1tH0) ‘7*=0,F*:E*
J1j2g3=1

p

_ chy(t;w?) Z (@ K(a,a) Y aaa

o 9 Rij1,ga.ds \ Ya1da o—1 Jij2js | >
Jij2g3=1

e p
(a) _ =0 ~(a) * * * .
0372 (t) - E g /@j17j2’j38j1(a)8j2(a)8j3(a)e(1tH0) y*=0,[*=%*

J1j2j3=1
L2 p
Chf(t,w ) ~(a) aaa
6 Z J1,J2,J3 ¥ J1J273"
J1j2j3=1

(a)

Using symmetricity of K1 o s

under permutation, we have

P

~\a a a a 1 3
Z H§1?j2,j3 Jijejs 3<90 - I)QHZ[’,](G) + (90 - 1)3/%’)](0*)'
Ji1j2j3=1
Also, we have
P
7@ Rlaa) [1]
Z ﬁ]mma J1J2 st = (¢ — k3 (a).
J1j2js=1
We obtain

pPEHOE %[(@ ~DEY — o(3(0 — DK + (0 - 12K Y ehy (1 02),
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q
a 1 1 3
D005 = {3(p — KL + (o — 1K eh s (t:07),
a=1

which has the same form as Hotelling’s one-sample T? (see Kakizawa and Iwashita
(2005)). By collecting terms of ¢!, we immediately obtain

q 3
SO W) + Oy = mreplchy(t;w?).
a=1

=0

We next evaluate Cp(t) = > 7 poQC,(f)( t) and Cy(t) = 3:1{0571) (t) +
Ci3(t) + CL (1), where

p
a _= S(a) S(a) o« * .
COM =% Y S5 S0 i@ @y € HO) lyr=o,re=s-

J1J273Ja=1
chy(t;w?) = ) s
- 4 Z ijjs z:J‘4j1
J1J2J3Ja=1
A (a.a) 3 (aa) | R (aa) 3 (a,a) A (a,a) ¥ (a,a)
8 [_(Ajlh AJ2J4 + AJIJ4 A]Z]S )+ AJ1]2 A3314
2
‘10 A (a,a) 7 (a,a) 2
©— (AJ3]4 ?1;2 + AJl]2 ?3;4) + m ?1?2]%%;1 )
@20 3 @
a = ~(a * .
Cii (t) = 9 Z Jl,Jz,J37J48J1(a)J2(a)a (a)ja(a )e(ltHO) y*=0,[* =2+
Ji1jegsja=1
chy(;w?) <~ ()
- 3 Z Rj1,32.53.3
J1jegsja=1
A (a,a) § (a,a) A (a,a) § (a,a) A (a,a) § (a,a)
[ (Ah]a A]2j4 + A]lj4 A]2]3 )+ A]Uz A]3]4
2
@ 7 (a,a) 7 (a,a) 2]
~ oo W Qi + A @)+ oy ?1?2]%]%}
— p
(@)rpy _ =0 ~(a) * * " .
0472 (t) = 92 Z K“J'l7j2,j3,j4aj1(a)jz(a)ajg(a)aj4(a)e(1tH0) |+ =0,r*=5+
J1J273ja=1
 chy(t;w?) zp: ~(@) Rewgie ¢ peaaa
o 4 K1 g2,3.4 J1]2 Jsia T 1 audadsda |
J1j2Jgsga=1
@20 3 @
a = ~(a % .
Cis (t) = 24 Z 12,3 Majl(a)8 2((1)8J3(a)(9 (a)e(ltHO) |yx=0,r*=5+
J1jegsja=1
p
_ chy(t;w?) 3 ~(@ caaa
- 24 J1,J2,33,J4 ¥ J13273J4"

J1jejgsja=1
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It is straightforward to see that

he(t: w2 p _ _
clopy = Db’ S0 5@

4 J2J3 7 Jan
J1j25354=1
A (a,a) 7 (a,a) a,a ~{a]~{a]
X [_AJLM AJ2]3 -2 AJ3J4 {A]1]2 (p—1)e i1 12}
aa) (a,a) A(a )~{a]~{a]
+SD {< > j172 A33j4 + (90 )< >21|12A]1J2 73 J4

(o 1)24 a] ~{a] A{aHa]}]

Jl J2 JB ]4

= W[—(tm? — 2p{traa +(p — DER)}

+ @ {2traa +(tra)” + (0 — DAED + 2tr, £P)) + (p — 12 (€)%},
Hence,
Z P72 = (tra)? + 2p(— treq +E2)

+ 0 {2trgq +(t10)% — 236D + trg 7)) + (£1Y)*}
+ 2072800 + tr £ — (E)7} + 1 (E7) ey (1507).

Using symmetricity of Iigl)]z a.da under permutation, we have
~ @ 7 ~ @ 7
~(a a,a aa __ ~(a a,a a a
Z Ry dasdsdaNie Qsia = Z Ry dasdsnaNiais Qe
J1j2gsja=1 J1Jj2g3ja=1

= (p = Dra(a) + (¢ — 1) (a)
and
> 7@  Haaaa
71,J2,J3,74 ©J1J23374
J1j243ja=1
=3 +6 (2] )44
(o —1)%ka(a) + 6(p — 1)’k (a) + (o — 1)k (a).
Also, we have
p (a) A (a,a) ¥ (a,a)
Z Ry gagngaNivje Mg = Ha(a)

J1J2J3ja=1

for (E,m, n) = (273a4)7 (372a4)7 (47273)'
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= é[—m — 2p{ Ky + (p — KN

+ 93Ky + 6(p — DE 4 (0 — 12K ehy (1507),

Cya(t 204

1
= llp =DK1+ (9 — 1)K

— p{3(p — DK+ 6(p — 12KL + (o — 1KLY ehy (5 w0%),

q
Cis(t) = > O (1)

a=1

1
= 5 Ble = 1)K +6(p — PP 4 (o — DA KM ehy (5 02).

We finally evaluate

- q q
=0 —(a)—(a) . aa’
o= > == e(itHo) |y —orene= > O (9),
where _
aa’ 20 —(a)=(a') /.
C?()?) )(t) = 7:& ).:g_ )e(ltHO) y*=0,[*=x* -
Since Cégal)(t) = C’ég/a) (t), it is enough to consider
Cs3(t) Z Cs33,5(
with
q q
C337j(t) 2033] +2Z Z 033] (]: 15253)7
a=1 a=1a'=a+1
where
(aa') ,y _ E0 @) ) i "
033,1 (t) = D) Z K1 2,331 k4,k5,k68J1(G)J2(¢l)a (a )ak4(a’)k5(a’)ak6(a’)
J1jegskakske=1
x e(itHo) |y+=0,r+=x*,

—

p
(ad’) ;=0 ~(a)  ~(a") * * * * *
Coing =T Do R i s ke O (ania(@) )Pty Db ) Do )
J1j2j3kakske=1

+ 95 ()95 (0) D5 (a) Ok (0 s () O (o) ) € (1 Ho)

y*=0,T* =5,

(ad) 1y _ @) () \ o o
C335° (1) = Yo Rk ke @90 Fs(ar) Ohs () ()
J1j2j3kakske=1

X €(1tH0) ‘7*:071—‘*:2*

it
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.02 p
_ M Z ’,‘{(a) %(a/) aaadada
o 72 J1,92,J3" Vka ks ke d1i273kakske *
J1j2jskakske=1

With regard to C?nglll)(t) and Cégfg)(t), we have
Cis (1)

Kj1,52,53 Wka ks ke

_ chy(tw?) Zp: ~@ )
J1j2j3kakske=1

‘ [<_2x<a’a’>x<@va’> L REOFE@ Dy g o

Jika “Tj2ks J1j2 *Tkaks Jake
~ ! ! ~ 2
¥ ( (a’,a’) qqga’_i_ (a,a) qa’a’a’)+ ¥ aaaaaa
o—1 kaks J1j2J3ke j1j2 ¥ jskakske (‘P _ 1)2 J1j2j3kakske

and

9 P

(') _ Chy(tw?) ~(a)  ~(a)
C335 (1) o4 Y s Fhe ks ke
J1j2j3kakske=1

» K(a/’a,) aaa a’ T N(a,a) a ada _ 2(10 aaa ad a a
kaks “<j1j2jske J1j2 ¥ jskakske o—1 J1j2gskakske

We can see that C33(t) depends on

q p
_ ~(a)  ~(a) A (a,a) ¥ (a,0) ~a a
Ji = Z Z Ry s P s s Nk jaks @ik

a=1 j1jo2jzkakske=1

(g . (@ @) Flad)5(ad)
~(a ~(a A (a,a") ¥ (a,a a a
+2) > D s Frks ke N M Qs
a=1a/=a+1 j1j2j3kakske=1

q p
_ ~(a) ~(a) A (a,0) ¥ (a,a) ~a a
2= Y Ry Fheks ke N Mk Qe
a=1 jijajskakske=1

SIS % @ ) FleaF@ad)
~(a ~(a A (a,a) ¥ (a,a a a
+2 Z Z Z Kj1,42.53 Hk47/€5,k6Aj1j2 Ak4k5 Jake>
a=1a'=a+1 j1j2j3kakske=1

q P
_ ~(a) ~(a) 1(a,a) Na a a a A (a,a) Na a a a
3= Y Ry Fhekske Mk Qe + A Q)
a=1 jijojzkakske=1
Zq_l Zq Zp (@ ()
~(a ~(a
+2 K1 s Kk47k57k6
a=1a’=a+1 j1j2j3kakske=1

F(@.a)Na a a o A (a,a) ~a o @’ o
X (Ngyis " QF jogaks T Ny @iskaksie )

- - @ ~
_ ~a ~\a aaaaada
Ju = Z Z Rj1132533 Vha ks ke € j1723kaks ke

a=1 j1jojzkakske=1
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E E %(a) %(a/) aaaadaad
J1,92,33 " Vka,ks ke ¥ j1j2)3kakske *

=a+1 j1j2j3kakske=1

:MQ

(@ (a)

Since HJI Jinoja ok s ks is not symmetric under index permutation, the evaluation
of Jy is most tedious. But, it is straightforward to see that for 1 <a <a’ <gq

p
S RO R Fefad) g
91,592,938 Vka ks ke ks “j2ks Yiske
J1jegskakske=1
_ / 2, (2]
= (p— 1)"333,1(%@ )+ (p—1) K33, 1(“ a )
p
~(a)  ~(a) F(aa)x(a.a) ~a o
Z Kj1,j2,j3/{k4,k5,k6Aj1j2 Ak4k5 Jske
J1j23kakske=1

1 1
= (¢~ Drssa(a,a’) + (¢ — 165 ()} (a)),
p
~(a) ~(a’) X (a’,a’) " Kl(a,a) "a’ a
Z Kj1,52.53 k47k‘57k56( kaks ?1;2;3]?6 +Aj1j2 ?37(;4/?5/?6)
J1j2j3kakske=1

=Y RO ) R
- J1,J2,J3" ka,ks5,ke” “kaks
J1j23kakske=1

x [(@ = 1)%[3j1p. ] ARG

J1j2 “jske
(= 1) (3 ) (Rl )y Sl Kl
44a) o) o) o'
+<90 ) €1 €jo Jsgke]

p
~(a) ~(a’) A (a,a)
+ > Ry gz P s e N o
J1j2j3kakske=1

% [(p = 1) Brarsal AL RS
(9 — 1) Braks ) EIAL ST 4 R 1)
(i — 1)t Sl

€5 €ky ks Cke
= 6(p — 1)?mss2(a,a’) + 6(p — 1w} (a)s} ) (0))
+3(p — 1) {ro(d, a> + Kl 5(a,a')}
+ (o = DYl @)wS (@) + sl @) (a))

and

p i
E l“{(a) E(‘l) aaaadaad

91,732,533 Vka ks ke ¥ J1j2j3kaks ke

J1j2J3kakske=1
% @ =)
~(a ~(a

- Z Kj1 g2.53 Vka ks ke

J1j2j3kakske=1
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* [l = D165 gl A5, A, A,

Jika “Tj2ks "Tjske

+ [3512.s) [3k4,k5k6]A§?]Z)A§:k(z )A;(f;éz ))

+ (o = D*([3j172,55) [3k4k5,k6]/\§f£) A{JZ}AI(CZkZ )~{ka6]

+ [3j1j2 ,j3} [6k4,k5,k6]A§?ki )A§Zka )A{JZ] A{ki]

+ [3j1 J2J'3} [3k4,k5 ke ] Ag?kz )Al(c[;kz g A{a]

32 J3
+ B torel B Ay K 20 21
+ (0= DV Bl 2R 2 2]
+ Bk“’““’“fv‘ﬁ?i{;}ﬁ]/\l&m H/c?
+ BB sl S )
+ (o - Dfellelletlep el el

=3(p — 1) {2k33.1(a,a ) + 3k332(a, a)}
+9(p 1 >4{n£,”< [”< ) + 2651 (a,0) + Ky 5 (a) @) + g o(a, ')}
+3(p — 1)° {5 (@)w§) (o) + w5 (a)k5 (@) + 3r53(a, ')}
+ (¢ — 1% (a)ny (o).

Further, in view of the definition, we note the symmetricity of k33 1(a,a’) =
2 2 4
Ras(a,a), masa(a,d') = kasa(aa), kg, (a.0) = Ky (aa) and Kig(a,a) =

4 . (e
mgg(a', a), since Aﬁ’a

)
)

) is the (j(a), k(a’))-th element of pg X pg symmetric matrix
A given in Remark 2, that is,

~ G,a/) ~ 3 Y alva)
A = Ay = Bl ey = A5 7.

We then have

Ji=(p—1)K331 + (¢ — 1)2K§,}’1,

Ty = (p — 1)Kss + (¢ — D2(KM)?,

J:

5 = 3(p— 17Kz +3(p ~ DMH(EY) + Ko} + (o~ D' KK,

i = 3(p — 1)} (2Ka31 + 3Kas0) + 900 — V(K2 + 2K + KP,))

30— P EYE + 3K + (o - DR

It follows that

1 © o? 9
C33,1(t) = 3 —2J1+ Jo — py 1J3 + — 1)2J4 chy(t;w?)

(¢
= 200 — s + (o — 12K} + (0 = DRaga + (0 — D202

— 20[3(p — 1)Kaz0 + 30 — VH{(KI)? + K2,
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+ (o - PRy
+ ©%[3(p — 1)(2K33,1 + 3K33.2)

+9(p — DA (&2 w2kl + K20
+3(p — DPEN K 4 3K1) + (0 — DK Jehy (¢ w?),
1 2¢
C332(t) = 2 <J3 — Py 1J4) Chf(t;w2)
1

= 58(p — D’Kasz +3(p — D{(EY) + Ko} + (0 - 1)K K
— 3y — 1)2(2K33,1 + 3K33.2)
+9(p — (KM + 2kl + K,

+3(p — DKM KD 4 3K5) + (0 — D3 Jehy (1 07),

Jy
03373(t) = 720hf(t w )
1
= 5[3(@ —1)%(2K331 + 3K335)

1 2 2
+9(p = DKL) + 2K 5, + Ki,)}
+3(p — 1P EJES 4 3K) + (0 = DO (K1) ey (1:0%).
After long but straightforward simplifications for collecting terms of ¢!, we obtain
+Z{C4] )+ Cs35(t)} = Zﬂgg(p Chf(t w )
=0

Here, it may be noted that Z?ZI{CM(t) + Cs3(t)} has the same form as
Hotelling’s one-sample T? (see Kakizawa and Iwashita (2005)).

Appendix B: Evaluation of (4.4)
It is easy to see that

S 1/ _ 1_ ] i}
{W + N (:n + 52 + 5:%) } exp{itHo(v" +&*,T")} |pr=x~

[Py Hetit) Pyt 4 ehit
N N1/2 N

) } exp{it(v* + &) (E%) (v + %)},

where Pi(v*;a) and P»(y*;a) are polynomials of o € C and v* = (v]) whose
coefficients do not depend on N. Furthermore, we know
‘El 1 e e 1:2 tH * * F*
_N1/2 + A + =2 + 91 exp{lt (7 te, )} |F*:E*
Pi(y" +e%it) | Py(y" +e"iit) T (L ok sk
_{ T2 ~ exp{itH(y* +€*,¥")}

= Ry(y" +e%it) exp{itH(y" + €%, X%)},
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where Ry(v*;a) is a polynomial of o € C and v* = (v;) whose coefficients

depend on N=3/2 .. N~13. As discussed in Kakizawa and Iwashita (2005),
operating =g to an analytic function F'(y* + &*) yields the expectation of F'(X)
with respect to the normal distribution X ~ Ny(e*,¥*). Specializing

P (X;it)  Py(X;it)
F(X) = {1 + 7 -
or {1 Pl(X;lt) PQ(X;lt)

+ Ry (X; it)} exp{itH(X,X")}

we have
— =1 1 /_ — 1_

x exp{itH(v* + ", T")} |y+=0,r+=x>
[ P(X;it P (X;it
— Ex {1 L B | B

N2 N +RN(X;it)}

X exp {itX’(z*)—lx - %Hl(X ) + NQHQ(X Dy )H

e[ PG | Py(Xsit)  2itH (X, 5)
B N1/2 N N

X exp{itX'(Z*)_lX}}

+o(Nh
and
(B.2) FEx [{1 + Plj(vjf/;it) + PZ()AQ;;H) } exp{itX’(E*)_lX}]

Ep<1 = 1 = = 1:2

x exp{itHo(y* +€*,T7)} |5

*=0,[*=%*
= chy(t;w?) <1+Z T/2Z7TMSO>

(see Appendix A). It remains to calculate the integral

(B.3) Ex[H (X, exp{itX'(*) "' X }]

ant (%)j Ex[exp{itX'(5%) 1 X}]

I
.Mw

1

-(—i)j i ’ 1 w? - w_2
< dt) (1—2u)72 “Plar—2it) 2

J

I
NE

<.
Il
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= chy(t;w?)[er(pf + @*w®) + c2{Q?f(f +2)
+20%(f + 2)w® + ¢*w'}
+es{’ F(f +2)(f +4) + 30 (f +2)(f + 4Hw?
+30°(f + D + %’}

Multiplying (B.3) by —2it = (1 — )/, (4.4) follows from (B.1) and (B.2).
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