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A TEST OF EQUALITY OF MEAN VECTORS OF
SEVERAL HETEROSCEDASTIC MULTIVARIATE

POPULATIONS

Yoshihide Kakizawa*

This paper deals with a test of equality of mean vectors of several heteroscedastic
multivariate populations. We derive not only the asymptotic expansion up to N−1

of the nonnull distribution of James’s (1954) statistic, but also those of two corrected
statistics due to Cordeiro and Ferrari (1991) and Kakizawa (1996). The derivation we
considered here is based on the differential operator method developed in Kakizawa
and Iwashita (2005).

Key words and phrases: Asymptotic expansion, Bartlett’s type adjustment, differ-
ential operator, heteroscedasticity, local power, nonnormality, nonnull distribution,
one-way MANOVA.

1. Introduction

A statistical hypothesis in multivariate analysis is usually tested on the as-
sumption that the observations are independently and normally distributed with
a common covariance matrix. A question of theoretical and practical importance
is the robustness of inference methods with respect to violation of normality or
equality of covariance matrices (see Ito (1969)). Since Kano (1995) and Fujikoshi
(1997), there have been many works to examine the effect of nonnormality upon
standard multivariate test statistics on a general linear hypothesis of one-way
MANOVA model, multivariate linear regression model and GMANOVA model.
See Yanagihara (2001), Fujikoshi (2002a, 2002b), Wakaki et al. (2002), Kakizawa
and Iwashita (2005, 2008), Kakizawa (2005, 2006) and Gupta et al. (2006) for
recent developments in asymptotic expansions of the null or nonnull distributions
of some test statistics according to situations under consideration. On the other
hand, there is little progress in the multivariate nonnormal heteroscedastic case
(see Kakizawa and Iwashita (2005) for the multivariate Behrens-Fisher problem).
The present paper is the multivariate extension to Yanagihara (2000), who de-
rived an asymptotic expansion of the null distribution of James’s (1954) statistic
under heteroscedastic univariate nonnormal populations.

Suppose that {Y (1)
1 , . . . ,Y

(1)
N1

}, . . . , {Y (q)
1 , . . . ,Y

(q)
Nq

} are q independent

samples from p-variate distributions with mean vector µ(a) and positive defi-
nite covariance matrix Σ(a) (a = 1, . . . , q), where N = N1 + · · ·+Nq is the total
number of observations. Define the sample mean vector and covariance matrix
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of Y
(a)
1 , . . . ,Y

(a)
Na

by

Y
(a)

=
1

Na

Na∑
i=1

Y
(a)
i and S

(a)
Y =

1

Na − 1

Na∑
i=1

(Y
(a)
i −Y

(a)
)(Y

(a)
i −Y

(a)
)′.

For testing H : µ(1) = · · · = µ(q) vs A : µ(a) �= µ(a′) for some a, a′ ∈ {1, . . . , q},
the following test statistic was proposed by James (1954, (7·18)) under normality:

T 2
J = N

q∑
a=1

(Y
(a) − Ŷ )′W (a)

Y (Y
(a) − Ŷ ),

where

ρa =
N

1/2
a

N1/2
, W

(a)
Y = ρ2a(S

(a)
Y )−1,

WY =

q∑
a=1

W
(a)
Y , Ŷ =W−1

Y

q∑
a=1

W
(a)
Y Y

(a)
.

His test statistic can be explained as follows. If covariance matrices Σ(1), . . . ,Σ(q)

are known, then the likelihood ratio criterion under assumptions of multivariate
normality becomes

N

q∑
a=1

(Y
(a) − µ̂0)

′Λ(a)(Y
(a) − µ̂0),

where

Λ(a) = ρ2a(Σ
(a))−1, Λ =

q∑
a=1

Λ(a), µ̂0 = Λ−1
q∑

a=1

Λ(a)Y
(a)
.

The feasible statistic T 2
J is given by replacing unknown covariance matrices

Σ(1), . . . ,Σ(q) by their unbiased estimators S
(1)
Y , . . . , S

(q)
Y . James (1954, (7·3)

(7·5) and (7·18)) also noted that T 2
J can be written as

T 2
J = (N1/2Y

∗
)′V −1

Y (N1/2Y
∗
),

where

Y
∗

=


Y

(1) −Y
(q)

...

Y
(q−1) −Y

(q)


and

V −1
Y = diag(W

(1)
Y , . . . ,W

(q−1)
Y )
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− diag(W
(1)
Y , . . . ,W

(q−1)
Y ){(1q−11

′
q−1) ⊗W−1

Y }diag(W
(1)
Y , . . . ,W

(q−1)
Y ),

with 1q−1 =

(q − 1) times︷ ︸︸ ︷
(1, . . . , 1)′. Here, diag(W

(1)
Y , . . . ,W

(q−1)
Y ) denotes the block diagonal

matrix whose b-th diagonal block is W
(b)
Y . The purpose of this paper is not only

to derive the asymptotic expansion of the nonnull distribution Pr(T 2
J ≤ x) for

x > 0, but also to consider two corrected statistics due to Cordeiro and Ferrari
(1991) and Kakizawa (1996). The derivation we considered here is based on the
differential operator method developed in Kakizawa and Iwashita (2005, 2008)
and Kakizawa (2005, 2006) under general distributions.

We end this section by giving some comments on the problem of testing the
hypothesis C ′µ(1) = · · · = C ′µ(q), where C ′ is an s × p known matrix of rank
s (≤ p). No special treatment for this problem is needed since it reduces to the

hypothesis µ̃(1) = · · · = µ̃(q) on the transformed data Ỹ
(a)
i = C ′Y (a)

i , where

µ̃(a) = C ′µ(a). In that case Ỹ
(a)
i − µ̃(a) is independently distributed with mean

vector 0 ∈ Rs and positive definite covariance matrix Σ
(a)
C ≡ C ′Σ(a)C , provided

that Σ(a) is positive definite (it is easy to see that rank(Σ
(a)
C ) = rank(L′

Σ(a)C ) =
rank(C ) = s, where LΣ(a) is the lower triangular matrix with positive diagonal
elements satisfying LΣ(a)L′

Σ(a) = Σ(a)).

2. Nonnull distribution of T 2
J

Let {Y (1)
1 , . . . ,Y

(1)
N1

}, . . . , {Y (q)
1 , . . . ,Y

(q)
Nq

} be q independent samples from

population distributions with mean vector µ(a) and positive definite covariance
matrix Σ(a) (a = 1, . . . , q), where q ≥ 2 is a given integer. In other words, the
model considered is a multivariate one-way classification model

Y
(a)
i = µ(a) + U

(a)
i (a = 1, . . . , q; i = 1, . . . , Na).

We assume that the U
(a)
i ’s are independently distributed according to a common

p-variate distribution of U (a) = (U
(a)
1 , . . . , U

(a)
p )′ with mean vector 0, positive

definite covariance matrix Σ(a) and v-th order cumulant Cum(U
(a)
j1
, . . . , U

(a)
jv

) =

κ
(a)
j1,... ,jv

(v ≥ 3). Here and subsequently we use j, k, without or with suffixes,
to denote indices, each such index running from 1 to p unless explicitly stated
otherwise. We always use a, without or with suffixes, to denote indices, each
such index running from 1 to q. Further, we use b, without or with suffixes, to
denote indices, each such index running from 1 to q − 1. Let

U
(a)

=
1

Na

Na∑
i=1

U
(a)
i and S

(a)
U =

1

Na − 1

Na∑
i=1

(U
(a)
i −U

(a)
)(U

(a)
i −U

(a)
)′.

Remark 1. For each a = 1, . . . , q, the sample covariance matrix S
(a)
Y = S

(a)
U

is positive definite with probability one if Na − 1 ≥ p, provided that under each
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distribution of U (a) ∈ Rp, every flat of dimension p − 1 has probability zero
(see Eaton and Perlman (1973)). However, such a non-asymptotic result can be
replaced by a higher-order one, as in (4.1) below.

2.1. Limiting distribution
Let

W
(a)
U = ρ2a(S

(a)
U )−1, WU =

q∑
a=1

W
(a)
U .

Under a local alternative

AN : µ(a) = µ +
ε(a)

N1/2
(a = 1, . . . , q),(2.1)

we can write James’s (1954) statistic as

T 2
J = (N1/2Y

∗
)′V −1

Y (N1/2Y
∗
) = (N1/2U

∗
+ ε∗)′V −1

U (N1/2U
∗
+ ε∗),

where

U
∗

=


U

(1) −U
(q)

...

U
(q−1) −U

(q)

 , ε∗ =


ε(1) − ε(q)

...

ε(q−1) − ε(q)


and

V −1
U = diag(W

(1)
U , . . . ,W

(q−1)
U )

− diag(W
(1)
U , . . . ,W

(q−1)
U ){(1q−11

′
q−1) ⊗W−1

U }diag(W
(1)
U , . . . ,W

(q−1)
U ).

We notice that

VU = diag{(W (1)
U )−1, . . . , (W

(q−1)
U )−1} + {(1q−11

′
q−1) ⊗ (W

(q)
U )−1}

= diag(ρ−2
1 S

(1)
U , . . . , ρ

−2
q−1S

(q−1)
U ) + {(1q−11

′
q−1) ⊗ ρ−2

q S
(q)
U }

by simple matrix algebra, which is an unbiased, consistent estimator of

E[NU
∗
(U

∗
)′] = diag(Σ̃(1), . . . , Σ̃(q−1)) + {(1q−11

′
q−1) ⊗ Σ̃(q)} ≡ Σ∗,

where
Σ̃(a) = ρ−2

a Σ(a).

It is easy to see that the limiting nonnul distribution of

T 2
J = (N1/2U

∗
+ ε∗)′V −1

U (N1/2U
∗
+ ε∗)(2.2)

is the same as that of

(N1/2U
∗
+ ε∗)′(Σ∗)−1(N1/2U

∗
+ ε∗),
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which is asymptotically the noncentral chi-square distribution with f = p(q− 1)
degrees of freedom and noncentrality parameter ω2

∞ = limN→∞(ε∗)′(Σ∗)−1ε∗

(limN→∞ is the limit when all Na’s are large, in such a way that the total number
N of observations goes to infinity) even in a general nonnormal case, including a
purely discrete case. This is the standard (first-order) asymptotic theory using
the central limit theorem, together with Slutsky’s theorem, which is the main
reason that James’s (1954) statistic T 2

J proposed under normality can be also
applicable for the general distribution of U (a)’s.

In what follows, we always assume, for simplicity, that (ρ1, . . . , ρq)
′ is a fixed

q-dimensional vector in Rq
+ with R+ = (0,∞), where ρ2a’s are positive rational

numbers satisfying ρ21 + · · · + ρ2q = 1. In that case, the noncentrality parameter
ω2
∞ is equal to (ε∗)′(Σ∗)−1ε∗ = ω2 (say).

Remark 2. It is convenient for us to introduce a pq×1 vector and a pq×pq
symmetric matrix

ε̃ =


ε̃[1]

...

ε̃[q]

 , Λ̃ =


Λ̃(1,1) Λ̃(1,2) · · · Λ̃(1,q)

Λ̃(2,1) Λ̃(2,2) · · · Λ̃(2,q)

...
...

...

Λ̃(q,1) Λ̃(q,2) · · · Λ̃(q,q)

 ,
where

ε̃[a1] = (ε̃
[a1]
j1

) = Λ(a1)(ε(a1) − ε̂),

Λ̃(a1,a2) = (Λ̃
(a1,a2)
j1j2

) = δa1a2Λ
(a1) − Λ(a1)Λ−1Λ(a2)

(a1, a2 = 1, . . . , q; j1, j2 = 1, . . . , p), with

ε̂ = Λ−1
q∑

a=1

Λ(a)ε(a).

By simple matrix algebra, we obtain

(Σ∗)−1 = diag(Λ(1), . . . ,Λ(q−1))(2.3)

− diag(Λ(1), . . . ,Λ(q−1)){(1q−11
′
q−1) ⊗ Λ−1}

× diag(Λ(1), . . . ,Λ(q−1))

=


Λ̃(1,1) Λ̃(1,2) · · · Λ̃(1,q−1)

Λ̃(2,1) Λ̃(2,2) · · · Λ̃(2,q−1)

...
...

...

Λ̃(q−1,1) Λ̃(q−1,2) · · · Λ̃(q−1,q−1)

 .
Then,

(Σ∗)−1ε∗ =


Λ(1)(ε(1) − ε̂)

...

Λ(q−1)(ε(q−1) − ε̂)

 =


ε̃[1]

...

ε̃[q−1]

(2.4)
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and

−
q−1∑
b=1

ε̃[b] = Λ(q)(ε(q) − ε̂) = ε̃[q].

It follows that the noncentrality parameter ω2 = (ε∗)′(Σ∗)−1ε∗ is expressed as

ω2 = {(Σ∗)−1ε∗}′Σ∗{(Σ∗)−1ε∗}

=

q−1∑
b=1

(ε̃[b])′Σ̃(b)ε̃[b] +

q−1∑
b1b2=1

(ε̃[b1])′Σ̃(q)ε̃[b2]

=

q∑
a=1

(ε(a) − ε̂)′Λ(a)(ε(a) − ε̂).

Furthermore, we notice the relations

−
q−1∑
b=1

Λ̃(β,b) = Λ̃(β,q), −
q−1∑
b=1

Λ̃(b,β) = Λ̃(q,β) (β = 1, . . . , q − 1)

and

q−1∑
b1b2=1

Λ̃(b1,b2) = Λ̃(q,q).

2.2. Asymptotic expansion
For any symmetric matrix A of order p, vech(A) is the p(p+1)/2-dimensional

vector formed by stacking the columns of A after deleting the upper triangular
part of A. The class of population distributions of U (a)’s is restricted to the dis-
tributions such that U (a) = (U (a)′, {vech(U (a)U (a)′−Σ(a))}′)′ satisfies Cramér’s
condition (e.g. Bhattacharya and Rao (1976, page 207), hereafter abbreviated as
BR)

lim sup
‖ξ‖→∞

|E[exp(iξ′U (a))]| < 1 (ξ ∈ Rp+p(p+1)/2)(2.5)

with a finite 8th absolute moment E[‖U (a)‖8] <∞. This is the validity condition
for an asymptotic expansion up to N−1

a of a smooth function of the sample mean
N−1

a

∑Na
i=1 U (a) (e.g. Bhattacharya and Ghosh (1978) and Chandra and Ghosh

(1980)) via fundamental theory due to BR (1976, Theorem 20.1).
We define

tra = tr(Ip − Λ−1Λ(a)), traa = tr{(Ip − Λ−1Λ(a))2},

E(2)
a = (ε(a) − ε̂)′Λ(a)(ε(a) − ε̂)

(
note that ω2 =

q∑
a=1

E(2)
a

)
,
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E(2)
aa = (ε(a) − ε̂)′(Λ(a) − Λ(a)Λ−1Λ(a))(ε(a) − ε̂)

for a = 1, . . . , q. Further, with

κ̃
(a)
j1,j2,j3

=
κ

(a)
j1,j2,j3

ρ4a
and κ̃

(a)
j1,j2,j3,j4

=
κ

(a)
j1,j2,j3,j4

ρ6a
,

we define

K
[1]
3 =

q∑
a=1

p∑
j1j2j3=1

κ̃
(a)
j1,j2,j3

Λ̃
(a,a)
j1j2
ε̃
[a]
j3

≡
q∑

a=1

κ
[1]
3 (a),

K
[3]
3 =

q∑
a=1

p∑
j1j2j3=1

κ̃
(a)
j1,j2,j3

ε̃
[a]
j1
ε̃
[a]
j2
ε̃
[a]
j3

≡
q∑

a=1

κ
[3]
3 (a),

K4 =

q∑
a=1

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

Λ̃
(a,a)
j1j2

Λ̃
(a,a)
j3j4

≡
q∑

a=1

κ4(a),

K
[2]
4 =

q∑
a=1

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

Λ̃
(a,a)
j1j2
ε̃
[a]
j3
ε̃
[a]
j4

≡
q∑

a=1

κ
[2]
4 (a),

K
[4]
4 =

q∑
a=1

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

ε̃
[a]
j1
ε̃
[a]
j2
ε̃
[a]
j3
ε̃
[a]
j4

≡
q∑

a=1

κ
[4]
4 (a),

K33,1 =

q∑
aa′=1

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Λ̃
(a,a′)
j1k4

Λ̃
(a,a′)
j2k5

Λ̃
(a,a′)
j3k6

≡
q∑

aa′=1

κ33,1(a, a
′),

K33,2 =

q∑
aa′=1

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Λ̃
(a,a)
j1j2

Λ̃
(a,a′)
j3k4

Λ̃
(a′,a′)
k5k6

≡
q∑

aa′=1

κ33,2(a, a
′),

K
[2]
33,1 =

q∑
aa′=1

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Λ̃
(a,a′)
j1k4

Λ̃
(a,a′)
j2k5

ε̃
[a]
j3
ε̃
[a′]
k6

≡
q∑

aa′=1

κ
[2]
33,1(a, a

′),

K
[2]
33,2 =

q∑
aa′=1

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Λ̃
(a,a)
j1j2

Λ̃
(a,a′)
j3k4

ε̃
[a′]
k5
ε̃
[a′]
k6

≡
q∑

aa′=1

κ
[2]
33,2(a, a

′),

K
[4]
33 =

q∑
aa′=1

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Λ̃
(a,a′)
j1k4

ε̃
[a]
j2
ε̃
[a]
j3
ε̃
[a′]
k5
ε̃
[a′]
k6

≡
q∑

aa′=1

κ
[4]
33(a, a

′).

The following asymptotic expansion is the nonnormal extension of Ito (1969,
(4.13)).

Theorem 1. Under the local alternative (2.1),

Pr(T 2
J ≤ x) = Gf (x;ω2) +

2∑
r=1

1

N r/2

3r∑
�=0

πr,�Gf+2�(x;ω
2) + o(N−1),(2.6)
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where Gν(x;ω
2) denotes the distribution function of the noncentral chi-square

distribution with ν degrees of freedom and noncentrality parameter ω2, and each
coefficient is given by

π1,0 = −K
[3]
3

6
, π1,1 = K

[1]
3 , π1,2 = −K [1]

3 +
K

[3]
3

2
, π1,3 = −K

[3]
3

3
,

π2,0 = −1

4

q∑
a=1

(tra)
2

ρ2a
− K4

4
+
K33,1

6
+

(
K

[4]
4

24
− K

[4]
33

8

)
+

(K
[3]
3 )2

72
,

π2,1 = −1

2

q∑
a=1

traa
ρ2a

+
K4

2
− K33,1

2
+

(
1

2

q∑
a=1

E(2)
aa

ρ2a
−K [2]

4 +K
[2]
33,1 +

K
[2]
33,2

2

)

+

(
K

[4]
4

12
− K

[4]
33

8
− K

[1]
3 K

[3]
3

6

)
,

π2,2 =
1

4

q∑
a=1

2 traa +(tra)
2

ρ2a
− K4

4
− K33,2

2

+

{
−1

2

q∑
a=1

3E(2)
aa + tra E(2)

a

ρ2a
+

3K
[2]
4

2
−K [2]

33,1 +
(K

[1]
3 )2

2

}

+

{
1

4

q∑
a=1

(E(2)
a )2

ρ2a
− 3K

[4]
4

8
+

5K
[4]
33

8
+
K

[1]
3 K

[3]
3

6

}
− (K

[3]
3 )2

12
,

π2,3 =
K33,1

3
+
K33,2

2

+

{
1

2

q∑
a=1

2E(2)
aa + tra E(2)

a

ρ2a
− K

[2]
4

2
−K [2]

33,1 −
3K

[2]
33,2

2
− (K

[1]
3 )2

}

+

{
−1

2

q∑
a=1

(E(2)
a )2

ρ2a
+
K

[4]
4

3
+
K

[4]
33

8
+
K

[1]
3 K

[3]
3

2

}
+

(K
[3]
3 )2

18
,

π2,4 =

{
K

[2]
33,1 +K

[2]
33,2 +

(K
[1]
3 )2

2

}

+

{
1

4

q∑
a=1

(E(2)
a )2

ρ2a
− K

[4]
4

12
−K [4]

33 − 5K
[1]
3 K

[3]
3

6

}
+

(K
[3]
3 )2

8
,

π2,5 =

(
K

[4]
33

2
+
K

[1]
3 K

[3]
3

3

)
− (K

[3]
3 )2

6
,

π2,6 =
(K

[3]
3 )2

18
.

Furthermore, for any c1, c2, c3 ∈ R, the adjusted statistics

T 2
J,∗ = T 2

J

1 − 2

N

3∑
j=1

cj(T
2
J )j−1

 ≡ Bc(T
2
J )
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(see Cordeiro and Ferrari (1991)) and

T 2
J,∗∗ = T 2

J

1 − 2

N

3∑
j=1

cj(T
2
J )j−1 +

1

N2

3∑
j1j2=1

j1j2cj1cj2
j1 + j2 − 1

(T 2
J )j1+j2−2

 ,
the latter being a monotone transformation MBc(T

2
J ) (say) of T 2

J (see Kakizawa
(1996)), admit an asymptotic expansion of the nonnull distribution, as follows:

Gf (x;ω2) +
1

N1/2

3∑
�=0

π1,�Gf+2�(x;ω
2)(2.7)

+
1

N

6∑
�=0

(π2,� + πc
�)Gf+2�(x;ω

2) + o(N−1),

where

πc
0 = fc1,

πc
1 = −fc1 + f(f + 2)c2 + c1ω

2,

πc
2 = −f(f + 2)c2 + f(f + 2)(f + 4)c3 + {−c1 + 2(f + 2)c2}ω2,

πc
3 = −f(f + 2)(f + 4)c3 + {−2(f + 2)c2 + 3(f + 2)(f + 4)c3}ω2 + c2ω

4,

πc
4 = −3(f + 2)(f + 4)c3ω

2 + {−c2 + 3(f + 4)c3}ω4,

πc
5 = −3(f + 4)c3ω

4 + c3ω
6,

πc
6 = −c3ω6.

Remark 3. If q = 2, then Theorem 1 is nothing but the multivariate
Behrens-Fisher problem that Kakizawa and Iwashita (2005, subsection 5.2) con-
sidered.

Remark 4. In the special case p = 1 with variance σ2
a and the s-th cumulant

κ
(a)
1, . . . , 1︸ ︷︷ ︸
s times

= (σa)
sκs (s = 3, 4, . . . ), we have

K4 = κ4

q∑
a=1

ρ2a

(
1

ρ2a
− λ

−1

σ2
a

)2

≡ κ4d1,

K33,1 = κ2
3

[
q∑

a=1

ρ2a

(
1

ρ2a
− λ

−1

σ2
a

)2

− λ−2
q∑

aa′=1

ρ2aρ
2
a′

σ2
aσ

2
a′

(
1

ρ2a
− 2λ−1

σ2
a

+
λ−1

σaσa′

)]
≡ κ2

3(d1 − d3),

K33,2 = κ2
3

 q∑
a=1

ρ2a

(
1

ρ2a
− λ

−1

σ2
a

)2

−
{

q∑
a=1

ρ2a
σa

(
1

ρ2a
− λ

−1

σ2
a

)}2
 ≡ κ2

3(d1 − d2),
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where λ =
∑q

a=1 ρ
2
a/σ

2
a. In that case, an asymptotic expansion (2.6) for the null

distribution of James’s (1954) statistic coincides with Yanagihara (2000).

Let us rearrange the coefficients of πr,�’s given by Theorem 1 as follows:

π1,0 = π
[3]
1,0, π1,1 = π

[1]
1,1, π1,2 = π

[1]
1,2 + π

[3]
1,2, π1,3 = π

[3]
1,3,

π2,0 = π
[0]
2,0 + π

[4]
2,0 + π

[6]
2,0, π2,1 = π

[0]
2,1 + π

[2]
2,1 + π

[4]
2,1,

π2,2 = π
[0]
2,2 + π

[2]
2,2 + π

[4]
2,2 + π

[6]
2,2, π2,3 = π

[0]
2,3 + π

[2]
2,3 + π

[4]
2,3 + π

[6]
2,3,

π2,4 = π
[2]
2,4 + π

[4]
2,4 + π

[6]
2,4, π2,5 = π

[4]
2,5 + π

[6]
2,5, π2,6 = π

[6]
2,6,

where each π
[d]
r,� is a homogeneous polynomial of degree d = 0, 1, 2, 3, 4, 6 in ε̃.

Especially,

π2,0 |ε̃=0= −1

4

q∑
a=1

(tra)
2

ρ2a
− K4

4
+
K33,1

6
≡ −fϑ1,

π2,0 + π2,1 |ε̃=0= −1

4

q∑
a=1

2 traa +(tra)
2

ρ2a
+
K4

4
− K33,1

3
≡ −f(f + 2)ϑ2,

π2,0 + π2,1 + π2,2 |ε̃=0= −K33,1

3
− K33,2

2
≡ −f(f + 2)(f + 4)ϑ3 (say).

Let ϑ = (ϑ1, ϑ2, ϑ3). As a corollary of Theorem 1, we have

Corollary 2. T 2
J (ϑ) = Bϑ(T 2

J ) or MBϑ(T 2
J ) admits an asymptotic ex-

pansion

Pr[T 2
J (ϑ) ≤ x] = Gf (x;ω2) +

2∑
r=1

1

N r/2

3r∑
�=0

Πr,�Gf+2�(x;ω
2) + o(N−1)

under the local alternative (2.1), where

Π1,0 = π
[3]
1,0, Π1,1 = π

[1]
1,1, Π1,2 = π

[1]
1,2 + π

[3]
1,2, Π1,3 = π

[3]
1,3,

Π2,0 = π
[4]
2,0 + π

[6]
2,0, Π

[0]
2,1 = π

[2]
2,1 + ϑ1ω

2 + π
[4]
2,1,

Π2,2 = π
[2]
2,2 + {−ϑ1 + 2(f + 2)ϑ2}ω2 + π

[4]
2,2 + π

[6]
2,2,

Π2,3 = π
[2]
2,3 + {−2(f + 2)ϑ2 + 3(f + 2)(f + 4)ϑ3}ω2 + π

[4]
2,3 + ϑ2ω

4 + π
[6]
2,3,

Π2,4 = π
[2]
2,4 − 3(f + 2)(f + 4)ϑ3ω

2 + π
[4]
2,4 + {−ϑ2 + 3(f + 4)ϑ3}ω4 + π

[6]
2,4,

Π2,5 = π
[4]
2,5 − 3(f + 4)ϑ3ω

4 + π
[6]
2,5 + ϑ3ω

6, Π2,6 = π
[6]
2,6 − ϑ3ω

6.

Especially ,
P [T 2

J (ϑ) ≤ x | H] = Gf (x) + o(N−1),

where Gf (x) denotes the distribution function of the central chi-square distribu-
tion with f degrees of freedom.
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2.3. An improved statistic and its power function
By virtue of Chibisov (1972) (see also Magdalinos (1992)), constructing an

appropriate consistent estimator ϑ̂ = (ϑ̂1, ϑ̂1, ϑ̂3) of ϑ = (ϑ1, ϑ2, ϑ3) implies that

P [T 2
J (ϑ̂) ≤ x | H] = Gf (x) + o(N−1),

and that the test procedure for rejecting H : µ(1) = · · · = µ(q) if T 2
J (ϑ̂) = B

ϑ̂
(T 2

J )
or MB

ϑ̂
(T 2

J ) exceeds the α percentile χ2
f,α of the central chi-square distribution

of f degrees of freedom has the power under the local alternative (2.1)

Pr[T 2
J (ϑ̂) > χ2

f,α] = 1−Gf (χ2
f,α;ω2)−

2∑
r=1

1

N r/2

3r∑
�=0

Πr,�Gf+2�(χ
2
f,α;ω2)+o(N−1).

This power is also obtained by the size corrected test procedure with the rejection
region T 2

J > χ
2
f,α{1+(2/N)

∑3
j=1 ϑ̂j(χ

2
f,α)j−1} on the basis of the Cornish-Fisher

expansion, whose validity can be shown as in Hall (1992, Section 3.5).
It remains to construct a consistent estimator of ϑ = (ϑ1, ϑ2, ϑ3). Rewrite

three summarized cumulants K4,K33,1 and K33,2 as

K4 =

q∑
a=1

p∑
j1j2j3j4=1

E[U
(a)
j1
U

(a)
j2
U

(a)
j3
U

(a)
j4

]

ρ6a
Λ̃

(a,a)
j1j2

Λ̃
(a,a)
j3j4

−
q∑

a=1

2 traa +(tra)
2

ρ2a
,

K33,1 =

q∑
aa′=1

p∑
j1j2j3k4k5k6=1

E[U
(a)
j1
U

(a)
j2
U

(a)
j3

]E[U
(a′)
k4
U

(a′)
k5
U

(a′)
k6

]

ρ4aρ
4
a′

Λ̃
(a,a′)
j1k4

Λ̃
(a,a′)
j2k5

Λ̃
(a,a′)
j3k6

,

K33,2 =

q∑
aa′=1

p∑
j1j2j3k4k5k6=1

E[U
(a)
j1
U

(a)
j2
U

(a)
j3

]E[U
(a′)
k4
U

(a′)
k5
U

(a′)
k6

]

ρ4aρ
4
a′

Λ̃
(a,a)
j1j2

Λ̃
(a,a′)
j3k4

Λ̃
(a′,a′)
k5k6

.

In view of the definition, a set {(traa, tra); a = 1, . . . , q} depends only on Λ(a) =
ρ2a(Σ

(a))−1 (a = 1, . . . , q), which are easily estimable by replacing covariance

matrices Σ(1), . . . ,Σ(q) by their unbiased estimators S
(1)
Y , . . . , S

(q)
Y . That is,

t̂ra = tr(Ip −W−1
Y W

(a)
Y ) and t̂raa = tr{(Ip −W−1

Y W
(a)
Y )2}

are estimators of tra and traa, respectively. Furthermore, we can construct esti-
mators of K4 +

∑q
a=1 ρ

−2
a {2 traa +(tra)

2} = M4 (say), K33,1 and K33,2 as follows:

M̂4 =

q∑
a=1

1

ρ6a

{
1

Na

Na∑
i=1

(M
(aa)
ii )2

}
,

K̂33,1 =

q∑
aa′=1

1

ρ4aρ
4
a′

 1

NaNa′

Na∑
i=1

Na′∑
i′=1

(M
(aa′)
ii′ )3

 ,
K̂33,2 =

q∑
aa′=1

1

ρ4aρ
4
a′

 1

NaNa′

Na∑
i=1

Na′∑
i′=1

M
(aa)
ii M

(aa′)
ii′ M

(a′a′)
i′i′

 ,
where

M
(aa′)
ii′ = (Y

(a)
i −Y

(a)
)′(δaa′W

(a)
Y −W (a)

Y W−1
Y W

(a′)
Y )(Y

(a′)
i′ −Y

(a′)
).
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3. Differential operator approach

As pointed out in Fujikoshi (2002b) for multivariate test statistics on mean
vectors, it is crucial to find a convenient device for giving an asymptotic expan-
sion of the characteristic function according to situations under consideration.
Unlike Kano (1995) and Fujikoshi (1997, 2002a, 2002b), our approach for obtain-
ing an asymptotic expansion (2.6) or (2.7) is based on the differential operator
developed by Kakizawa and Iwashita (2005, 2008) and Kakizawa (2005, 2006),
as follows:

Notation. Let

γ∗ = (γ∗i1) =


γ(1)

...

γ(q−1)


be an f × 1 vector of variables and

Γ∗ = (γ∗i1i2) =


Γ(1,1) Γ(1,2) · · · Γ(1,q−1)

Γ(2,1) Γ(2,2) · · · Γ(2,q−1)

...
...

...

Γ(q−1,1) Γ(q−1,2) · · · Γ(q−1,q−1)


be an f × f symmetric matrix of variables, where each γ(b1) = (γ

(b1)
j1

) and

Γ(b1,b2) = (γ
(b1,b2)
j1j2

) (b1, b2 = 1, . . . , q − 1) is a p × 1 vector of variables and a

p× p matrix of variables satisfying (Γ(b1,b2))′ = Γ(b2,b1), respectively. We write

∂∗i1 =
∂

∂γ∗i1
and ∂∗i1i2 =

1

2
(1 + δi1i2)

∂

∂γ∗i1i2
(i1, i2 = 1, . . . , f)

with δi1i2 being the Kronecker delta, that is, δi1i2 = 1 iff i1 = i2, and 0 otherwise.
We define an f × 1 vector of differential operators by

∂∗ = (∂∗i1) =


∂(1)

...

∂(q−1)

 with ∂(b1) = (∂
(b1)
j1

),(3.1)

an f × f matrix of differential operators by

∂∗ = (∂∗i1i2)(3.2)

=


∂(1,1) ∂(1,2) · · · ∂(1,q−1)

∂(2,1) ∂(2,2) · · · ∂(2,q−1)

...
...

...

∂(q−1,1) ∂(q−1,2) · · · ∂(q−1,q−1)

 with ∂(b1,b2) = (∂
(b1,b2)
j1j2

),
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a p× 1 vector of differential operators by

∂(q) = (∂
(q)
j1

) = −
q−1∑
b1=1

∂(b1)(3.3)

and a p× p matrix of differential operators by

∂(q,q) = (∂
(q,q)
j1j2

) =

q−1∑
b1b2=1

∂(b1,b2)(3.4)

applied to any analytic function of γ∗ and Γ∗. We write i =
√
−1.

Lemma 3. Let h(γ∗,Γ∗) be an arbitrary multivariate polynomial of finite
degree with coefficients in R, which may depend on N but are of order O(1).
Then,

E exp{ih(N1/2U
∗
,VU )} = Ξ exp{ih(γ∗,Γ∗)} |γ∗=0,Γ∗=Σ∗ +o(N−1),

provided that E(‖U (a)‖4) <∞, where

Ξ = Ξ0

{
1 +

Ξ1

N1/2
+

1

N

(
Ξn + Ξ2 +

1

2
Ξ2

1

)}
with

Ξ0 = exp

{
1

2
(∂∗)′Σ∗∂∗

}
, Ξ1 =

q∑
a=1

Ξ
(a)
1 , Ξn =

q∑
a=1

Ξ
(a)
n

ρ2a
, Ξ2 =

q∑
a=1

Ξ
(a)
2 ,

Ξ
(a)
1 =

p∑
j1j2j3=1

κ̃
(a)
j1,j2,j3

(
∂

(a,a)
j1j2

∂
(a)
j3

+
1

6
∂

(a)
j1
∂

(a)
j2
∂

(a)
j3

)
,

Ξ(a)
n = tr(Σ̃(a)∂(a,a)Σ̃(a)∂(a,a)),

Ξ
(a)
2 =

1

2

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

(
∂

(a,a)
j1j2

∂
(a,a)
j3j4

+ ∂
(a,a)
j1j2

∂
(a)
j3
∂

(a)
j4

+
1

12
∂

(a)
j1
∂

(a)
j2
∂

(a)
j3
∂

(a)
j4

)
.

Proof. In line with Kakizawa and Iwashita (2005), we obtain

E exp{ih(N1/2U
∗
,VU )} = E exp{ih(N1/2U

∗
† ,VU†)} + o(N−1)

= Θ exp{ih(γ∗,Γ∗)} |γ∗=0,Γ∗=Σ∗ +o(N−1),

where U
∗
† and VU† are, respectively, defined by U

∗
and VU with U

(a)
i ’s replaced

by truncated random vectors

U
†(a)
i =

{
U

(a)
i , ‖U (a)

i ‖ ≤ N1/2
a

0, ‖U (a)
i ‖ > N1/2

a

(a = 1, . . . , q; i = 1, 2, . . . , Na),
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and

Θ = E exp[(N1/2U
∗
†)

′∂∗ + tr{(VU† − Σ∗)∂∗}].

Now, we have

(N1/2U
∗
†)

′∂∗ =

q−1∑
b=1

(ρ−1
b N

1/2
b U

(b)
† − ρ−1

q N
1/2
q U

(q)
† )′∂(b)

=

q∑
a=1

(N1/2
a U

(a)
† )′(ρ−1

a ∂(a))

and

tr{(VU† − Σ∗)∂∗} = tr[diag(ρ−2
1 S

(1)
U†

− Σ̃(1), . . . , ρ−2
q−1S

(q−1)
U†

− Σ̃(q−1))∂∗]

+ tr[{(1q−11
′
q−1) ⊗ (ρ−2

q S
(q)
U†

− Σ̃(q))}∂∗]

=

q∑
a=1

tr{(S(a)
U†

− Σ(a))(ρ−2
a ∂

(a,a))}.

Using the independence of U
(a1)
i ’s and U

(a2)
i ’s (hence U

†(a1)
i ’s and U

†(a2)
i ’s) for

a1 �= a2, we obtain

Θ =

q∏
a=1

E exp[(N1/2
a U

(a)
† )′(ρ−1

a ∂(a)) + tr{(S(a)
U†

− Σ(a))(ρ−2
a ∂

(a,a))}]

=

q∏
a=1

Θ(a)(ρ−1
a ∂(a), ρ−2

a ∂
(a,a);Na) + o(N−1),

with Θ(a)(∂, ∂;N) being the differential operator

Θ(a)(∂, ∂;N) = exp

(
1

2
∂ ′Σ(a)∂

)[
1 +

Θ
(a)
1

N1/2
+

1

N

{
Θ(a)

n + Θ
(a)
2 +

1

2
(Θ

(a)
1 )2

}]
given by Kakizawa and Iwashita (2005), where

Θ
(a)
1 =

p∑
j1j2j3=1

κ
(a)
j1,j2,j3

(
∂j1j2∂j3 +

1

6
∂j1∂j2∂j3

)
, Θ(a)

n = tr(Σ(a)∂Σ(a)∂),

Θ
(a)
2 =

1

2

p∑
j1j2j3j4=1

κ
(a)
j1,j2,j3,j4

(
∂j1j2∂j3j4 + ∂j1j2∂j3∂j4 +

1

12
∂j1∂j2∂j3∂j4

)
.

Let i(a) = i+(a− 1)p for a = 1, . . . , q and i = 1, . . . , p. In view of (3.1) and
(3.2), we notice

∂
(b1)
i = ∂∗i(b1) and ∂

(b1,b2)
ij = ∂∗i(b1)j(b2) (b1, b2 = 1, . . . , q − 1).



A TEST OF EQUALITY OF MEAN VECTORS 267

Following Kakizawa and Iwashita (2005), we consider a multivariate polynomial
(the details will be explained in Section 4 below)

H0(γ
∗,Γ∗) = (γ∗)′(Σ∗)−1γ∗ +

4∑
ν=1

πν(γ
∗)′(Σ∗)−1{∆(Γ∗)(Σ∗)−1}νγ∗

with (π1, π2, π3, π4) = (−1, 1,−3/8, 9/64) and ∆(Γ∗) = Γ∗−Σ∗. It is not difficult
to verify the relations

∂∗j1(b1)j2(b2) exp{itH0(γ
∗ + ε∗,Γ∗)} |Γ∗=Σ∗(3.5)

=


1

2

(
[Σ∗]j1(b1)j2(b2) −

∂∗j1(b1)∂
∗
j2(b2)

2it

)
× exp{it(γ∗ + ε∗)′(Σ∗)−1(γ∗ + ε∗)}, t �= 0

0, t = 0

and

∂∗j1(b1)j2(b2)∂
∗
j3(b3)j4(b4) exp{itH0(γ

∗ + ε∗,Γ∗)} |Γ∗=Σ∗(3.6)

=



1

4

[
−([Σ∗]j1(b1)j3(b3)[Σ∗]j2(b2)j4(b4)

+ [Σ∗]j1(b1)j4(b4)[Σ∗]j2(b2)j3(b3))

+

(
[Σ∗]j1(b1)j2(b2) −

∂∗j1(b1)∂
∗
j2(b2)

2it

)

×
(

[Σ∗]j3(b3)j4(b4) −
∂∗j3(b3)∂

∗
j4(b4)

2it

)]
× exp{it(γ∗ + ε∗)′(Σ∗)−1(γ∗ + ε∗)}, t �= 0

0, t = 0,

where

[Σ∗]j1(b1)j2(b2) = Λ̃
(b1,b2)
j1j2

(3.7)

(see (2.3)). We can also apply formulae (see Kakizawa and Iwashita (2005))

exp

{
1

2
(∂∗)′Σ∗∂∗

}
exp{it(γ∗ + ε∗)′(Σ∗)−1(γ∗ + ε∗)} |γ∗=0= chf (t;ω2)

and

exp

{
1

2
(∂∗)′Σ∗∂∗

}
∂∗j1(b1) · · · ∂∗jv(bv)(3.8)

× exp{it(γ∗ + ε∗)′(Σ∗)−1(γ∗ + ε∗)} |γ∗=0
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= chf (t;ω2)Q∗
j1(b1)...jv(bv)

(
ε∗;

it

1 − 2it

)
(v ∈ N and b1, . . . , bv ∈ {1, . . . , q − 1}), where

chf (t;ω2) = (1 − 2it)−f/2 exp

(
itω2

1 − 2it

)
.

With ϕ = (1 − 2it)−1, we have the general expression of

Q∗
J1...Jv

(
ε∗;

it

1 − 2it

)
=

m∑
h=0

(ϕ− 1)v−h

〈
v!

2hh!(v − 2h)!

〉
2h|1v−2h

× [Σ∗]J1J2 · · · [Σ∗]J2h−1J2h [(Σ∗)−1ε∗]J2h+1
· · · [(Σ∗)−1ε∗]Jv

for v = 2m(�= 0) or 2m+ 1 with m being a nonnegative interger, where [Σ∗]J1J2

and [(Σ∗)−1ε∗]J1 denote the (J1, J2)-th element of (Σ∗)−1 (see (2.3) or (3.7)) and
the J1-th element of (Σ∗)−1ε∗ (see (2.4)), respectively. Here, 〈n〉2h|1v−2h before
terms with indices means a sum of n similar terms obtained by index permutation,
where v!/{2hh!(v−2h)!} is the number of the partitions of {1, . . . , v} into h pairs
and v − 2h singletons.

Remark 5. Strictly speaking, formulae (3.5) (3.6) and (3.8) only apply when
b1, . . . , bv ∈ {1, . . . , q − 1}, but if we interpret operators (3.3) and (3.4) as

∂∗j1(q) = −
q−1∑
b1=1

∂∗j1(b1) and ∂∗j1(q)j2(q) =

q−1∑
b1b2=1

∂∗j1(b1)j2(b2),

respectively, they can be shown to hold universally (see Remark 2) even when
some b∗ is equal to q. Especially, we have

∂∗j1(a1)j2(a2) exp{itH0(γ
∗ + ε∗,Γ∗)} |Γ∗=Σ∗

=


1

2

(
Λ̃

(a1,a2)
j1j2

−
∂∗j1(a1)∂

∗
j2(a2)

2it

)
× exp{it(γ∗ + ε∗)′(Σ∗)−1(γ∗ + ε∗)}, t �= 0

0, t = 0,

∂∗j1(a1)j2(a2)∂
∗
j3(a3)j4(a4) exp{itH0(γ

∗ + ε∗,Γ∗)} |Γ∗=Σ∗

=



1

4

[
−(Λ̃

(a1,a3)
j1j3

Λ̃
(a2,a4)
j2j4

+ Λ̃
(a1,a4)
j1j4

Λ̃
(a2,a3)
j2j3

)

+

(
Λ̃

(a1,a2)
j1j2

−
∂∗j1(a1)∂

∗
j2(a2)

2it

)(
Λ̃

(a3,a4)
j3j4

−
∂∗j3(a3)∂

∗
j4(a4)

2it

)]
× exp{it(γ∗ + ε∗)′(Σ∗)−1(γ∗ + ε∗)}, t �= 0

0, t = 0
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(a1, a2, a3, a4 ∈ {1, . . . , q}) and

exp

{
1

2
(∂∗)′Σ∗∂∗

}
∂∗j1(a1) · · · ∂∗jv(av) exp{it(γ∗ + ε∗)′(Σ∗)−1(γ∗ + ε∗)} |γ∗=0

= chf (t;ω2)Qa1...av
j1...jv

(v = 2m(�= 0) or 2m+ 1 and a1, . . . , av ∈ {1, . . . , q}),

where

Qa1...av
j1...jv

=

m∑
h=0

(ϕ− 1)v−h

〈
v!

2hh!(v − 2h)!

〉
2h|1v−2h

× Λ̃
(a1,a2)
j1j2

· · · Λ̃(a2h−1,a2h)
j2h−1j2h

ε̃
[a2h+1]
j2h+1

· · · ε̃[av ]
jv
.

4. Proof of Theorem 1

Under the local alternative (2.1), we can write

T 2
J = (N1/2U

∗
+ ε∗)′V −1

U (N1/2U
∗
+ ε∗)

(see (2.2)). Motivated by the identity (Ip −∆ + ∆2)(Ip + ∆) = Ip + ∆3, we have
(Ip + ∆)−1 ≈ Ip − ∆ + ∆2, provided that tr(∆2) is sufficently small (we assume
that ∆ is a p× p symmetric matrix). Further, we know(

Ip −
1

2
∆ +

3

8
∆2

)2

= Ip − ∆ + ∆2 − 3

8
∆3 +

9

64
∆4.

Thus, we set down

S∗
ε =

(
Ip −

1

2
∆̃ +

3

8
∆̃2

)
(Σ∗)−1/2(N1/2U

∗
+ ε∗),

where ∆̃ = (Σ∗)−1/2(VU −Σ∗)(Σ∗)−1/2 and (Σ∗)−1/2 is the inverse matrix of the
symmetric square root matrix (Σ∗)1/2 of Σ∗.

Writing ζ = N3/2{T 2
J − (S∗

ε )′(S∗
ε )}, it is easy to see that P (|ζ| > N1/2ρN ) =

o(N−1) for some sequence ρN → 0. Actually, we used the following three claims
which are stated without proof:

Claim 1. Using BR (1976, Corollary 17.12) or the Edgeworth expansion
up to order N−1

a of the normalized sum of a sequence of iid random vectors

N
−1/2
a

∑Na
i=1 U

(a)
i (e.g. BR (1976, Theorem 20.1)), we have

P

[∥∥∥∥∥N−1/2
a

Na∑
i=1

U (a)
i

∥∥∥∥∥ > (3τ2
a logNa)

1/2

]
= o(N−1

a ),(4.1)

where

U (a)
i = (U

(a)
i

′
, {vech(U

(a)
i U

(a)
i

′
− Σ(a))}′)′ (i = 1, . . . , Na)
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are independently distributed according to U (a) given in Subsection 2.2, and τ2
a

is the largest eigenvalue of Cov(U (a)).

Claim 2. Based on the product of the Edgeworth expansions up to order

N−1
a of the normalized sum N

1/2
a U

(a)
(a = 1, . . . , q) (this step is a consequence

of BR (1976, Theorem 20.1) for the equal sample size case; otherwise it is a
modification of BR (1976, Theorem 20.6)), (Σ∗)−1/2U

∗
admits a valid Edgeworth

exapansion up to order N−1, hence

P [‖(Σ∗)−1/2(N1/2U
∗
+ ε∗)‖ > (3 logN)1/2] = o(N−1).

Claim 3. ‖N−1/2
a

∑Na
i=1 U

(a)
i ‖ ≤ (3τ2

a logNa)
1/2 (a = 1, . . . , q) implies that

the spectral norm of ∆̃ is bounded by 1/2 (say) for all sufficiently large N .

By virtue of Chibisov (1972) and Magdalinos (1992), an asymptotic expan-
sion for the nonnull distribution of T 2

J is the same as that of (S∗
ε )′(S∗

ε ) up to
order N−1 when it exists.

We now show that the distribution of (S∗
ε )′(S∗

ε ) admits a valid asymptotic
expansion. Recall

(S∗
ε )′(S∗

ε ) = H0(N
1/2U

∗
+ ε∗,VU ) = T̃ 2

J (say).

From Lemma 3, the characteristic function of T̃ 2
J is expanded as

E[exp{it(S∗
ε )′(S∗

ε )}] = Ξ exp{itH0(γ
∗ + ε∗,Γ∗)} |γ∗=0,Γ∗=Σ∗ +o(N−1)(4.2)

= chf (t;ω2)

(
1 +

2∑
r=1

1

N r/2

3r∑
�=0

πr,�ϕ
�

)
+ o(N−1).

Details of the calculation of each coefficient are given in Appendix A. On

the other hand, since (S∗
ε )′(S∗

ε ) is a smooth function of {N−1
a

∑Na
i=1 U

(a)
i , a =

1, . . . , q}, the distribution of (S∗
ε )′(S∗

ε ) admits a valid expansion under Cramér’s
condition (2.5) and moment condition E(‖U (a)‖4) <∞, hence E(‖U (a)‖8) <∞.
More precisely, based on the valid Edgeworth expansion up to order N−1 of

{N−1/2
a

∑Na
i=1 U

(a)
i , a = 1, . . . , q} (e.g. BR (1976, Theorems 20.1 and 20.6)), to-

gether with the B-G transformation argument (e.g. Bhattacharya and Ghosh
(1978) and Bhattacharya and Denker (1990, Section 2 in Part I)), we can show
that there exist polynomials qr(y) in f = p(q − 1) variables y1, . . . , yf (the coef-
ficients in the qr(y)’s are independent of N), such that

sup
|t|≤K

∣∣∣∣∣E[exp{it(S∗
ε )′(S∗

ε )}]

−
∫

Rf

exp(ity′y)φIf (y − (Σ∗)−1/2ε∗)

{
1 +

2∑
r=1

qr(y)

N r/2

}
dy

∣∣∣∣∣ = o(N−1)
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for any K > 0 and

sup
A∈A

∣∣∣∣∣Pr(S∗
ε ∈ A) −

∫
A
φIf (y − (Σ∗)−1/2ε∗)

{
1 +

2∑
r=1

qr(y)

N r/2

}
dy

∣∣∣∣∣ = o(N−1)

for every class A ⊂ Bf satisfying

sup
A∈A

∫
(∂A)η

φIf (y − (Σ∗)−1/2ε∗)dy = O(η)(4.3)

as η → 0, where φIf (y) is the probability density function of Nf (0, If ) and (∂A)η

is the set of points within a distance η from boundary of A, denoted by ∂A. Note
that the set

Ax = {y ∈ Rf : y′y ≤ x} (x > 0)

is convex and by BR (1976, Theorem 3.1) the class C of all Borel measurable
convex subsets of Rf satisfies (4.3). In principle, there exist coefficients π̃r,�,
independent of N , such that∫

Ax

φIf (y − (Σ∗)−1/2ε∗)

{
1 +

2∑
r=1

qr(y)

N r/2

}
dy

= Gf (x;ω2) +
2∑

r=1

1

N r/2

deg(qr)∑
�=0

π̃r,�Gf+2�(x;ω
2)

and ∫
Rf

exp(ity′y)φIf (y − (Σ∗)−1/2ε∗)

{
1 +

2∑
r=1

qr(y)

N r/2

}
dy

=

∫
R

exp(itx)

gf (x;ω2) +

2∑
r=1

1

N r/2

deg(qr)∑
�=0

π̃r,�gf+2�(x;ω
2)

 dx,
where gν(x;ω

2) is the probability density function of the noncentral chi-square
distribution with ν degrees of freedom and noncentrality parameter ω2. The
unicity property of the Fourier-Stieltjes transform then implies that a formal
inversion of (4.2) must be valid.

To deal with T 2
J,∗ and T 2

J,∗∗, we consider

T̃ 2
J,∗ = (S∗

ε )′

1 − 2

N

3∑
j=1

cj{(S∗
ε )′(S∗

ε )}j−1

 (S∗
ε )

and

T̃ 2
J,∗∗ = (S∗

ε )′
[
1 − 2

N

3∑
j=1

cj{(S∗
ε )′(S∗

ε )}j−1
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+
1

N2

3∑
j1j2=1

j1j2cj1cj2
j1 + j2 − 1

{(S∗
ε )′(S∗

ε )}j1+j2−2

]
(S∗

ε ),

for which we can show that N3/2(T 2
J,∗ − T̃ 2

J,∗) and N3/2(T 2
J,∗∗ − T̃ 2

J,∗∗) have the

same property as ζ = N3/2{T 2
J − (S∗

ε )′(S∗
ε )}. We next define

S∗
c,ε =

1 − 1

N

3∑
j=1

cj{(S∗
ε )′(S∗

ε )}j−1

 (S∗
ε ),

which is also a smooth function of {N−1
a

∑Na
i=1 U

(a)
i , a = 1, . . . , q}. Write

ζ∗ = N3/2{T̃ 2
J,∗ − (S∗

c,ε)
′(S∗

c,ε)} and ζ∗∗ = N3/2{T̃ 2
J,∗∗ − (S∗

c,ε)
′(S∗

c,ε)}.

Noting P [‖S∗
ε ‖ > (3 logN)1/2] = o(N−1), it is easy to see that ζ = ζ∗ or ζ∗∗

satisfies P (|ζ| > N1/2ρ′N ) = o(N−1) for some sequence ρ′N → 0. By virtue of
Chibisov (1972), an asymptotic expansion of the nonnull distribution of T 2

J,∗ or

T 2
J,∗∗ is the same as that of (S∗

c,ε)
′(S∗

c,ε) up to order N−1. Using the validity of
the Edgeworth expansion of S∗

c,ε, the existence of an asymptotic expansion of the
distribution of (S∗

c,ε)
′(S∗

c,ε) is guaranteed, as in the proof for (S∗
ε )′(S∗

ε ). Although
the Edgeworth expansion of S∗

c,ε may be given explicitly, it is further required to
calculate its integral over the convex set Ax. This is the reason why we consider
an indirect way to evaluate the characteristic function of

(S∗
c,ε)

′(S∗
c,ε) = T̃ 2

J

1 − 2

N

3∑
j=1

cj(T̃
2
J )j−1 +

1

N2


3∑

j=1

cj(T̃
2
J )j−1


2

by means of the differential operator given in Lemma 3, and to use the uniqueness
theorem of the Fourier-Stieltjes transform.

Let

H(γ∗,Γ∗) = H0(γ
∗,Γ∗) − 2

N
H1(γ

∗,Γ∗) +
1

N2
H2(γ

∗,Γ∗),

where

H1(γ
∗,Γ∗) =

3∑
j=1

cj{H0(γ
∗,Γ∗)}j

and

H2(γ
∗,Γ∗) =

3∑
jk=1

cjck{H0(γ
∗,Γ∗)}j+k−1.

Lemma 3 enables us to evaluate

E[exp{it(S∗
c,ε)

′(S∗
c,ε)}](4.4)
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= Ξ exp{itH(γ∗ + ε∗,Γ∗)} |γ∗=0,Γ∗=Σ∗ + o(N−1)

= chf (t;ω2)

{
1 +

1

N1/2

3∑
�=0

π1,�ϕ
� +

1

N

6∑
�=0

(π2,� + πc
�)ϕ

�

}
+ o(N−1).

Details of the calculation of each coefficient are given in Appendix B.

Appendix A: Evaluation of (4.2)
Let t �= 0, hence ϕ ≡ (1 − 2it)−1 �= 1. With help of Remark 5, we have only

to evaluate

C3(t) = Ξ0Ξ1e(itH0) |γ∗=0,Γ∗=Σ∗ ,

Cn(t) = Ξ0Ξne(itH0) |γ∗=0,Γ∗=Σ∗ ,

C4(t) = Ξ0Ξ2e(itH0) |γ∗=0,Γ∗=Σ∗ ,

C33(t) =
1

2
Ξ0Ξ

2
1e(itH0) |γ∗=0,Γ∗=Σ∗ ,

where
e(itH0) = exp{itH0(γ

∗ + ε∗,Γ∗)}.
The final results show that the formulae remain valid even if t = 0.

We first evaluate C3(t) =
∑q

a=1{C
(a)
3,1 (t) + C

(a)
3,2 (t)}, where

C
(a)
3,1 (t) = Ξ0

p∑
j1j2j3=1

κ̃
(a)
j1,j2,j3

∂∗j1(a)j2(a)∂
∗
j3(a)e(itH0) |γ∗=0,Γ∗=Σ∗

=
chf (t;ω2)

2

p∑
j1j2j3=1

κ̃
(a)
j1,j2,j3

(
Λ̃

(a,a)
j1j2
Qa

j3 −
ϕ

ϕ− 1
Qa a a

j1j2j3

)
,

C
(a)
3,2 (t) =

Ξ0

6

p∑
j1j2j3=1

κ̃
(a)
j1,j2,j3

∂∗j1(a)∂
∗
j2(a)∂

∗
j3(a)e(itH0) |γ∗=0,Γ∗=Σ∗

=
chf (t;ω2)

6

p∑
j1j2j3=1

κ̃
(a)
j1,j2,j3

Qa a a
j1j2j3 .

Using symmetricity of κ
(a)
j1,j2,j3

under permutation, we have

p∑
j1j2j3=1

κ̃
(a)
j1,j2,j3

Qa a a
j1j2j3 = 3(ϕ− 1)2κ

[1]
3 (a) + (ϕ− 1)3κ

[3]
3 (a).

Also, we have
p∑

j1j2j3=1

κ̃
(a)
j1,j2,j3

Λ̃
(a,a)
j1j2
Qa

j3 = (ϕ− 1)κ
[1]
3 (a).

We obtain

q∑
a=1

C
(a)
3,1 (t) =

1

2
[(ϕ− 1)K

[1]
3 − ϕ{3(ϕ− 1)K

[1]
3 + (ϕ− 1)2K

[3]
3 }]chf (t;ω2),
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q∑
a=1

C
(a)
3,2 (t) =

1

6
{3(ϕ− 1)2K

[1]
3 + (ϕ− 1)3K

[3]
3 }chf (t;ω2),

which has the same form as Hotelling’s one-sample T 2 (see Kakizawa and Iwashita
(2005)). By collecting terms of ϕ�, we immediately obtain

q∑
a=1

{C(a)
3,1 (t) + C

(a)
3,2 (t)} =

3∑
�=0

π1,�ϕ
�chf (t;ω2).

We next evaluate Cn(t) =
∑q

a=1 ρ
−2
a C

(a)
n (t) and C4(t) =

∑q
a=1{C

(a)
4,1 (t) +

C
(a)
4,2 (t) + C

(a)
4,3 (t)}, where

C(a)
n (t) = Ξ0

p∑
j1j2j3j4=1

Σ̃
(a)
j2j3

Σ̃
(a)
j4j1
∂∗j1(a)j2(a)∂

∗
j3(a)j4(a)e(itH0) |γ∗=0,Γ∗=Σ∗

=
chf (t;ω2)

4

p∑
j1j2j3j4=1

Σ̃
(a)
j2j3

Σ̃
(a)
j4j1

×
[
−(Λ̃

(a,a)
j1j3

Λ̃
(a,a)
j2j4

+ Λ̃
(a,a)
j1j4

Λ̃
(a,a)
j2j3

) + Λ̃
(a,a)
j1j2

Λ̃
(a,a)
j3j4

− ϕ

ϕ− 1
(Λ̃

(a,a)
j3j4
Qa a

j1j2 + Λ̃
(a,a)
j1j2
Qa a

j3j4) +
ϕ2

(ϕ− 1)2
Qa a a a

j1j2j3j4

]
,

C
(a)
4,1 (t) =

Ξ0

2

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

∂∗j1(a)j2(a)∂
∗
j3(a)j4(a)e(itH0) |γ∗=0,Γ∗=Σ∗

=
chf (t;ω2)

8

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

×
[
−(Λ̃

(a,a)
j1j3

Λ̃
(a,a)
j2j4

+ Λ̃
(a,a)
j1j4

Λ̃
(a,a)
j2j3

) + Λ̃
(a,a)
j1j2

Λ̃
(a,a)
j3j4

− ϕ

ϕ− 1
(Λ̃

(a,a)
j3j4
Qa a

j1j2 + Λ̃
(a,a)
j1j2
Qa a

j3j4) +
ϕ2

(ϕ− 1)2
Qa a a a

j1j2j3j4

]
,

C
(a)
4,2 (t) =

Ξ0

2

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

∂∗j1(a)j2(a)∂
∗
j3(a)∂

∗
j4(a)e(itH0) |γ∗=0,Γ∗=Σ∗

=
chf (t;ω2)

4

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

(
Λ̃

(a,a)
j1j2
Qa a

j3j4 −
ϕ

ϕ− 1
Qa a a a

j1j2j3j4

)
,

C
(a)
4,3 (t) =

Ξ0

24

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

∂∗j1(a)∂
∗
j2(a)∂

∗
j3(a)∂

∗
j4(a)e(itH0) |γ∗=0,Γ∗=Σ∗

=
chf (t;ω2)

24

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

Qa a a a
j1j2j3j4 .
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It is straightforward to see that

C(a)
n (t) =

chf (t;ω2)

4

p∑
j1j2j3j4=1

Σ̃
(a)
j2j3

Σ̃
(a)
j4j1

× [−Λ̃
(a,a)
j1j4

Λ̃
(a,a)
j2j3

− 2ϕΛ̃
(a,a)
j3j4

{Λ̃(a,a)
j1j2

+ (ϕ− 1)ε̃
[a]
j1
ε̃
[a]
j2
}

+ ϕ2{〈3〉22Λ̃
(a,a)
j1j2

Λ̃
(a,a)
j3j4

+ (ϕ− 1)〈6〉21|12Λ̃
(a,a)
j1j2
ε̃
[a]
j3
ε̃
[a]
j4

+ (ϕ− 1)2ε̃
[a]
j1
ε̃
[a]
j2
ε̃
[a]
j3
ε̃
[a]
j4
}]

=
chf (t;ω2)

4
[−(tra)

2 − 2ϕ{traa +(ϕ− 1)E(2)
aa }

+ ϕ2{2 traa +(tra)
2 + (ϕ− 1)(4E(2)

aa + 2 tra E(2)
a ) + (ϕ− 1)2(E(2)

a )2}].

Hence,

Cn(t) =
1

4

q∑
a=1

ρ−2
a [ − (tra)

2 + 2ϕ(− traa +E(2)
aa )

+ ϕ2{2 traa +(tra)
2 − 2(3E(2)

aa + tra E(2)
a ) + (E(2)

a )2}
+ 2ϕ3{2E(2)

aa + tra E(2)
a − (E(2)

a )2} + ϕ4(E(2)
a )2]chf (t;ω2).

Using symmetricity of κ
(a)
j1,j2,j3,j4

under permutation, we have

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

Λ̃
(a,a)
j1j2
Qa a

j3j4 =

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

Λ̃
(a,a)
j3j4
Qa a

j1j2

= (ϕ− 1)κ4(a) + (ϕ− 1)2κ
[2]
4 (a)

and

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

Qa a a a
j1j2j3j4

= 3(ϕ− 1)2κ4(a) + 6(ϕ− 1)3κ
[2]
4 (a) + (ϕ− 1)4κ

[4]
4 (a).

Also, we have

p∑
j1j2j3j4=1

κ̃
(a)
j1,j2,j3,j4

Λ̃
(a,a)
j1j	

Λ̃
(a,a)
jmjn

= κ4(a)

for (?,m, n) = (2, 3, 4), (3, 2, 4), (4, 2, 3).

Then,

C4,1(t) ≡
q∑

a=1

C
(a)
4,1 (t)
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=
1

8
[−K4 − 2ϕ{K4 + (ϕ− 1)K

[2]
4 }

+ ϕ2{3K4 + 6(ϕ− 1)K
[2]
4 + (ϕ− 1)2K

[4]
4 }]chf (t;ω2),

C4,2(t) ≡
q∑

a=1

C
(a)
4,2 (t)

=
1

4
[(ϕ− 1)K4 + (ϕ− 1)2K

[2]
4

− ϕ{3(ϕ− 1)K4 + 6(ϕ− 1)2K
[2]
4 + (ϕ− 1)3K

[4]
4 }]chf (t;ω2),

C4,3(t) ≡
q∑

a=1

C
(a)
4,3 (t)

=
1

24
{3(ϕ− 1)2K4 + 6(ϕ− 1)3K

[2]
4 + (ϕ− 1)4K

[4]
4 }chf (t;ω2).

We finally evaluate

C33(t) =
Ξ0

2

q∑
aa′=1

Ξ
(a)
1 Ξ

(a′)
1 e(itH0) |γ∗=0,Γ∗=Σ∗=

q∑
aa′=1

C
(aa′)
33 (t),

where

C
(aa′)
33 (t) =

Ξ0

2
Ξ

(a)
1 Ξ

(a′)
1 e(itH0) |γ∗=0,Γ∗=Σ∗ .

Since C
(aa′)
33 (t) = C

(a′a)
33 (t), it is enough to consider

C33(t) =
3∑

j=1

C33,j(t)

with

C33,j(t) =

q∑
a=1

C
(aa)
33,j (t) + 2

q−1∑
a=1

q∑
a′=a+1

C
(aa′)
33,j (t) (j = 1, 2, 3),

where

C
(aa′)
33,1 (t) =

Ξ0

2

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

∂∗j1(a)j2(a)∂
∗
j3(a)∂

∗
k4(a′)k5(a′)∂

∗
k6(a′)

× e(itH0) |γ∗=0,Γ∗=Σ∗ ,

C
(aa′)
33,2 (t) =

Ξ0

12

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

(∂∗j1(a)j2(a)∂
∗
j3(a)∂

∗
k4(a′)∂

∗
k5(a′)∂

∗
k6(a′)

+ ∂∗j1(a)∂
∗
j2(a)∂

∗
j3(a)∂

∗
k4(a′)k5(a′)∂

∗
k6(a′))e(itH0) |γ∗=0,Γ∗=Σ∗ ,

C
(aa′)
33,3 (t) =

Ξ0

72

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

∂∗j1(a)∂
∗
j2(a)∂

∗
j3(a)∂

∗
k4(a′)∂

∗
k5(a′)∂

∗
k6(a′)

× e(itH0) |γ∗=0,Γ∗=Σ∗
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=
chf (t;ω2)

72

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Qa a a a′ a′ a′
j1j2j3k4k5k6

.

With regard to C
(aa′)
33,1 (t) and C

(aa′)
33,2 (t), we have

C
(aa′)
33,1 (t)

=
chf (t;ω2)

8

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

×
[
(−2Λ̃

(a,a′)
j1k4

Λ̃
(a,a′)
j2k5

+ Λ̃
(a,a)
j1j2

Λ̃
(a′,a′)
k4k5

)Qa a′
j3k6

− ϕ

ϕ− 1
(Λ̃

(a′,a′)
k4k5

Qa a a a′
j1j2j3k6

+ Λ̃
(a,a)
j1j2
Qa a′ a′ a′

j3k4k5k6
) +

ϕ2

(ϕ− 1)2
Qa a a a′ a′ a′

j1j2j3k4k5k6

]
and

C
(aa′)
33,2 (t) =

chf (t;ω2)

24

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

×
(

Λ̃
(a′,a′)
k4k5

Qa a a a′
j1j2j3k6

+ Λ̃
(a,a)
j1j2
Qa a′ a′ a′

j3k4k5k6
− 2ϕ

ϕ− 1
Qa a a a′ a′ a′

j1j2j3k4k5k6

)
.

We can see that C33(t) depends on

J1 =

q∑
a=1

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a)
k4,k5,k6

Λ̃
(a,a)
j1k4

Λ̃
(a,a)
j2k5
Qa a

j3k6

+ 2

q−1∑
a=1

q∑
a′=a+1

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Λ̃
(a,a′)
j1k4

Λ̃
(a,a′)
j2k5

Qa a′
j3k6
,

J2 =

q∑
a=1

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a)
k4,k5,k6

Λ̃
(a,a)
j1j2

Λ̃
(a,a)
k4k5
Qa a

j3k6

+ 2

q−1∑
a=1

q∑
a′=a+1

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Λ̃
(a,a)
j1j2

Λ̃
(a′,a′)
k4k5

Qa a′
j3k6
,

J3 =

q∑
a=1

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a)
k4,k5,k6

(Λ̃
(a,a)
k4k5
Qa a a a

j1j2j3k6
+ Λ̃

(a,a)
j1j2
Qa a a a

j3k4k5k6
)

+ 2

q−1∑
a=1

q∑
a′=a+1

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

× (Λ̃
(a′,a′)
k4k5

Qa a a a′
j1j2j3k6

+ Λ̃
(a,a)
j1j2
Qa a′ a′ a′

j3k4k5k6
),

J4 =

q∑
a=1

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a)
k4,k5,k6

Qa a a a a a
j1j2j3k4k5k6
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+ 2

q−1∑
a=1

q∑
a′=a+1

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Qa a a a′ a′ a′
j1j2j3k4k5k6

.

Since κ
(a)
j1,j2,j3

κ
(a′)
k1,k2,k3

is not symmetric under index permutation, the evaluation
of J4 is most tedious. But, it is straightforward to see that for 1 ≤ a ≤ a′ ≤ q

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Λ̃
(a,a′)
j1k4

Λ̃
(a,a′)
j2k5

Qa a′
j3k6

= (ϕ− 1)κ33,1(a, a
′) + (ϕ− 1)2κ

[2]
33,1(a, a

′),
p∑

j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Λ̃
(a,a)
j1j2

Λ̃
(a′,a′)
k4k5

Qa a′
j3k6

= (ϕ− 1)κ33,2(a, a
′) + (ϕ− 1)2κ

[1]
3 (a)κ

[1]
3 (a′),

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

(Λ̃
(a′,a′)
k4k5

Qa a a a′
j1j2j3k6

+ Λ̃
(a,a)
j1j2
Qa a′ a′ a′

j3k4k5k6
)

=

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Λ̃
(a′,a′)
k4k5

× [(ϕ− 1)2[3j1j2,j3 ]Λ̃
(a,a)
j1j2

Λ̃
(a,a′)
j3k6

+ (ϕ− 1)3[3j1j2,j3 ](Λ̃
(a,a)
j1j2
ε̃
[a]
j3
ε̃
[a′]
k6

+ ε̃
[a]
j1
ε̃
[a]
j2

Λ̃
(a,a′)
j3k6

)

+ (ϕ− 1)4ε̃
[a]
j1
ε̃
[a]
j2
ε̃
[a]
j3
ε̃
[a′]
k6

]

+

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Λ̃
(a,a)
j1j2

× [(ϕ− 1)2[3k4k5,k6 ]Λ̃
(a′,a′)
k4k5

Λ̃
(a,a′)
j3k6

+ (ϕ− 1)3[3k4k5,k6 ](ε̃
[a]
j3

Λ̃
(a′,a′)
k4k5

ε̃
[a′]
k6

+ Λ̃
(a,a′)
j3k6

ε̃
[a′]
k4
ε̃
[a′]
k5

)

+ (ϕ− 1)4ε̃
[a]
j3
ε̃
[a′]
k4
ε̃
[a′]
k5
ε̃
[a′]
k6

]

= 6(ϕ− 1)2κ33,2(a, a
′) + 6(ϕ− 1)3κ

[1]
3 (a)κ

[1]
3 (a′)

+ 3(ϕ− 1)3{κ[2]
32,2(a

′, a) + κ
[2]
32,2(a, a

′)}
+ (ϕ− 1)4{κ[1]

3 (a′)κ[3]
3 (a) + κ

[1]
3 (a)κ

[3]
3 (a′)}

and

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6

Qa a a a′ a′ a′
j1j2j3k4k5k6

=

p∑
j1j2j3k4k5k6=1

κ̃
(a)
j1,j2,j3

κ̃
(a′)
k4,k5,k6
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× [(ϕ− 1)3([6j1,j2,j3 ]Λ̃
(a,a′)
j1k4

Λ̃
(a,a′)
j2k5

Λ̃
(a,a′)
j3k6

+ [3j1j2,j3 ][3k4,k5k6 ]Λ̃
(a,a)
j1j2

Λ̃
(a,a′)
j3k4

Λ̃
(a′,a′)
k5k6

)

+ (ϕ− 1)4([3j1j2,j3 ][3k4k5,k6 ]Λ̃
(a,a)
j1j2
ε̃
[a]
j3

Λ̃
(a′,a′)
k4k5

ε̃
[a′]
k6

+ [3j1j2,j3 ][6k4,k5,k6 ]Λ̃
(a,a′)
j1k4

Λ̃
(a,a′)
j2k5

ε̃
[a]
j3
ε̃
[a′]
k6

+ [3j1,j2j3 ][3k4,k5k6 ]Λ̃
(a,a′)
j1k4

Λ̃
(a′,a′)
k5k6

ε̃
[a]
j2
ε̃
[a]
j3

+ [3k4,k5k6 ][3j1,j2j3 ]Λ̃
(a,a′)
j1k4

Λ̃
(a,a)
j2j3
ε̃
[a′]
k5
ε̃
[a′]
k6

)

+ (ϕ− 1)5([3j1j2,j3 ]Λ̃
(a,a)
j1j2
ε̃
[a]
j3
ε̃
[a′]
k4
ε̃
[a′]
k5
ε̃
[a′]
k6

+ [3k4k5,k6 ]ε̃
[a]
j1
ε̃
[a]
j2
ε̃
[a]
j3

Λ̃
(a′,a′)
k4k5

ε̃
[a′]
k6

+ [3j1,j2j3 ][3k4,k5k6 ]Λ̃
(a,a′)
j1k4

ε̃
[a]
j2
ε̃
[a]
j3
ε̃
[a′]
k5
ε̃
[a′]
k6

)

+ (ϕ− 1)6ε̃
[a]
j1
ε̃
[a]
j2
ε̃
[a]
j3
ε̃
[a′]
k4
ε̃
[a′]
k5
ε̃
[a′]
k6

]

= 3(ϕ− 1)3{2κ33,1(a, a
′) + 3κ33,2(a, a

′)}
+ 9(ϕ− 1)4{κ[1]

3 (a)κ
[1]
3 (a′) + 2κ

[2]
33,1(a, a

′) + κ
[2]
33,2(a

′, a) + κ
[2]
33,2(a, a

′)}
+ 3(ϕ− 1)5{κ[1]

3 (a)κ
[3]
3 (a′) + κ

[1]
3 (a′)κ[3]

3 (a) + 3κ
[4]
33(a, a

′)}
+ (ϕ− 1)6κ

[3]
3 (a)κ

[3]
3 (a′).

Further, in view of the definition, we note the symmetricity of κ33,1(a, a
′) =

κ33,1(a
′, a), κ33,2(a, a

′) = κ33,2(a
′, a), κ[2]

33,1(a, a
′) = κ

[2]
33,1(a

′, a) and κ
[4]
33(a, a

′) =

κ
[4]
33(a

′, a), since Λ̃
(a,a′)
jk is the (j(a), k(a′))-th element of pq×pq symmetric matrix

Λ̃ given in Remark 2, that is,

Λ̃
(a,a′)
jk = [Λ̃]j(a),k(a′) = [Λ̃]k(a′),j(a) = Λ̃

(a′,a)
kj .

We then have

J1 = (ϕ− 1)K33,1 + (ϕ− 1)2K
[2]
33,1,

J2 = (ϕ− 1)K33,2 + (ϕ− 1)2(K
[1]
3 )2,

J3

2
= 3(ϕ− 1)2K33,2 + 3(ϕ− 1)3{(K [1]

3 )2 +K
[2]
33,2} + (ϕ− 1)4K

[1]
3 K

[3]
3 ,

J4 = 3(ϕ− 1)3(2K33,1 + 3K33,2) + 9(ϕ− 1)4{(K [1]
3 )2 + 2(K

[2]
33,1 +K

[2]
33,2)}

+ 3(ϕ− 1)5(2K
[1]
3 K

[3]
3 + 3K

[4]
33 ) + (ϕ− 1)6(K

[3]
3 )2.

It follows that

C33,1(t) =
1

8

{
−2J1 + J2 −

ϕ

ϕ− 1
J3 +

ϕ2

(ϕ− 1)2
J4

}
chf (t;ω2)

=
1

8
[−2{(ϕ− 1)K33,1 + (ϕ− 1)2K

[2]
33,1} + (ϕ− 1)K33,2 + (ϕ− 1)2(K

[1]
3 )2

− 2ϕ[3(ϕ− 1)K33,2 + 3(ϕ− 1)2{(K [1]
3 )2 +K

[2]
33,2}



280 YOSHIHIDE KAKIZAWA

+ (ϕ− 1)3K
[1]
3 K

[3]
3 ]

+ ϕ2[3(ϕ− 1)(2K33,1 + 3K33,2)

+ 9(ϕ− 1)2{(K [1]
3 )2 + 2(K

[2]
33,1 +K

[2]
33,2)}

+ 3(ϕ− 1)3(2K
[1]
3 K

[3]
3 + 3K

[4]
33 ) + (ϕ− 1)4(K

[3]
3 )2]]chf (t;ω2),

C33,2(t) =
1

24

(
J3 −

2ϕ

ϕ− 1
J4

)
chf (t;ω2)

=
1

12
[3(ϕ− 1)2K33,2 + 3(ϕ− 1)3{(K [1]

3 )2 +K
[2]
33,2} + (ϕ− 1)4K

[1]
3 K

[3]
3

− ϕ[3(ϕ− 1)2(2K33,1 + 3K33,2)

+ 9(ϕ− 1)3{(K [1]
3 )2 + 2(K

[2]
33,1 +K

[2]
33,2)}

+ 3(ϕ− 1)4(2K
[1]
3 K

[3]
3 + 3K

[4]
33 ) + (ϕ− 1)5(K

[3]
3 )2]]chf (t;ω2),

C33,3(t) =
J4

72
chf (t;ω2)

=
1

72
[3(ϕ− 1)3(2K33,1 + 3K33,2)

+ 9(ϕ− 1)4{(K [1]
3 )2 + 2(K

[2]
33,1 +K

[2]
33,2)}

+ 3(ϕ− 1)5(2K
[1]
3 K

[3]
3 + 3K

[4]
33 ) + (ϕ− 1)6(K

[3]
3 )2]chf (t;ω2).

After long but straightforward simplifications for collecting terms of ϕ�, we obtain

Cn(t) +
3∑

j=1

{C4,j(t) + C33,j(t)} =
6∑

�=0

π2,�ϕ
�chf (t;ω2).

Here, it may be noted that
∑3

j=1{C4,j(t) + C33,j(t)} has the same form as

Hotelling’s one-sample T 2 (see Kakizawa and Iwashita (2005)).

Appendix B: Evaluation of (4.4)
It is easy to see that{
Ξ1

N1/2
+

1

N

(
Ξn + Ξ2 +

1

2
Ξ2

1

)}
exp{itH0(γ

∗ + ε∗,Γ∗)} |Γ∗=Σ∗

=

{
P1(γ

∗ + ε∗; it)

N1/2
+
P2(γ

∗ + ε∗; it)
N

}
exp{it(γ∗ + ε∗)′(Σ∗)−1(γ∗ + ε∗)},

where P1(γ
∗;α) and P2(γ

∗;α) are polynomials of α ∈ C and γ∗ = (γ∗j ) whose
coefficients do not depend on N . Furthermore, we know{

Ξ1

N1/2
+

1

N

(
Ξn + Ξ2 +

1

2
Ξ2

1

)}
exp{itH(γ∗ + ε∗,Γ∗)} |Γ∗=Σ∗

−
{
P1(γ

∗ + ε∗; it)

N1/2
+
P2(γ

∗ + ε∗; it)
N

}
exp{itH(γ∗ + ε∗,Σ∗)}

= RN (γ∗ + ε∗; it) exp{itH(γ∗ + ε∗,Σ∗)},
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where RN (γ∗;α) is a polynomial of α ∈ C and γ∗ = (γ∗j ) whose coefficients

depend on N−3/2, . . . , N−13. As discussed in Kakizawa and Iwashita (2005),
operating Ξ0 to an analytic function F (γ∗ + ε∗) yields the expectation of F (X)
with respect to the normal distribution X ∼ Nf (ε∗,Σ∗). Specializing

F (X) =

{
1 +

P1(X; it)

N1/2
+
P2(X; it)

N
+RN (X; it)

}
exp{itH(X,Σ∗)}

or

{
1 +

P1(X; it)

N1/2
+
P2(X; it)

N

}
exp{itH0(X,Σ

∗)},

we have

Ξ0

{
1 +

Ξ1

N1/2
+

1

N

(
Ξn + Ξ2 +

1

2
Ξ2

1

)}
(B.1)

× exp{itH(γ∗ + ε∗,Γ∗)} |γ∗=0,Γ∗=Σ∗

= EX

[{
1 +

P1(X; it)

N1/2
+
P2(X; it)

N
+RN (X; it)

}
× exp

{
itX ′(Σ∗)−1X − 2it

N
H1(X,Σ

∗) +
it

N2
H2(X,Σ

∗)

}]
= EX

[{
1 +

P1(X; it)

N1/2
+
P2(X; it)

N
− 2itH1(X,Σ

∗)
N

}
× exp{itX ′(Σ∗)−1X}

]
+ o(N−1)

and

EX

[{
1 +

P1(X; it)

N1/2
+
P2(X; it)

N

}
exp{itX ′(Σ∗)−1X}

]
(B.2)

= Ξ0

{
1 +

Ξ1

N1/2
+

1

N

(
Ξn + Ξ2 +

1

2
Ξ2

1

)}
× exp{itH0(γ

∗ + ε∗,Γ∗)} |γ∗=0,Γ∗=Σ∗

= chf (t;ω2)

(
1 +

2∑
r=1

1

N r/2

3r∑
�=0

πr,�ϕ
�

)

(see Appendix A). It remains to calculate the integral

EX [H1(X,Σ
∗) exp{itX ′(Σ∗)−1X}](B.3)

=

3∑
j=1

cj(−i)j
(
d

dt

)j

EX [exp{itX ′(Σ∗)−1X}]

=

3∑
j=1

cj(−i)j
(
d

dt

)j 1

(1 − 2it)f/2
exp

{
ω2

2(1 − 2it)
− ω

2

2

}
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= chf (t;ω2)[c1(ϕf + ϕ2ω2) + c2{ϕ2f(f + 2)

+ 2ϕ3(f + 2)ω2 + ϕ4ω4}
+ c3{ϕ3f(f + 2)(f + 4) + 3ϕ4(f + 2)(f + 4)ω2

+ 3ϕ5(f + 4)ω4 + ϕ6ω6}].

Multiplying (B.3) by −2it = (1 − ϕ)/ϕ, (4.4) follows from (B.1) and (B.2).
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Chibisov, D. M. (1972). An asymptotic expansion for the distribution of a statistic admitting

an asymptotic expansion, Theory Prob. Appl., 17, 620–630.
Cordeiro, G. M. and Ferrari, S. L. P. (1991). A modified score test statistic having chi-squared

distribution to order n−1, Biometrika, 78, 573–582.
Eaton, M. L. and Perlman, M. D. (1973). The non-singularity of generalized sample covariance

matrices, Ann. Statist., 1, 710–717.
Fujikoshi, Y. (1997). An asymptotic expansion for the distribution of Hotelling’s T 2-statistic

under nonnormality, J. Mult. Anal., 61, 187–193.
Fujikoshi, Y. (2002a). Asymptotic expansions for the distributions of multivariate basic statis-

tics and one-way MANOVA tests under nonnormality, J. Statist. Plan. Inf., 108, 263–282.
Fujikoshi, Y. (2002b). Some recent results on asymptotic expansions of multivariate test statis-

tics for mean vectors under nonnormality, Calcutta Statist. Assoc. Bulletin, 52, 1–46.
Gupta, A. K., Xu, J. and Fujikoshi, Y. (2006). An asymptotic expansion of the distribution of

Rao’s U -statistic under a general condition, J. Mult. Anal., 97, 492–513.
Hall, P. (1992). The Bootstrap and Edgeworth Expansion, Springer, New York.
Ito, K. (1969). On the effect of heteroscedasticity and nonnormality upon some multivariate test

procedures, Multivariate Analysis II (ed. P. R. Krishnaiah), pp. 87–120, Academic Press,
New York.

James, G. S. (1954). Tests of linear hypotheses in univariate and multivariate analysis when
the ratios of the population variances are unknown, Biometrika, 41, 19–43.

Kakizawa, Y. (1996). Higher order monotone Bartlett-type adjustment for some multivariate
test statistics, Biometrika, 83, 923–927.

Kakizawa, Y. (2005). A comparison of local powers of a class of tests for multivariate linear
hypothesis under general distributions. Discussion Paper Series A: No. 2005–142 & 162,
2006–168 and 2007–188, Faculty of Economics, Hokkaido University.

Kakizawa, Y. (2006). Siotani’s modified second approximation for multiple comparisons of mean
vectors, SUT Journal of Mathematics, 42, 59–96.

Kakizawa, Y. and Iwashita, T. (2005). Hotelling’s one-sample and two-sample T 2 tests and
the multivariate Behrens-Fisher problem under nonnormality (this paper was accepted for
publication in April 30, 2006), J. Statist. Plan. Inf. (to appear).

Kakizawa, Y. and Iwashita, T. (2008). A comparison of higher-order local powers of a class
of one-way MANOVA tests under general distributions, doi:10.1016/j.jmva.2007.07.005, J.
Mult. Anal. (to appear).

Kano, Y. (1995). An asymptotic expansion of the distribution of Hotelling’s T 2-statistic under
general distributions, Amer. J. Math. Management Sciences, 15, 317–341.

Magdalinos, M. A. (1992). Stochastic expansions and asymptotic approximations, Econometric
Theory , 8, 343–367.



A TEST OF EQUALITY OF MEAN VECTORS 283

Wakaki, H., Yanagihara, H. and Fujikoshi, Y. (2002). Asymptotic expansions of the null distri-
butions of test statistics for multivariate linear hypothesis under nonnormality, Hiroshima
Math. J., 32, 17–50.

Yanagihara, H. (2000). Asymptotic expansion of the null distribution of one-way anova test
statistic for heteroscedastic case under nonnormality, Commun. Statist. Theory Meth., 29,
463–476.

Yanagihara, H. (2001). Asymptotic expansion of the null distribution of three test statistics in
a nonnormal GMANOVA model, Hiroshima Math. J., 31, 213–262.


