

28

コンピュータビジョンによるリアルな画像再現

Realistic Image Reproduction by Computer Vision

Shoji TOMINAGA*

*Department of Engineering Informatics, Osaka Electro-Communication University 18-8, Hatsu-cho, Neyagawa, Osaka, 572-8530 JAPAN

1. はじめに

人間の視覚系の機能をカメラ系とコンピュータを用いて 実現するコンピュータビジョンの技法は今日映像やロボッ トを含む実に多くの分野で利用されつつある。コンピュー タビジョンの重要なテーマはシーンに存在する物体を認識 することで、このため物体表面の反射特性や形状特性をカ メラ系を用いて推測する研究が盛んである。最近では、こ れらの基礎研究を物体認識のみならず、コンピュータグラ フィックスでの映像生成への応用が広がってきている.

本稿では、カメラ系を用いた物体表面の推定法を、美術 絵画のディジタルアーカイブへ応用する技法を展開する. 一般にディジタルアーカイブはディジタル画像として取り 込んで映像再現する技術を基本とする.美術絵画のディジ タルアーカイブは、表面分光反射率に基づいて行われるこ とが多い¹⁾.これに関する初期の技法は、拡散光源のもと であらかじめ決めた視点からのカラー画像を再現する方式 であった.しかしこれでは照明や観測位置が固定される.

一例として、図1に油彩画の異なった見えを示す. 上の 写真は正面から観察したときの見えを表し,下の写真は同 じ絵画を少し傾けて光沢が入るようにした見えを表す.油 彩画の表面には独特の表面特性、つまり絵具のタッチによ る凹凸や油膜層による光沢があり、これらが油彩画のリア ルな質感を与えるために重要な要素となる.図1では上よ りも下の写真がこのような質感を与える。物体表面の分光 反射率の情報のみではこのようなリアルな質感の再現は難 1.12.

絵画の映像のリアリティを高めるために必要な情報は絵

図1 油彩画の異なった見え

富永昌治*

^{*}大阪電気通信大学 総合情報学部情報工学科 (〒 572-8530 大阪府寝屋川市初町 18-8)

画表面の分光反射特性と表面の凹凸を表現する形状特性で ある.また映像生成においては,希望する環境照明と観察 条件下での絵画の見えを実現する必要がある.実際,照明 光源を電球光や昼光に変えたり,光源の位置を移動させた り,さらには観測者の視点を自由に変えたりした際の絵画 の見えを画像として再現したいのである.

筆者らは、このような考え方で一般的なカメラを用いて 絵画を計測し、表面反射特性と表面形状を推定する手法を 開発してきた²⁻³⁾. またコンピュータグラフィックスの技 法を組み込むことによって、油彩画を含む多くの絵画の リアルな画像やアニメーションを生成することを可能とし た. 以下では、カメラによる絵画の計測と表面推定の方法 を説明し、実際の油絵を用いた具体的な処理結果を示す.

2. 処理の流れ

図2は美術絵画のディジタルアーカイブのために計測から画像生成に至る我々の手法の流れを示す.

まず,分光反射率の推定は重要なステップである. 絵画 の表面は2色性反射の性質を持ち,反射光は拡散成分と鏡 面成分の2つの加法成分からなると仮定する.分光反射率 関数はこのうち拡散成分から推定される.

次に,絵画の表面形状はキャンバスに絵具を塗り付けた 凸凹の浅い面とみなせる.これによりディジタルアーカイ ブのために完全な3次元曲面を構築する必要はなくなる.

図2 絵画の計測から画像生成までの流れ

我々は各画素点における面法線を形状情報として獲得する.このために照明方向を変えて絵画を複数回撮影する.

推定した分光反射率と面法線のデータは反射モデルを決 定するために使用される.我々は画像生成のための詳細な 3次元光反射モデルを仮定して,モデルパラメータを推定 する.

最後に,全ての分光反射率と面法線データは3次元反射 モデルを介して結合され,希望する照明と観察の条件での 絵画がコンピュータグラフィックス画像として映像化され る.画像表示装置としてはモニタやプロジェクタを想定す る.

3. 計測系

図3は絵画を計測するための撮影環境である.カメラは 常に絵画面に対して垂直の方向に位置しており,光源の 位置は移動する.我々はまず一般のRGBディジタルカメ ラを用いて,2160×1440分解能と12ビットの量子化で, 画像を獲得した.分光反射率の推定にはカメラのキャリブ レーションが必要である.図4は使用したカメラのRGB チャンネルの分光感度を示す.

このとき拡散反射物体を撮影した際のカメラ出力は次式 で記述される.

$$\rho_i(x) = \int_{400}^{700} E(\lambda) S(x,\lambda) R_i(\lambda) d\lambda \qquad (i = 1, 2, 3)$$
(1)

ここで $\rho_i(x)$ は物体上の位置xに対するi番目のセンサ出 力を表わし,iは R, G, Bチャンネルに対応するものとする. $E(\lambda)$ は照明光の分光エネルギー分布, $S(x,\lambda)$ はxにおけ る表面分光反射率,そして $R_i(\lambda)$ はi番目のセンサの分光 感度関数である.

マルチバンドカメラは, RGB にとらわれずに, 400-700nm に4つ以上の多くのチャンネル数を有する撮 像系である.このようなカメラ系を使えば,分光反射率の 推定精度は RGB カメラよりも向上する.我々はモノクロ

29

CCD カメラ,標準写真用レンズ,6種類のカラーフィルタ, パソコンから成る6色カメラを提案した⁴⁾.図5に分光感 度関数を示す.可視光の波長域が6つの波長帯(赤,朱,黄, 緑,シアン,青)に分割され,各バンドに対応する分光画 像がカメラシステムで観測される.

さて、同じ絵画表面を図6のように9つの異なった照明 方向のもとで撮影を繰り返した. 複数の照明を使うことに は2つの利点がある.まず、カメラ出力の集合から鏡面反 射や影といった効果を含まない拡散反射成分を選択するこ とができる.次に、各画素点での面法線ベクトルを照明方 向が変わる際の陰影の変化から推定することができる.

4. 物体の反射モデル

油彩画の表面の見えはその絵具顔料による物体色のみな らず,絵具の凹凸による陰影や表面からのハイライトや光 沢を含む.我々は油彩画の材質を塗料のような不均質誘電 体とみなして,図7のような2色性反射の特性をもつと仮 定した.このモデルでは物体表面を照明して反射する光は 2成分からなり,物体の境界面で反射する鏡面反射成分と 物体内部で顔料と乱反射を繰り返して,再び空中に戻る拡 散反射成分からなる.このとき絵画の物体色(絵具の色) は拡散反射成分で,表面の光沢は鏡面反射成分で引き起こ される.

次に、このような反射を数学的に記述するための3次元 光反射モデルとして Torrance-Sparrow モデルを採用した⁵⁾. 図8にこのモデルで使用する反射の幾何学モデルを示す. このモデルでは鏡面反射成分は不規則な方向を向いた鏡の ような微小面で構成されていると仮定している.vは視線 ベクトル、qは微小鏡面の法線ベクトルでvと1の2等分 ベクトルとして与えられ、さらにφはnとqのなす角で ある. 絵画からの反射光の分光放射輝度を位置 x と波長λ の関数として次式のように記述する.

日本印刷学会誌

$$Y(x,\lambda) = \cos(\theta_1)S(x,\lambda)E(\lambda) + \beta \frac{D(\varphi,\gamma)F(\theta_q,n)G(\mathbf{n},\mathbf{v},\mathbf{l})}{\cos(\theta_v)}E(\lambda)$$
⁽²⁾

右辺第1項と第2項は拡散反射成分と鏡面反射成分を表わ す.第2項の鏡面反射成分はいくつかの関数からなる.

まず, *D*は鏡面の微小面の向きを表す分布関数で, qの 方向を向く微小面の割合が定まる.この分布関数としてグ ローバルな面法線 n を中心とするガウス関数を仮定した.

$$D(\varphi, \gamma) = \exp\{-\ln(2)\,\varphi^2/\gamma^2\} \tag{3}$$

ここでγは表面の粗さを表わす指標となる.

次に, Fはフレネル反射率である. さらに, G は鏡面の 微小面が互いをマスクする遮蔽係数である. 通常は G=1 を仮定できる. 最後に, α は鏡面反射成分の強さを表わす 係数である.

5. 表面特性の推定

5.1 拡散と鏡面成分の分離

油彩画表面の解析には,拡散反射と鏡面反射成分に分離 する必要がある(図9参照).前者から油彩画の分光反射 率と表面形状を推定し,後者から光沢を推定する.

一般に異なった照明方向で絵画を撮影すれば,各画素点 での反射は拡散反射のみとは限らず,強い鏡面反射を含ん だり,照明が遮られて陰影になったりすることもある.こ のため対象画素が光源によって適切に照明されたかどうか を観測データについて判定する必要がある.まず図6に示 した照明方向による9枚の画像から,画素毎に閾値を用い て拡散反射成分を選び出す.この閾値は実験的に決定した. このとき鏡面成分と影が含まれる画像は除去する.次に計 測画像から推定した拡散反射成分を除去することにより鏡 面反射成分を抽出した.

5.2 表面形状の推定

物体表面の3次元形状を計測する装置として一般にレー ザーレンジファインダが知られており,さらに詳細な形状 計測にはレーザー顕微鏡が知られている.図10にレーザー レンジファインダで得られた油彩画表面の形状の一部分を 示す.3次元透視図として描かれており,Zが高さを表す. 絵具による盛り上がりが良くわかる.しかし3次元形状計 測装置はあくまでも特殊な装置である.レンジファインダ は最近よく利用されるが,油彩画の場合,光沢のある細か い凹凸面を精度よく計測できない.

一方, 絵画の表面形状をキャンバスに絵の具を塗り付け た凸凹の浅い面とみなせば, ディジタルアーカイブのため に完全な3次元形状を構築する必要はない. 我々は各画素 点における面法線を形状情報として獲得する. このために 照明方向を変えて撮影したカメラデータから照度差ステレ オ法に基づいて法線を推定した.

いま物体表面が完全拡散体であるとすれば,光源からの 照明光によって反射した放射輝度は次式で記述される.

$$I_i = \boldsymbol{\alpha} \mathbf{n}^{\mathrm{t}} \mathbf{l}_i \tag{4}$$

ここで I_i はj番目の光源による輝度値, nは面法線の向

図 10 レーザーレンジファインダで得られた絵画表面の一部 分形状

31

きを表わす3次元縦ベクトル, l_j はj番目の光源の方向ベクトル, α は拡散反射の強さを表す係数である. なお記号 t は行列の転置を表わす. したがって3次元ベクトル **n** を推定する問題は、少なくとも3つの異なった照明方向 l_1, l_2, l_3 …における放射輝度値 I_1, I_2, I_3 …を獲得すれば解くことができる. 図11はこのようにして推定した法線ベクトルのニードルマップを描いている.

図11 推定した面法線のニードルマップ

5.3 表面反射率の推定

有限次元線形モデルで分光反射率を記述した. 絵画上の *x*における分光反射率 *S*(*x*,λ) は一般に基底関数を用いて,

$$S(x,\lambda) = \sum_{k=1}^{n} \sigma_{k}(x) S_{k}(\lambda)$$
(5)

のように表現できる.ここで $\{S_k(\lambda)\}$ は基底関数の集合で, $\{\sigma_k(x)\}$ はそれらに対する重み係数の集合である. RGB カ ラーカメラを使う場合はn = 3である. 基底関数は多くの 物体の分光反射率データから統計的に得られる. 図 12 は 我々が使用した基底関数である.

さて複数の照明方向によるカメラ出力から { $\sigma_i(x)$ }を推 定する. $\rho(\equiv [\rho_i])$ はカメラ出力を表わす3次元縦ベクトル, $\sigma(\equiv [\sigma_i(x)])$ は反射率係数を表わす3次元縦ベクトル, らに $\mathbf{H}(\equiv [h_{ij}])$ は $h_{ij} = \int E(\lambda)S_j(\lambda)R_i(\lambda)d\lambda$ を要素とする 3×3行列として,それぞれ定義する.このときカメラ出 力は行列式 $\rho = \mathbf{H}\sigma$ としてまとめることができる.ここで \mathbf{H} の要素はあらかじめ計算されるので,各要素の値は既知 である.したがって各画素における反射率の推定値は

$$\hat{\sigma} = \mathbf{H}^{-1} \boldsymbol{\rho} \tag{6}$$

で得られる.最後に,この推定値を(5)式に代入することによって分光反射率を復元することができる.

なおここでは基底関数に基づく分光反射率推定の手法を 述べたが、観測データにノイズを含むときには、Wiener 法が有効である。

5.4 モデルパラメータの推定

反射モデルで未知パラメータは鏡面項の表面粗さ γ ,屈 折率n,および鏡面反射係数 β である.ただし屈折率に ついてはおおよそn = 1.45と仮定できる.また絵具は類 似の材質とし,絵画表面の場所に関係なく γ と β は一定 値をとると仮定する.

各画素で鏡面成分を求めるために、まず、カメラ出力 の拡散成分を算出する.そして9つの観測値の中で最高輝 度のものを選び、拡散成分との差分を計算する.この差 分は鏡面反射が含まれる可能性のある観測値といえる.次 に、このような鏡面反射成分を絵画の異なった画素から収 集し、得られた鏡面データに対して(2)式の鏡面関数を 用いて適合をおこなう.そして適合誤差を最小にするパラ メータγとβを求める.

6. 画像レンダリング

これまでに推定した分光反射率と面法線の全データ,お よび決定した3次元反射モデルに基づいて,希望する照明 と観察の条件で美術絵画の画像を生成する(図13参照). このレンダリングのために光線の放射を一回に限定した光 線追跡法を使用した.

画像生成の具体的な手順を以下にまとめる.

- (1) 3次元空間上に絵画の大きさを合わせて2枚の三角板 を配置し、四角ポリゴンを作成する.
- (2) 絵画ポリゴン上の各座標点に推定した法線ベクトルと 分光反射率を割り付ける.ここで法線は2次元ベクト ルで,分光反射率は61次元ベクトルで表わしている.

[32]

図13 絵画レンダリングの概念図

- (3)各座標点の輝度を光線追跡で求める.つまり視点位置 と照明条件を設定し、(2)式から絵画表面の各点において分光放射輝度を算出する.
- (4)四角ポリゴンの各座標点で色(三刺激値)を決定し、 絵画を映像化する.最後に、較正されたディスプレイ 装置を用いて、絵画のフルカラー表示を行う.

7. 実験結果

図1の油絵を用いた実験結果を示す.スライドプロジェ クタで9方向から照明し,RGBディジタルカメラで画像 を獲得した.まず,絵画の全画素点で面法線を推定した. 次に,分光反射率を全点にわたって推定した.分光反射率 の推定精度を試験するために,分光反射率計測装置による 直接計測値と比較した.図14に結果の二例を示す.図14 の上図はRGBカメラデータから得た赤い絵具に対する推 定結果である.カメラデータからの推定値と直接計測値は よく一致している.下図は絵画中央の空に対する結果であ る.この場合,起伏のある分光反射率曲線は滑らかな曲線 として推定されている.このような複雑な分光反射率の推 定にはマルチバンドカメラが有用である.図14下図の一 点鎖線は前述の6色カメラを用いて推定した結果である.

得られた分光反射率と法線の全画素における推定値,お よび決定した3次元反射モデルを用いて,対象油絵のコン ピュータグラフィックス画像を生成した. 絵画鑑賞用の照 明光源として昼光と電球光を想定した. 図15に対象とし た油彩画の左上部のレンダリング結果を拡大して示す. 油 絵特有の凹凸による陰影と光沢が,電球と昼光照明の下で 再現できていることがわかる.

図 15 異なった照明下でのレンダリング画像上:白熱電球、下:昼光

8. おわりに

カメラによる簡単なコンピュータビジョンシステムで美 術絵画を計測し,希望する環境照明と観察条件下でその絵 画をコンピュータグラフィックス画像として映像化する方 法を述べた.ここでは絵画の表面形状は3次元自由曲面で はなく,むしろ平面のキャンバスに絵の具を塗り付けた凹 凸の浅い面とみなした.絵画の表面材質は水彩や油彩の絵 具であり,拡散反射成分と鏡面反射成分からなる2色性反 射の性質をもつ不均質誘電体とした.

今後の課題として、まず表面分光反射率の精度の向上が あげられる.次に、カラー画像をディスプレイで表示する 際の色再現の精度向上があげられる.実際に使用する表示 装置について、色の見えの効果を調べ、ディジタルアーカ イブのシステムに組み込むことが重要といえる.

参考文献

- Y. Miyake, et al.: Proc. SPIE: Color Imaging, 3648, 218 (1999).
- S. Tominaga and N. Tanaka: Proc. of EUROGRAPHICS, 299 (2002).
- 3) 富永昌治, 田中法博:情報処理学会論文誌, 45, 350 (2004).
- 4) S. Tominaga: J. Opt. Soc. Am. A, 13, 2163 (1996).
- K. E. Torrance and E. M. Sparrow: J. Opt. Soc. Am., 57, 1105 (1967).