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analyses and computer modeling of the el
web forming process provide better insights in
method and serve as a powerful tool for en
development. Numerical results were obt
presented for a range of processing variable
 
INTRODUCTION 
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or through the analysis of fiberweb and
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electrostatic field and constructed mathematical 
models by integrating the governing equations with a 
model that describes the fiber configuration. The 
model considered different electrostatic field 
strengths and airflow fields. The geometrical 
configurations of a computational region (the region 
in which fiber movement and web formation take 
place) were deduced. The computational region 
configuration is the determining factor in designing 
and engineering the real equipment. A numerical 
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ate the simulated 
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different conditions were analyzed using the 
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origin is located at the center of the bottom of the 
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CONCEPT DEVELOPMENT 
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Figure 1 shows the concept of a devi
fiberweb with positively controlled
electrostatic force. In order 
orientation in a specified direct
field with parallel field lines is
lines should be in the same direc
fiber orientation. This can be ach
two flat conductive surfaces as el
each other. One electrode is grou
Figure 1a) and the other one is
voltage (electrode B in Figur
between these two electrodes 
orienting zone. Fibers are charge
as electrode B. An aspirator and feed 
the fibers into the electrostatic fi
connected to high voltage for charg
the bottom of the fiber orientin
collection surface. One design 
moving vacuum belt, which caus
to adhere to the collecting surfac
produced web to the next step. I

amount acquired by cotton fibers. In this
conductive surface finish and direct cha
employed for positively controlling the fiber m
that allows for the control of FOD, and ther
fiberweb basis weight and its uniformity. 
 
However, the precise control of fiber orientat
motion with electrostatic fo
with predetermined FOD has significant c
The problems stem from non-unifo
conductive surface finish applied on each fiber, 
geometrical parameters, and deviation 
electrostatic field lines from the theo
predicted one and other variations. 
 

cally 

ving 
 and 
and 
and 

lyses 
erve 
es of 

fiber’s moving status such as orie
the entire electrostatic field, all o
show fiber trajectories from electr
fact, with properly controlled par
the fiber will contact the vacuu
transported to a take up roller b
A (Figure 1). 
 
One of our computer models is
concept. The computer model c
movements and trajectory in
electrostatic fields. The comput



Journal of Engineered Fabrics and Fibers  http://www.jeffjournal.org 
Volume 2, Issue 2 - 2007

19 
 

 

 

. System c regio

t position

ntrol 
s ca
ectr

produ
line and properly arranging the electrostatic field

ure 1
 that m

e
porous woven belt is used to keep the fiber 
orientation undisturbed. Combination of vacuum and 
adhesive layer is also possible to maintain the fiber 
orientation and the fiberweb integrity. 
 
ANALYSIS OF FORCES ACTING ON A FIBER 
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Figure 2a. Forces acting on a fiber element, (b): Forces acting on 

one sphere 
 
The electrostatic force and air drag on the fiber then 
can be computed from equations 2 and 4. 
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fiber movement, the extension of a fiber is neglected 
and so the length of every single segment (Li in 
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Initial conditions include fiber initial speed,
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RESULTS AND DISCUSSIONS 
Fibers in the model were simulated as 0.02 m long 
staple fibers. The parameters of three types of fiber 
(rayon, polyester and nylon) are listed in Table I. The 
simulated fibers were considered to be negatively 
charged at 4.0 X 10-11 C. This charge was imparted 
by contacting the high negative potential with the 
aspirator surface. 
 

Table I. Fiber Properties 
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Figure 3. Fiber movement in the original design 
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Fiber Orientation 
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Figure 4. Change of fiber orientation in the electrost
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entered the electrostatic field, nylon fiber gained the 
highest acceleration before reaching equilibrium 
(constant speed) since it has the smallest density. The 
air drag increased with square of fiber speed, but 
electrostatic force depends on total uni-polar charge 
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Figure 7 shows the influence of fiber diameter on 
fiber speed. Modeled fibers were PET fibers with the 
same incident angle of 20 degrees and initial speed of 
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