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Abstract. This paper presents an effective method to integrate the revocation mechanism
into some group signature schemes that are based on the strong RSA assumption. The mech-
anism enables the group manager to either update a group member’s certificates, or revoke
a group member. More specifically, a generic method has been proposed for the protocols of
sign, verify, and revocation. We demonstrate the effectiveness of the method by applying it
to a well known group signature scheme. The new construction has better performance while
enjoying an efficient revocation mechanism.
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1 Introduction

A group signature scheme is a privacy-preserving cryptographic construction introduced by Chaum
and Heyst in 1991 [16]. In such a scheme, a group member can sign a message on behalf of the group
without revealing its identity. Only the group manager can open a signature and find its originator.
In recent years, group signatures have attracted a lot of researchers, and many schemes have been
proposed in the literature [14, 15, 13, 1, 11, 12, 2, 10, 21, 7, 8]. A complete list of bibliography of group
signature schemes can be found at [22]. In practice, a group signature could be used to carry out
anonymous authentication. That is, a signature verifier treats an anonymous signature as the proof
that a party is a legitimate member in a group. Such applications have already been deployed in the
Trusted Computing Platform [20, 9].

A group signature scheme is tightly coupled with its target applications compared with other
cryptographic primitives (e.g. encryption scheme). The model for group signature schemes are con-
text oriented. In this paper, we follow the model due to Camenisch and Joth [10], which is a relaxation
to a strict definition proposed by Bellare et al. [4]. This relaxation is mainly about the group member
revocation. To satisfy the requirements of the Bellare’s model, it is impossible to revoke a group
member except that all valid group members can somehow adjust the signing parameters or proce-
dure, which may not always be feasible or efficient in practice. For the purpose of efficient revocation,
many schemes (e.g. [2, 21, 8, 10]) have adopted the so-called “verifier-local revocation” technique, in
which verifiers adjust their local verification parameters to recognize corrupted group members, and
group members do not need to change the signing procedures at all. A group signature scheme based
on this technique conforms to the relaxation mode by Camenisch and Joth.



Among the group signature schemes in the literature, there are some constructions that share
similar group member certificate structure, and whose security is based on the same assumption [13,
1, 12]. However, these schemes do not provide any revocation mechanism. In this paper, we propose
an effective method to integrate the revocation mechanism into these constructions. We also give an
example to demonstrate the method.

The paper is organized as follows. Section 2 reviews the definitions and security assumptions.
Section 3 introduces the proposed method. We apply this method to a well-known group signature
scheme to implement an efficient revocation mechanism in section 4. The paper concludes in section
5.

2 Definitions and Preliminaries

We adopt the model for group signature by Camenish and Joth [10], a relaxation of the strict model
by Bellare et al. [4]. Only the core ideas of the model will be introduced in this section. We refer the
reader to [4, 10, 5] for a more in-depth discussion.

Definition 1 (The model). A group signature scheme includes a group manager and group mem-
bers. The group manager owns group master keys while each member holds its group member key,
or group member certificate. The scheme consists of six protocols:

– KeyGen: the group manager uses KeyGen protocol to generate system parameters and its master
key.

– Join: a party runs join protocol, together with the group manager, to obtain a certificate to
represent its group membership.

– Sign: a group member anonymously sign a message following sign protocol.
– Verify: a verifier uses verify protocol to check whether a signature is originated from a member

in the group.
– Open: the group manager uses open protocol to find the signer of a signature.
– Revoke: the group manager uses revoke protocol to exclude a group member.

The security requirements for a group signature should have following properties:

– Full-traceability. This property says that any valid signature can eventually be traced back to
a legitimate group member. It should never happen that we cannot find the signer of a valid
signature. Full-traceability has two implications: (1) a valid group member certificate can only
be created by the group manager, (2) a valid signature can only be generated by a legitimate group
member if the secrets of the member are not exposed to any third party.

– Anonymity. This property says that if both the group manager’s secrets and a member’s secrets
are not exposed, it is infeasible to find the signer of a signature, or link the signatures by a signer.

The model in [4] defines Full-Anonymity which says even a member’s secrets are exposed, it
is still impossible to decide the signatures by this member. Obviously, under this strict model, we
cannot revoke a member by exposing its secrets. This property essentially precludes the possibility
to revoke a group member explicitly.

Next, we review some definitions and widely accepted complexity assumptions that we will use
in this paper.



Definition 2 (Special RSA modulus). An RSA modulus n = pq is called special if p = 2p′ + 1
and q = 2q′ + 1 where p′ and q′ also are prime numbers.

Definition 3 (Quadratic Residue Group QRn). Let Z∗

n be the multiplicative group modulo n,
which contains all positive integers less than n and relatively prime to n. An element x ∈ Z∗

n is called
a quadratic residue if there exists an a ∈ Z∗

n such that a2 = x (mod n). The set of all quadratic
residues of Z∗

n forms a cyclic subgroup of Z∗

n, which we denote by QRn. If n is the product of two
distinct primes, then |QRn| = 1

4 |Z
∗

n|.

Property 1 If n is a special RSA modulus, with p, q, p′, and q′ as in Definition 2 above, then
|QRn| = p′q′ and (p′ − 1)(q′ − 1) elements of QRn are generators of QRn.

Property 2 If g is a generator of QRn, then ga (modn) is a generator of QRn if and only if
GCD(a, |QRn|) = 1.

The security of our techniques relies on the following assumptions, which are widely accepted in
the cryptography literature (see, for example, [3, 18, 6]).

Assumption 1 (Strong RSA Assumption) Let n be an RSA modulus. The Flexible RSA Prob-
lem is the problem of taking a random element u ∈ Z∗

n and finding a pair (v, e) such that e > 1 and
ve = u (mod n). The Strong RSA Assumption says that no probabilistic polynomial time algorithm
can solve the flexible RSA problem with non-negligible probability.

Assumption 2 (Computational Diffie-Hellman Assumption for QRn) Let n be a special
RSA modulus, and let g be a generator of QRn. Then given random gx and gy, there is no probabilistic
polynomial-time algorithm that computes gxy with non-negligible probability.

Assumption 3 (Decisional Diffie-Hellman Assumption for QRn) Let n be a special RSA
modulus, and let g be a generator of QRn. For two distributions (g, gx, gy, gxy), (g, gx, gy, gz),
x, y, z ∈R Zn, there is no probabilistic polynomial-time algorithm that distinguishes them with non-
negligible probability.

3 The Method to Implement Revocation Mechanism

This section introduces the method to carry out the revocation mechanism. We only outline the basic
methodology without any real implementation. An exmple will be provided in the next section.

3.1 Group Member Certificate

The group signature schemes [13, 1, 12] are constructed over quadratic residue group QRn where n
is a special RSA modulus. The security of these schemes are based on the strong RSA assumption.
In these schemes, a group certificate is in the form of (A, e), where

A = ge−1

(mod n),

e is a prime number. g is a generator of QRn, and e−1 is the inverse of e modulo the order of QRn.
g could have some substructure such as g = axia0 (mod n) in [1].



3.2 Sign and Verify Protocols

To anonymously sign a message, a group member needs to hide its identity. It uses ElGamal encryp-
tion scheme [17] to compute

T1 = Ayw (mod n), T2 = gw (mod n),

where y is the group manager’s ElGamal public key such that y = gx (mod n). The group member
also computes

T3 = T e
2 (mod n).

A signer proves to a verifier that T1, T2, T3 are constructed in such way that the hidden value A
in T1 is e-th root of g, and T3 is the e-square of T2. The building blocks for the proof are statistical
honest-verifier zero knowledge protocols of knowledge related to discrete logarithm over QRn [18, 19,
13]. They may include the protocols such as the knowledge of the discrete logarithm, the knowledge
of equality of two discrete logarithms, the knowledge of the discrete logarithm that lies in certain
interval, etc.

3.3 Group Member Revocation

To exclude a group member, the group manager broadcasts a revoked member’s ei to all verifiers.
A verifier checks

T ei

2 =? T3 (mod n)

for all ei on the revocation list. If the equation holds for one ei, it shows the signature comes
from a revoked member. This is a quite simple and efficient method (of course, the list should be
constrained to a reasonable size). This method is also called “verifier-local revocation” [8]. It needs
to point out that the mechanism based on the revocation list implements full revocation defined
in [10], or unconditional linkability defined in [2], i.e., all the signatures by a revoked member can
be identified. Therefore a group signature scheme using this method only enjoys anonymity, not
full anonymity. This may seems a “weak point” for all group signature schemes with verifier-local
revocation. However, the suitability of a feature really depends on a specific setting. There are
no absolute arguments for the suitability of a feature in practice. For example, the anonymous
authentication technique deployed in the Trusted Computing Platform, called Direct Anonymous
Attestation, has adopted the verifier-local revocation method [20].

When the revocation list becomes large, the computation overhead may become unacceptable
for verifiers. We introduce the certificate redistribution method proposed in [2]. We independently
devised this method to implement key redistribution in the context of pervasive computing to reduce
the computation overhead of resource-limited tiny electronic devices. To update a valid certificate,
the group manager picks a random integer r such that GCD(r, |QRn|) = 1, computing

A′

i = Ar
i = gre−1

= (gr)e−1

= g′e
−1

(mod n).

Due to property 2, g′ is another generator of QRn. The group manager sends new certificates to valid
group members in secure way. The following operations then are based on the new system parameters
and updated group member certificates. In this method, all the computation are accomplished by
the group manager.



The authors in [2] have ignored the effectiveness of the method due to their arguments that
the group manager needs to perform O(n) cryptographic operations for every revoked member. In
fact, it is easy to observe that any certificate redistribution method needs O(n) operations. The
real issues are about (1) the total computation overhead, and (2) how to distribute computation
overhead among participants. In many applications, the group manager may be server(s) with high
computing capability. However, a group member could actually be a crypto-processor or smart card
with limited resources, such as TPM (Trusted Platform module) in the Trusted Computing Platform.
In such settings, it is quite reasonable to let powerful servers undertake most computation task. In
fact, some other certificate redistribution methods in [2, 10, 12] essentially push the computation to
the group members, and have higher total computing overhead, which may not be desirable when
the group members are resource-limited.

Furthermore, the group manager can pre-compute all certificates for group members offline. Only
when the size of the revocation list passes a threshold, it publishes all the new certificates for valid
group members. The pre-computation is a nice property which may be necessary to improve the
system performance in practice.

For an excluded group member, with existing certificate A that uses generator g′, updating to
a new certificate means computing A′ = g′e

−1

= gre−1

based on ge−1

and g′ = gr without knowing
r or e−1, which is equivalent to solving the computational Diffie-Hellman problem 1. Therefore, we
have the following theorem.

Theorem 1. If there exists an algorithm that can compute an updated group member certificate
without knowledge of the group manager’s secret value, then there exists an algorithm that solves the
computational Diffie-Hellman problem over QRn.

4 An Example

In this section we give an example to show the effectiveness of the method in the previous section.
The ACJT scheme is a well-known group signature construction introduced in 2000 [1]. It is a prac-
tical and provable secure construction for large group. However, it does not provide the revocation
mechanism. In the following we would like to adopt the same notions as in the original paper. Thus,
readers can easily compare the new scheme with the original one, seeing how our method carries out
the revocation mechanism.

We should notice that the ACJT scheme achieves full anonymity without the revocation mecha-
nism, while the new scheme provides the revocation mechanism and achieves only anonymity. Again,
we make it clear that this is an issue about how we are going to apply a group signature scheme to
a specific application.

4.1 The System Parameters

– a special RSA modulus n = pq, p = 2p′ + 1, q = 2q′ + 1, p, p′, q, q′ are all prime.
– random elements a, a0, g ∈ QRn of order p′q′, i.e., these numbers are the generators of QRn.
– a random secret elements x ∈R Z∗

p′q′ , and y = gx(mod n).
– security parameters used in protocols: ǫ > 1, k, lp.

1
g
′ or certain substructure of g

′ will be published by the group manager according to a specific construction.
Here we assume g

′ is being published.



– length parameters λ1, λ2, γ1, γ2. λ1 > ǫ(λ2 +k)+2, λ2 > 4lp, γ1 > ǫ(γ2 +k)+2, and γ2 > λ1 +2.
– integer range Λ =]2λ1 − 2λ2 , 2λ1 + 2λ2 [ and Γ =]2γ1 − 2γ2 , 2γ1 + 2γ2 [.
– H : {0, 1}∗ → {0, 1}k is a strong collision-resistant hash function.
– m ∈ {0, 1}∗ is a message to be signed.
– the public parameters is (n, a, a0, y, g).
– the secret parameters for the group manager is (p′, q′, x).

4.2 Join Protocol

We adopt the same Join protocol as in the original scheme. A group member’s certificate is in the
form of Ai = (axia0)

1/ei (mod n) where xi ∈ Λ is the secret of a group member, and ei ∈R Γ is a
random prime number. axia0 can be seen as a generator of QRn due to property 1.

One important difference between the new scheme and the ACJT scheme is that the Join proce-
dure MUST be confidential. That is, in the new scheme, (Ai, ei) MUST be kept secret by the group
manager and a group member itself. In the ACJT scheme, it would not affect the security property
of the scheme if (Ai, ei) is publicly known. This is also the reason that the ACJT scheme achieves
full anonymity.

4.3 Sign Protocol

– Generate a random value w ∈R {0, 1}2lp and compute:

T1 = Aiy
w (mod n), T2 = gw (mod n), T3 = T ei

2 (mod n).

– Randomly choose r1 ∈R ±{0, 1}ǫ(γ2+k), r2 ∈R ±{0, 1}ǫ(λ2+k), and r3 ∈R ±{0, 1}ǫ(λ1+2lp+k+1)

and computes

• d1 = T r1

1 /(ar2yr3) (mod n), d2 = T r1

2 /gr3 (mod n), d3 = T r1

2 (mod n);
• c = H(g||y||a0||a||T1||T2||T3||d1||d2||d3||m);
• s1 = r1 − c(ei − 2γ1), s2 = r2 − c(xi − 2λ1), s3 = r3 − ceiw (all in Zn).

– Output (c, s1, s2, s3, T1, T2, T3).

Remark 1. The main difference between the new sign protocol and the original protocol is T3, d3.
Our method hides ei as T ei

2 , while the original protocol in fact uses another ElGamal encryption to
hide it as geihw. r4, d4, s4 in the original protocol are not needed in the new protocol, which roughly
reduces thirty percent of computation overhead.

4.4 Verify Protocol

– Compute

c′ = H(g||y||a0||a||T1||T2||T3||a
c
0T

s1−c2γ1

1 /(as2−c2λ1

ys3)||

T s1−c2γ1

2 /gs3 ||T s1−c2γ1

2 T c
3 ||m)

– Accept the signature if and only if c = c′ and s1 ∈ ±{0, 1}ǫ(γ2+k)+1, s2 ∈ ±{0, 1}ǫ(λ2+k)+1,s3 ∈
±{0, 1}ǫ(λ1+2lp+k+1)+1.



4.5 Revocation Protocol

To revoke a corrupted group member, the group manager publishes ei on the revocation list. A
revoked group member can be identified by checking

T ei

2 =? T3 (mod n).

In the meantime, the group manager picks a random large integer r such that GCD(r, |QRn|) =
1, pre-computes a′ = ar, a′

0 = ar
0, and the certificates

A′

i = Ar
i = (axirar

0)
1/ei = (a′xia′

0)
1/ei (mod n).

When the revocation list passes a threshold, the group manager publish a′, a′

0 and sends the new
certificates to all valid group members in secure manners. This carries out certificate redistribution.
At the same time, the revocation list is re-set to empty.

4.6 Security Properties of the New Protocol

Before discussing the security of the new scheme, we first introduce a lemma that will be used
shortly.

Lemma 1. Let n be an integer. Given values u, v ∈ Z∗

n and x, y ∈ Z such that GCD(x, y) = r, and
vx ≡ uy (mod n), there is an efficient way to compute a value z such that zk ≡ u (mod n), where
k = x/r.

Proof. Since GCD(x, y) = r, using the extended Euclidean GCD algorithm, we can obtain values α
and β such that αx/r + βy/r = 1. Then we have

u ≡ uαx/r+βy/r ≡ uαx/ruyβ/r ≡ uαx/rvβx/r

≡ (uαvβ)x/r (mod n).

Therefore, setting k = x/r and z = uαvβ , we have zk ≡ u (mod n). ⊓⊔

Full-traceability is achieved by zero knowledge property of the Join protocol and coalition-
resistance property of the group certificate which both have been proved in the original paper.
We recall “coalition-resistance” property here.

Theorem 2 (Coalition-resistance). Under the strong RSA assumption, a group certificate [Ai =
(axia0)

1/ei (mod n), ei] with x ∈ Λ and ei ∈ Γ can be generated only by the group manager provided
that the number K of certificates the group manager issues is polynomially bounded.

Next, we address the zero knowledge property of the new scheme. We recall the theorem in the
original paper.

Theorem 3. Under the strong RSA assumption, the interactive protocol underlying the group sig-
nature scheme is a statistical zero-knowledge (honest-verifier) proof of knowledge of a membership
certificate and a corresponding membership secret key.



Proof. Just as the original paper, we only address the proof of knowledge part. We should show that a
knowledge extractor is able to recover the group certificate when it has found two accepting tuples un-
der the same commitment and different challenges from a verifier. Let (T1, T2, T3, d1, d2, d3, c, s1, s2, s3)
and (T1, T2, T3, d1, d2, d3, c

′, s′1, s
′

2, s
′

3) be such tuples.

Since d2 ≡ T s1−c2γ1

2 /gs3 ≡ T
s′

1
−c′2γ1

2 /gs′

3 (mod n), we have

T
(s′

1
−s1)+(c−c′)2γ1

2 ≡ gs′

3
−s3 (mod n).

If GCD((s′1 − s1) + (c− c′)2γ1 , s′3 − s3) = r, r 6= (s′1 − s1) + (c− c′)2γ1 , By lemma 1, we can find
a solution (u, v) such that uv = g (mod n). This is infeasible under the strong RSA assumption.
Therefore, (s′1 − s1) + (c − c′)2γ1 has to divide s′3 − s3, then we have

w = (s′3 − s3)/((s′1 − s1) + (c − c′)2γ1)

such that T2 ≡ gw (mod n). Due to the property of QRn, T2 is the generator of QRn.

Since d3 ≡ T s1−c2γ1

2 T c
3 ≡ T

s′

1
−c′2γ1

2 T c′

3 (mod n), we have

T
(s′

1
−s1)+(c−c′)2γ1

2 ≡ T c−c′

3 (mod n).

Following the same method as above, under the strong RSA assumption, c − c′ has to divide
(s′1 − s1). We obtain

ei = (s′1 − s1)/(c − c′) + 2γ1

such that T3 ≡ T ei

2 (mod n).
Based on the knowledge of w, ei, we can further recover Ai, xi the same way as in the original

proof. Therefore a knowledge extractor can fully recover group certificate. ⊓⊔

Unlinkability follows the same argument as the ACJT group signature for T1, T2. Since we define
a different T3 in our protocols, we need to show this modification still keep unlinkability property.
Similar to the case in the ACJT scheme, the problem of linking two tuples (T2, T3), (T

′

2, T
′

3) reduces
to decide the equality of the discrete logarithms of T3, T

′

3 with base T2, T
′

2 respectively. This is as-
sumed to be infeasible under the decisional Diffie-Hellman problem. Therefore, we have the following
corollary.

Corollary 1. Under the decisional Diffie-Hellman assumption for QRn, there exists no probabilis-
tic polynomial-time algorithm that can make the linkability decision for any two arbitrary tuples
(T2, T3), (T

′

2, T
′

3) with non-negligible probability.

5 Conclusion

In this paper we have presented a generic method to integrate the revocation mechanism into some
group signature schemes in the literature. We demonstrated its effectiveness by applying this method
to the well-known the ACJT group signature scheme, and obtained a more efficient, and practical
group signature scheme. This is in contrast to other efforts in [2, 11, 21], which result in less efficient
constructions. The same method can also be applied to the group signature schemes in [13, 12].

It needs to point out that a group signature scheme based on our method only achieves anonymity,
not full anonymity defined in the Bellare’s strict model. However, in practice, anonymity is a more
appropriate choice. Such level of privacy protection has been discussed in many research papers, for
example, [2, 21, 8, 10, 9].
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