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PREDICTION OF THE SAMPLE VARIANCE OF MARKS
FOR A MARKED SPATIAL POINT PROCESS BY THE

THRESHOLD METHOD

Takayuki Sakaguchi* and Shigeru Mase**

We discuss the prediction of the sample variance of marks of a marked spatial
point process on a continuous space by the threshold method. The threshold method
is a statistical prediction using only the number of points with marks exceeding
a given threshold value. Mase (1996) considered the method in the framework of
spatial point processes on a discrete space and Sakaguchi and Mase (2003) extended
the results of Mase (1996) to a continuous space. They considered the prediction
of the sum of marks. In the present paper, it is shown that the sample variance of
marks can be also predicted well if a point process is non-ergodic and marks satisfy
some mixing-type condition. A simulation study is given to confirm the theoretical
result.

Key words and phrases: Marked spatial point process, mean square error, mixing
condition, non-ergodicity, threshold method.

1. Introduction

We discuss the threshold method in the framework of a marked spatial point
process Φ = {(Xi,Mi)} on R

d, which is a set of pairs of an observational position
Xi ∈ R

d and a corresponding random variable Mi called the mark. Sometimes
it may be difficult or impossible to observe comparatively small marks and this
causes a trouble for calculating the sample mean or the sample variance of marks.
The threshold method is a statistical prediction using only binary data,{

1 for mi ≥ c,

0 for mi < c,

for a mark mi and a given threshold value c > 0. Thus, even if complete obser-
vation of marks is difficult, we can still predict the sample mean or the sample
variance of marks by the threshold method.

There are several papers concerning the threshold method. Deneaud et
al. (1984) gave the original idea of this method. For tropical rain rate data,
Chiu (1988) pointed out that there is a high correlation between the area-average
rain rate and the fractional area with the intensity higher or equal to a threshold
value. This relation was confirmed for other regional rainfall data after that, see,
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e.g., the references of Shimizu et al. (1993) or Oki et al. (1997) which has shown
this relation for radar-AMeDAS precipitation data in Japan. The empirical fact
implies the availability of the threshold method.

Also, some theoretical studies on the threshold method have been done.
Kedem and Pavlopoulos (1991) and Short et al. (1993) modeled a distribution of
rainfall intensity as a mixture of a discrete part and a continuous part and dis-
cussed how to choose the optimal threshold value. Shimizu et al. (1993) proposed
single- and double-threshold methods for the estimation of the area-average rain
rate variance and gave a statistical explanation for selecting optimal threshold
levels. They stated that some knowledge of the variance of rain rate could be
useful from a meteorological view point because, for example, the knowledge
would make it possible to distinguish between the convective and the stratiform
conditions of rain.

All those studies do not take into account the spatial aspect of the rainfall.
Mase (1996) modeled rainfall by a spatial point process on Z

2 and studied the
prediction of total rainfall. His main conclusion is that the threshold method
would work well if a point process is non-ergodic and corresponding marks satisfy
some mixing conditions. Sakaguchi and Mase (2003) considered the prediction
of the sum of marks for a marked spatial point process on R

d and extended the
results of Mase (1996).

In this paper, we consider the prediction of the sample variance of marks of Φ
in almost the same statistical setup as in Sakaguchi and Mase (2003). The present
study is motivated by Shimizu et al. (1993) mentioned above. We reformulate
the problem of the variance estimation in the framework of a marked spatial
point process on R

d and examine the prediction of the sample variance of marks
by the threshold method. The convergence of the mean square error to 0 as
an observational region expands to R

d will be shown. It is concluded that non-
ergodicity of a point process and some mixing properties of corresponding marks
are important conditions for accuracy of the threshold method.

In Section 2, basic facts on the general theory of marked spatial point pro-
cesses and basic assumptions are introduced. In Section 3, we recall the results of
Sakaguchi and Mase (2003) briefly and in Section 4, the prediction of the sample
variance of marks is discussed. In Section 5, we confirm the theoretical results
by a simulation study.

2. Preliminary

We explain a marked spatial point process model and its basic assumptions
in this section. For the general theory, see Stoyan et al. (1995).

A marked spatial point process on R
d is a model of random point patterns

on R
d and defined by a set

Φ = {(Xi,Mi)}, (Xi,Mi) ∈ R
d × R,

where Xi is a random position and Mi is an associated random value called its
mark. The non-marked point process Ψ corresponding to Φ is {Xi}, Xi ∈ R

d,
and Ψ(A) means the number of points of Ψ in a Borel set A ⊂ R

d.
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In this paper, it is supposed that a marked spatial point process is a combi-
nation of Ψ and S as in Mase (1996). Here S = {S(x);x ∈ R

d} is a random field
on R

d and Φ is given by

Φ = {(Xi, S(Xi))}, Xi ∈ R
d.(2.1)

A non-marked point process Ψ is said stationary if Ψh = {Xi + h} has the
same distribution as Ψ for any h ∈ R

d. Analogously, S is stationary if, for any
x1, . . . , xn ∈ R

d and any h ∈ R
d, the distribution of (S(x1 +h), . . . , S(xn +h)) is

equal to that of (S(x1), . . . , S(xn)). Let us assume that Ψ and S are independent
and both stationary. When Ψ is stationary, there exists the constant λ called
the intensity which is the mean number of points of Ψ per unit volume. We
also suppose M([0,∞)) = 1 and Ψ is a fifth order simple point process, that is,
EΨ5(A) < ∞ for any bounded Borel set A ⊂ R

d and Xi 	= Xj (i 	= j).
The results of Mase (1996) and Sakaguchi and Mase (2003) indicate that

non-ergodicity of Ψ and a mixing property of marks are key conditions for the
accuracy of the threshold method for predicting the sum of marks. This suggests
that the sample variance of marks will be also predicted well by the threshold
method under those conditions.

Let C be the set of all configurations (i.e., locally finite subsets) of R
d, C

be its standard Borel σ-algebra and T be the σ-algebra generated by translation
invariant measurable sets in C. We suppose Ψ is non-ergodic in the sense of
Nguyen and Zessin (1979), that is,

E(Ψ(∆0) | T) 	= λ, P -a.s.

is satisfied. Here ∆0 is the unit cube including the origin.
Mixing conditions are defined by means of a mixing coefficient as in

Bolthausen (1982). We partition R
d into congruent unit cubes

∆i =

{
x = (x1, . . . , xd) ∈ R

d; il −
1

2
≤ xl < il +

1

2
, l = 1, . . . , d

}
,

i = (i1, . . . , id) ∈ Z
d.

Let d1(∆i,∆j) = max1≤k≤d |ik − jk|, d2(I, J) = min{d1(∆i,∆j) : i ∈ I, j ∈ J}
for I, J ⊂ Z

d and σI denote the σ-algebra generated by {S(x);x ∈ ∪I∆i}. For
k, l ∈ N, define the mixing coefficient as

ξk,l(n) = sup{|P (A ∩B) − P (A)P (B)| :

A ∈ σI , B ∈ σJ , |I| ≤ k, |J | ≤ l, d2(I, J) ≥ n}.

Here |I| is the number of elements in I. P satisfies a mixing condition if
ξk,l(n) → 0 as n → ∞. Later we need a more stringent assumption on the
rate of convergence of ξk,l(n).
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3. Review of the preceding study

In the present section, we summarize the results of Sakaguchi and Mase
(2003) for the model (2.1) although they discussed in the framework of general
marked spatial point processes.

A threshold value c ≥ 0 with M([c,∞)]) > 0 is fixed and Ψ is supposed to
be second order in this section. For an observational region G ⊂ R

d, define

BG =
∑
x∈Ψ

1G(x)b(S(x)),

FG =
∑
x∈Ψ

1G(x)f(S(x))

for non-negative measurable functions b and f . If we take b(m) = 1[c,∞)(m) and
f(m) = m, then BG is the number of points in G with marks ≥ c, and FG is the
total sum of marks in G.

Consider the prediction of FG/
√

Var{FG} by a simple linear predictor of
BG/

√
Var{BG} of the form:

α + β
BG√

Var{BG}
.(3.1)

Here α and β are constants. The minimum of the mean square error is given by

1 − Corr{BG, FG}2,

from elementary calculations. If this error is small enough, we can predict
FG/

√
Var{FG} using (3.1) with great accuracy.

Sakaguchi and Mase (2003) calculated the theoretical moment of FG, BG and
gave the following asymptotic behaviour under the mixing condition of a random
field.

Proposition 1. Assume the following conditions are satisfied :

∞∑
n=1

nd−1ξ
δ1/(2+δ1)
1,1 (n) < ∞,

(∫
b2+δ1(m)dM(m)

)1/(2+δ1)

< ∞,(∫
f2+δ1(m)dM(m)

)1/(2+δ1)

< ∞,

for some constant δ1 > 0. Then, as G ↑ R
d,

Cov{BG, FG} = O(|G|) + µbµf Var{Ψ(G)},
Var{BG} = O(|G|) + µ2

b Var{Ψ(G)},
Var{FG} = O(|G|) + µ2

f Var{Ψ(G)},
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where µb =
∫
bdM and µf =

∫
fdM.

The next proposition is derived immediately if we apply Proposition 1 to the
correlation of BG and FG.

Proposition 2. Let us assume the conditions of Proposition 1. Then, we
have

min
α,β

E

∣∣∣∣∣ FG√
Var{FG}

− α− β
BG√

Var{BG}

∣∣∣∣∣
2

→ 0 as G ↑ R
d,

if the condition

1

|G| Var{Ψ(G)} → ∞ as G ↑ R
d,(3.2)

is satisfied. Moreover , when Var{Ψ(G)} is of the order |G|2, we can show

min
α,β

E

∣∣∣∣FG

|G| − α− β
BG

|G|

∣∣∣∣2 → 0 as G ↑ R
d,

similarly.

From Proposition 2, the threshold method will work fine if Ψ is non-ergodic
and dependency of marks becomes weaker as the distance of points becomes
larger. This result is an extension of Mase (1996) to a continuous space.

Although Sakaguchi and Mase (2003) did not discuss the coefficients of the
best linear predictor, the following result is easily obtained.

Proposition 3. Suppose that S satisfies the conditions of Proposition 1
and let

α∗
G + β∗

G

BG

|G| ,(3.3)

be the best linear predictor of FG/|G|. Then,

β∗
G → µf

µb
, α∗

G → 0 as G ↑ R
d,

are shown provided that the condition (3.2) and µb 	= 0 are satisfied.

Proof. Elementary calculations give us relations

α∗
G =

1

|G|EFG − β∗
G

1

|G|EBG,(3.4)

β∗
G = Corr{BG/|G|, FG/|G|}

√
Var{FG/|G|}
Var{BG/|G|} .

Also, EBG = λµb|G| and EFG = λµf |G|. Therefore, the proof is straightforward
from Proposition 1.

Note that when b(m) = 1[c,∞)(m) and f(m) = m, we have β∗
G → µ/νc as

G ↑ R
d, where µ =

∫
mdM(m) and νc =

∫∞
c dM.
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4. Prediction of the sample variance

In this section, the prediction of the sample variance of marks by the thresh-
old method is discussed. It is assumed that a sequence {Gn, n = 1, 2, . . .} of
observational regions expands to R

d monotonically and there exists a sequence
of regions G′

n = ∪i∈IGn
∆i with an index set IGn satisfying

Gn ⊂ G′
n, sup

n

|G′
n|

|Gn|
< ∞.

Then, Gn is regular in terms of Nguyen and Zessin (1979) and we have

1

|Gn|2
Var{Ψ(Gn)} → E|E(Ψ(∆0) | T) − λ|2 as n → ∞,

by Lemma 2 below. Therefore, the assumption that Ψ is non-ergodic is equivalent
to supposing Var{Ψ(Gn)} is strictly of the order |Gn|2 as n → ∞.

Define the sample variance of marks as follows:

VGn =
1

|Gn|
F2Gn −

(
1

|Gn|
FGn

)2

, F2Gn =
∑
x∈Ψ

1Gn(x)S2(x),

where f(m) = m. Fix a threshold value c ≥ 0 with M([c,∞)) 	= 0 as in the
previous section.

If we consider the cases f(m) = m2 and f(m) = m in Proposition 2, we
can see that F2Gn and FGn will be predicted well by a linear function of BGn =∑

x∈Ψ 1Gn(x)1[c,∞)(S(x)) respectively. Therefore, VGn would be predicted by a
quadratic expression of BGn ,

V̂Gn = α + β
BGn

|Gn|
+ γ

(
BGn

|Gn|

)2

.(4.1)

Shimizu et al. (1993) proposed the double-threshold method for the estimation of
the area-average rain rate variance. We consider only the single-threshold case.

Our goal is to show that the minimum of the mean square error of (4.1)
converges to 0 as Gn expands to R

d. This implies that a quadratic predictor
(4.1) will predict the sample variance with great accuracy if Gn is large enough.

First we introduce two lemmas for a non-marked point process Ψ. Lemma
1 treats the asymptotic order of the moments of Ψ(Gn) and Lemma 2 gives the
limit of E|Ψ(Gn) − λ|m/|Gn|m.

Lemma 1. Assume that Ψ is an m-th order point process. Then,

EΨn(Gn) = O(|Gn|n) (n = 1, . . . ,m),

holds.
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Proof. By Hölder’s inequality and the stationarity of Ψ, we have, for some
constant k > 0,

EΨn(Gn) ≤
∑

i1,...,in∈IGn

(EΨn(∆i1) · · ·EΨn(∆in))1/n

≤ k|Gn|nEΨn(∆0).

Since Ψ is an m-th order point process from the assumption, EΨn(∆0) < ∞
follows and the assertion is proved.

Lemma 2. Let us suppose Ψ is of (m+ 1)-th order. Then we have

1

|Gn|m
EZm

Gn
→ E|E(Ψ(∆0) | T) − λ|m as n → ∞,

where ZGn = Ψ(Gn) − λ|Gn|.
Proof. We shall show that Zm

Gn
/|Gn|m is uniformly integrable. Then we

have

lim
n→∞

E

∣∣∣∣ 1

|Gn|
Ψ(Gn) − λ

∣∣∣∣m = E lim
n→∞

∣∣∣∣ 1

|Gn|
Ψ(Gn) − λ

∣∣∣∣m .(4.2)

Zm
Gn
/|Gn|m is uniformly integrable if E(Zm

Gn
/|Gn|m)p is finite for some p > 1.

We consider the case p = (m+ 1)/m. There exists a constant M > 0 such that

E

∣∣∣∣ 1

|Gn|
Ψ(Gn) − λ

∣∣∣∣m+1

< M,

from Lemma 1 and the assumption that Ψ is of (m+ 1)-th order. Therefore the
equation (4.2) is derived.

By the spatial ergodic theorem due to Nguyen and Zessin (1979), the right-
hand side of (4.2) can be written as E|E(Ψ(∆0) | T)−λ|m. Hence, the assertion
follows.

Now we can show the following main result. Proposition 4 asserts that the
threshold method for predicting the sample variance of marks works fine if Gn is
large enough provided that marks satisfy the mixing condition.

Proposition 4. Under the assumptions

∞∑
n=1

nd−1ξ
δ2/(4+δ2)
1,3 (n) < ∞, and

(∫
s4+2δ2dM(s)

)1/(4+2δ2)

< ∞,

for some constant δ2 > 0, we have

min
α,β,γ

E
∣∣∣VGn − V̂Gn

∣∣∣2 → 0 as n → ∞.
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Proof. Let

α∗∗
Gn

+ β∗∗
Gn

BGn

|Gn|
,(4.3)

be the best linear predictor of F2Gn/|Gn| and

A∗
Gn

=
1

|Gn|
FGn − α∗

Gn
− β∗

Gn

1

|Gn|
BGn ,

A∗∗
Gn

=
1

|Gn|
F2Gn − α∗∗

Gn
− β∗∗

Gn

1

|Gn|
BGn ,

be the corresponding prediction errors of the predictors (3.3) and (4.3) respec-
tively. The inequality

min
α,β,γ

E|VGn − V̂Gn |2 ≤ E

∣∣∣∣A∗∗
Gn

−A∗
Gn

2 − 2α∗
Gn
A∗

Gn
− 2β∗

Gn

BGn

|Gn|
A∗

Gn

∣∣∣∣2 ,(4.4)

holds since the right-hand side of (4.4) is the mean square error of the predictor

(α∗∗
Gn

− α∗
Gn

2) + (β∗∗
Gn

− 2α∗
Gn
β∗
Gn

)
BGn

|Gn|
+ (−β∗

Gn

2)

(
BGn

|Gn|

)2

.

By Minkowski’s inequality, we have(
E

∣∣∣∣A∗∗
Gn

−A∗
Gn

2 − 2α∗
Gn
A∗

Gn
− 2β∗

Gn

BGn

|Gn|
A∗

Gn

∣∣∣∣2
)1/2

≤ (EA∗∗
Gn

2)1/2 + (EA∗
Gn

4)1/2 + (4α∗
Gn

2EA∗
Gn

2)1/2

+

(
4β∗

Gn

2 1

|Gn|2
EB2

Gn
A∗

Gn

2

)1/2

.

Furthermore, this is bounded from above by

(EA∗
Gn

4)1/2 + 2β∗
Gn

((
1

|Gn|4
EB4

Gn

)1/2

(EA∗
Gn

4)1/2

)1/2

+ o(1),

from Hölder’s inequality and the result of the previous section. Since EB4
Gn

≤
EΨ(Gn)4, we can see EB4

Gn
= O(|Gn|4) by Lemma 1. Therefore, it is enough to

show EA∗
Gn

4 → 0 as n → ∞ in order to prove the assertion.
Let SGn = FGn −EFGn and TGn = BGn −EBGn . Then the equality

EA∗
Gn

4 =
1

|Gn|4
(ES4

Gn
− 4β∗

Gn
ES3

Gn
TGn + 6β∗

Gn

2ES2
Gn
T 2
Gn

(4.5)

− 4β∗
Gn

3ESGnT
3
Gn

+ β∗
Gn

4ET 4
Gn

),
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holds from (3.4). The first and the second term in the parenthesis of the right-
hand side of (4.5) can be written as

ES4
Gn

= E(XGn + µZGn)4

= EX4
Gn

+ 4µEX3
Gn
ZGn + 6µ2EX2

Gn
Z2
Gn

+ 4µ3EXGnZ
3
Gn

+ µ4EZ4
Gn
,

and

ES3
Gn
TGn = E(XGn + µZGn)3(YGn + νcZGn)

= EX3
Gn
YGn + 3µEX2

Gn
YGnZGn + 3µ2EXGnYGnZ

2
Gn

+ µ3EYGnZ
3
Gn

+ νcEX3
Gn
ZGn + 3µνcEX2

Gn
Z2
Gn

+ 3µ2νcEXGnZ
3
Gn

+ µ3νcEZ4
Gn
,

respectively, where

XGn =
∑
x∈Ψ

1Gn(x)(S(x) − µ), YGn =
∑
x∈Ψ

1Gn(x)(1[c,∞)(S(x)) − νc).

By Hölder’s inequality, Lemma 2 and Lemma 3 below, we have

1

|Gn|4
ES4

Gn
=

1

|Gn|4
(µ4EZ4

Gn
+ o(|Gn|4)) → µ4σ∗,

1

|Gn|4
ES3

Gn
TGn =

1

|Gn|4
(µ3νcEZ4

Gn
+ o(|Gn|4)) → µ3νcσ

∗ as n → ∞.

Here σ∗ = E|E(Ψ(∆0) | T) − λ|4. Similarly,

1

|Gn|4
ESGnT

3
Gn

→ µν3
cσ

∗,
1

|Gn|4
ET 4

Gn
→ ν4

cσ
∗ as n → ∞,

can be shown. Thus, we obtain

EA∗
Gn

4 ≤ 1

|Gn|4
{ES4

Gn
− 4β∗

Gn
ES3

Gn
TGn + 6β∗

Gn

2(ES4
Gn

)1/2(ET 4
Gn

)1/2

− 4β∗
Gn

3ESGnT
3
Gn

+ β∗
Gn

4ET 4
Gn

}
→ µ4σ∗ − 4µ4σ∗ + 6µ4σ∗ − 4µ4σ∗ + µ4σ∗ = 0 as n → ∞,

from Proposition 3 and the assertion follows.

Lemma 3. Under the same assumptions as in Proposition 4, we have

EX4
Gn

= O(|Gn|3), EY 4
Gn

= O(|Gn|3).

Proof. Let R(x) = S(x) − µ and µ(4) denotes the fourth order moment
measure:

µ(4)(B1 ×B2 ×B3 ×B4) = EΨ(B1)Ψ(B2)Ψ(B3)Ψ(B4),
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for Borel sets B1, B2, B3, B4 ⊂ R
d, see Stoyan et al. (1995) for details. Since Ψ

and S are independent each other,

EX4
Gn

= E
∑

(x)4∈Ψ

1Gn×···×Gn((x)4)R(x1) · · ·R(x4)

=

∫
Gn×···×Gn

ER(x1) · · ·R(x4)dµ
(4)((x)4),(4.6)

where (x)4 is an abbreviation for (x1, x2, x3, x4). The right-hand side of (4.6) is
bounded above by∑

i,j,k,l∈IGn

∫
∆i×∆j×∆k×∆l

[Cum{S(x1), . . . , S(x4)}(4.7)

+ ER(x1)R(x2)ER(x3)R(x4)

+ ER(x1)R(x3)ER(x2)R(x4)

+ ER(x1)R(x4)ER(x2)R(x3)]dµ
(4)((x)4).

Here Cum{S(x1), . . . , S(x4)} is the fourth order joint cumulant of S:

Cum{S(x1), · · · , S(x4)} = ER(x1)R(x2)R(x3)R(x4)

−ER(x1)R(x2)ER(x3)R(x4)

−ER(x1)R(x3)ER(x2)R(x4)

−ER(x1)R(x4)ER(x2)R(x3).

From Theorem 1 and Theorem 2 of Mase (1982), the fourth order joint
cumulants are bounded as

|Cum{S(x1), . . . , S(x4)}| ≤ cξ
δ2/4+δ2
1,3 (d2({i}, {j, k, l})),

for x1 ∈ ∆i, x2 ∈ ∆j , x3 ∈ ∆k, x4 ∈ ∆l and some constant c > 0. Also,
there exists a constant M > 0 such that µ(4)(∆i × ∆j × ∆k × ∆l) < M by the
assumption that Ψ is a fifth order point process and Lemma 1. Thus, we have∑

i,j,k,l∈IGn

∫
∆i×∆j×∆k×∆l

Cum{S(x1), . . . , S(x4)}dµ(4)

≤ c1
∑

i,j,k,l∈IGn

ξ
δ2/4+δ2
1,3 (d2({i}, {j, k, l}))

≤ c2

( ∞∑
m=0

md−1ξ
δ2/4+δ2
1,3 (m)

)
|Gn|3

= O(|Gn|3)

for some constants c1, c2 > 0.
Since the second order cumulants can be also bounded as

|Cov{S(x1), S(x2)}| ≤ c′ξδ2/2+δ2
1,1 (d1(∆i,∆j)),
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for x1 ∈ ∆i, x2 ∈ ∆j and some constant c′ > 0 from Lemma 1 of Bolthausen
(1982). Hence, the inequality∑

i,j,k,l∈IGn

∫
∆i×∆j×∆k×∆l

ER(x1)R(x2)ER(x3)R(x4)dµ
(4)((x)4)

≤ c′2

 ∑
i,j∈IGn

ξ
δ2/2+δ2
1,1 (d1(∆i,∆j))

 ∑
k,l∈IGn

ξ
δ2/2+δ2
1,1 (d1(∆k,∆l))


= O(|Gn|2),

holds for some c′2 > 0. Therefore, the expression (4.7) is of order |Gn|3 and
EX4

Gn
= O(|Gn|3) follows.

(a) Hard-core process with R = 0.5. (b) Hard-core process with R = 1.3.

(c) Poisson process with λ = 0.5. (d) Poisson process with λ = 1.

Figure 1. A sample of realizations of four point processes in a 10 × 10 square region.
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EY 4
Gn

= O(|Gn|3) can be shown in the same way. Hence, the assertion is
proved.

5. Simulation study

In this section, we simulate non-ergodic marked spatial point processes on
R

2 and confirm the previous theoretical result. Let Ψ be the mixture of four
point processes and P be its distribution:

P = 0.1P 1 + 0.4P 2 + 0.35P 3 + 0.15P 4,

where each distribution P i is

P 1 : Pure hard-core process with hard-core distance R = 0.5,

P 2 : Pure hard-core process with hard-core distance R = 1.3,

P 3 : Poisson process with intensity λ = 0.5,

P 4 : Poisson process with intensity λ = 1.

A pure hard-core process is a model of a random point pattern generated by
hard spheres with radius R/2. A Poisson process is a basic model and can be
considered as a pure hard-core process with R = 0. Thus, the process Ψ models a
phenomenon that the degree of interactions between points varies. A realization
of each point process appears in Figure 1.

Marks are given by simulating a random field S = {S(x) = exp(T (x));x ∈
R

2} where T is a stationary and isotropic Gaussian random field. We let ET (0) =
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Figure 2. Var{Ψ(Gn)} for the mixture process versus |Gn|2.
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0 and the covariance Cov{T (x1), T (x2)} = 1 − γ(x1 − x2) for x1, x2 ∈ R
2.

Here, γ is an exponential semivariogram γ(h) = 1 − exp(−|h|). For reference
about semivariograms and their corresponding Gaussian random fields, see, e.g.,
Cressie (1993). In total, 100 marked spatial point processes are generated in a
rectangle window.

Figure 2 is the plot of Var{Ψ(Gn)} versus |Gn|2 showing Var{Ψ(Gn)} =
O(|Gn|2). Therefore, the threshold method should work fine.

Table 1 shows the coefficients of determination R2 when the size of Gn and
a threshold value vary. We can see that the threshold method gives higher R2

Table 1. Coefficient of determination R2 values for the mixture process.

Gn c = 0 c = 10 c = 20 c = 30 c = 40

10 × 10 0.059 0.149 0.233 0.243 0.297

20 × 20 0.450 0.523 0.617 0.637 0.453

30 × 30 0.583 0.619 0.700 0.711 0.609

40 × 40 0.789 0.812 0.838 0.846 0.716

50 × 50 0.864 0.890 0.899 0.903 0.831

60 × 60 0.901 0.917 0.932 0.944 0.888

70 × 70 0.925 0.933 0.944 0.952 0.930

80 × 80 0.922 0.935 0.951 0.960 0.931

90 × 90 0.934 0.947 0.962 0.964 0.958

100 × 100 0.949 0.959 0.969 0.972 0.962
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Figure 3. Var{Ψ(Gn)} for the Poisson process versus |Gn|.
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Table 2. Coefficient of determination R2 values for the Poisson process.

Gn c = 0 c = 10 c = 20 c = 30 c = 40

10 × 10 0.028 0.436 0.644 0.701 0.550

20 × 20 0.016 0.145 0.349 0.487 0.584

30 × 30 0.037 0.221 0.424 0.568 0.544

40 × 40 0.037 0.325 0.474 0.590 0.533

50 × 50 0.017 0.195 0.302 0.457 0.446

60 × 60 0.014 0.233 0.354 0.517 0.473

70 × 70 0.006 0.234 0.328 0.532 0.522

80 × 80 0.008 0.215 0.330 0.611 0.569

90 × 90 0.003 0.334 0.315 0.444 0.467

100 × 100 0.009 0.381 0.356 0.435 0.434

values as Gn becomes larger for each threshold value. The highest R2 value is
given around c = 26 for various sizes of Gn in our simulation study.

For comparison, let us consider an ergodic case that Ψ is a Poisson process
with intensity 0.5. Figure 3 is the plot of Var{Ψ(Gn)} versus |Gn|. Clearly,
Var{Ψ(Gn)} = O(|Gn|).

Table 2 lists R2 values. Note that R2 value need not become larger as Gn

expands.

6. Concluding remarks

In this paper, we have considered the threshold method for predicting the
sample variance of marks of Φ = {(Xi, S(Xi))}, Xi ∈ R

d. It is shown that the
mean square error will converge to 0 as an observational region expands to R

d if
Ψ is non-ergodic and S satisfies a mixing-type condition.

For a general marked spatial point process model Φ = {(Xi,Mi)}, (Xi,Mi) ∈
R
d ×R, it may be possible to get almost the same results as those in this paper.

However, more complex mathematical formulations will be needed. Also, the
prediction of higher dimensional moments by the threshold method would be
considered, but we do not treat it in this paper.
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