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IMPROVEMENT ON THE BEST EQUIVARIANT
PREDICTORS UNDER THE ORDERED PARAMETERS

Yushan Xiao* and Yoshikazu Takada**

This paper treats a statistical prediction problem under the ordered parameters.
An improvement on the best equivariant predictor is discussed for the location family
and the scale family.
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1. Introduction

There are situations in which some order restrictions are assumed about the
parameters of the underlying distribution. Order restrictions may be provided by
either prior information about the parameters or the mathematical structure of
the problem. Such restrictions may enable us to improve on usual estimation pro-
cedures. Methods for improving have been investigated by Cohen and Sackrowiz
(1970), Brewster and Zidek (1974), Kushary and Cohen (1989), and Kubokawa
and Saleh (1994) and Kubokawa (1994). The relevant estimation problems with
restricted parameters have been treated by Kubokawa (2004) and Machand and
Strawderman (2005). See also the references in their papers. The most attention
in the literature has been given to estimation problems. In this paper we shall
consider prediction problems under the ordered parameters.

There are two random variables X and Y whose joint distribution is indexed
by an unknown parameter ξ. Based on the value of X, we want to predict the
value of Y . We consider such a situation that another random variable Z, whose
distribution is indexed by an unknown parameter η with η ≥ ξ, is available to
the prediction problem. We shall provide methods for improving on the best
equivariant predictor by making use of the value of Z.

A function called totally positive of order 2 (TP2) plays a fundamental role
in deriving the main results. A function K(x, y) is said to be TP2 if

∣∣∣∣∣K(x1, y1) K(x1, y2)

K(x2, y1) K(x2, y2)

∣∣∣∣∣ ≥ 0

for all x1 < x2 and y1 < y2. See Karlin (1968) for the complete treatment of
TP2 and Barlow and Proschan (1975) for its applications to reliability and life
testing.
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Kubokawa and Saleh (1994) applied a very useful method called the inte-
grated expression of risk difference (IERD) method to get an improved estimator.
We shall also use the IERD method to derive an improved predictor.

In Section 2, assuming a location family, an improvement on the best location
equivariant predictor will be considered. Section 3 will treat a scale family.

2. Location family

Suppose that (X,Y, Z) has the joint density

f(x− ξ, y − ξ, z − η)(2.1)

where f is known, and ξ and η are unknown location parameters with ξ ≤ η. We
shall consider the problem of improving a predictor

δc = X + c(2.2)

by

δφ = X + φ(Z −X)(2.3)

where c is a constant and φ is a function. We shall assume that the loss function
is of the form

L(y − d)(2.4)

when predicting Y = y by d, and L(t) is strictly decreasing for t < 0 and strictly
increasing for t > 0 with L(0) = 0.

Let U = Z−X and V = Y −X. From (2.2), (2.3) and (2.4), the risk function
of δc and δφ can be written as

R(θ, δc) = Eθ{L(V − c)}(2.5)

and

R(θ, δφ) = Eθ{L(V − φ(U))}(2.6)

where θ ∈ ΘL = {θ = (ξ, η) | ξ ≤ η}. From (2.1) the joint density of (U, V ) is
given by g(u− λ, v) where λ = η − ξ ≥ 0 and

g(u, v) =

∫ ∞

−∞
f(t, t+ v, t+ u)dt.(2.7)

Hence from (2.5) and (2.6) the difference of the risk functions can be expressed
as

R(θ, δc) −R(θ, δφ)(2.8)

=

∫ ∞

−∞

∫ ∞

−∞
{L(v − c) − L(v − φ(u))}g(u− λ, v)dudv.
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The following lemma by Kubokawa and Saleh (1994) is very useful in the subse-
quent discussion.

Lemma 2.1. For positive functions g(x) and h(x), assuming that h(x)/g(x)
is non-increasing. If K(x) < 0 for x < x0 and K(x) > 0 for x > x0, then∫ ∞

−∞
K(x)

h(x)

g(x)
dx ≤ h(x0)

g(x0)

∫ ∞

−∞
K(x)dx

where the equality holds if and only if h(x)/g(x) is a constant almost everywhere.

In the sequel we will assume that interchange of integral and derivative is
permissible whenever necessary. Let

G(u, v) =

∫ ∞

0
g(u− t, v)dt.(2.9)

Then we have the following result.

Theorem 2.1. Assume that

G(u, v) is TP2,(2.10)

φ(u) is non-decreasing and lim
u→∞

φ(u) = c,(2.11) ∫ ∞

−∞
L′(v − φ(u))G(u, v)dv ≤ 0 for each u.(2.12)

Then R(θ, δφ) ≤ R(θ, δc) for any θ ∈ ΘL.

Proof. Using the IERD method, it follows from (2.8), (2.9) and (2.11)
that

R(θ, δc) −R(θ, δφ)(2.13)

=

∫ ∞

−∞

∫ ∞

−∞
{L(v − φ(u+ ∞) − L(v − φ(u))}g(u− λ, v)dudv

=

∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

0

{
d

dt
L(v − φ(t+ u))

}
dt

)
g(u− λ, v)dudv

= −
∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

0
L′(v − φ(t+ u))φ′(t+ u)dt

)
g(u− λ, v)dudv

= −
∫ ∞

−∞
φ′(u)

(∫ ∞

−∞
L′(v − φ(u))G(u− λ, v)dv

)
du.

Since∫ ∞

−∞
L′(v − φ(u))G(u− λ, v)dv =

∫ ∞

−∞
L′(v − φ(u))G(u, v)

G(u− λ, v)
G(u, v)

dv

≤ G(u− λ, φ(u))
G(u, φ(u))

∫ ∞

−∞
L′(v − φ(u))G(u, v)dv

by (2.10) and Lemma 2.1, it follows from (2.11) and (2.12) that the right hand
side of (2.13) is nonnegative. Hence

R(θ, δc) ≥ R(θ, δφ),
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which completes the proof.

From (2.9)

G(u, v) =

∫ u

−∞
g(t, v)dt.(2.14)

If g(u, v) is TP2, then G(u, v) is TP2. See Barlow and Proschan (1975, p. 105).
Furthermore, let

h(v) = lim
u→∞

G(u, v).(2.15)

Then from (2.14) h(v) is the density of V .
Suppose that

∫∞
−∞ L(v− c)G(u, v)dv is not a monotone function of c for each

u and G(u, x− y) is TP2 in x and y for each u. Then there exists φ0(u) uniquely
such that ∫ ∞

−∞
L′(v − φ0(u))G(u, v)dv = 0(2.16)

for each u. See Barlow and Proschan (1975, p. 93). We also suppose that∫∞
−∞ L(v− c)h(v)dv is not a monotone functions of c. It follows from (2.15) that

there exists c0 uniquely such that∫ ∞

−∞
L′(v − c0)h(v)dv = 0(2.17)

and the best location equivariant predictor based on X is given by

δc0 = X + c0.

Corollary 2.1. Assume

G(u, v) is TP2,(2.18)

G(u, x− y) is TP2 in x and y for each u.(2.19)

Then R(θ, δφ0) ≤ R(θ, δc0) for any θ ∈ ΘL.

Proof. It suffices to show that (2.11) is satisfied. Suppose that there exist
u1 < u2 such that φ0(u1) > φ0(u2). Let c1 = φ0(u1) and c2 = φ0(u2). It follows
from (2.18) and (2.19) that

G(u1, v + c1)

G(u2, v + c1)

G(u2, v + c1)

G(u2, v + c2)

is non-increasing in v. Hence from (2.16) and Lemma 2.1

0 =

∫ ∞

−∞
L′(v − c1)G(u1, v)dv

=

∫ ∞

−∞
L′(v)G(u1, v + c1)dv

=

∫ ∞

−∞
L′(v)

G(u1, v + c1)

G(u2, v + c1)

G(u2, v + c1)

G(u2, v + c2)
G(u2, v + c2)dv

<
G(u1, c1)

G(u2, c2)

∫ ∞

−∞
L′(v)G(u2, v + c2)dv = 0
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which shows a contradiction. So φ0(u) is non-decreasing, and hence limu→∞ φ0(u)
exists. From (2.15) and (2.16)

0 = lim
u→∞

∫ ∞

−∞
L′(v − φ0(u))G(u, v)dv =

∫ ∞

−∞
L′
(
v − lim

u→∞
φ0(u)

)
h(v)dv,

which yields
lim
u→∞

φ0(u) = c0

from the uniqueness of c0.

Example 2.1. Suppose that (X,Y, Z) has a multivariate normal distribution
with unknown mean vector (ξ, ξ, η) and known covariance matrix and ξ ≤ η.
Then (U, V ) has the bivariate normal distribution with mean vector (η − ξ, 0)
and known covariance matrix (

σ2 ρστ

ρστ τ2

)

where σ2 and τ2 are the variances of U and V , and ρ is the correlation coefficient.
We suppose that ρ > 0. Then it is well known that g(u, v) is TP2, so that (2.18)
is satisfied. The straightforward calculation shows that

G(u, v) =
1

τ
φ

(
v

τ

)
Φ

(
u− ρσ

τ v√
σ2(1 − ρ2)

)
(2.20)

where Φ is the standard normal distribution function and φ is its density. It can
be shown that (2.19) is satisfied.

For example, let L be the squared error loss. Then it follows from (2.16)
and (2.17) that the best location equivariant predictor is given by δc0 = X with
c0 = 0 and its improved predictor becomes δφ0 = X + φ0(Z −X) where

φ0(u) =

∫∞
−∞ vG(u, v)dv∫∞
−∞G(u, v)dv

.(2.21)

From (2.14), ∫ ∞

−∞
G(u, v)dv =

∫ u

−∞

(∫ ∞

−∞
g(t, v)dv

)
dt = Φ(u/σ)(2.22)

and ∫ ∞

−∞
vG(u, v)dv =

∫ u

−∞

(∫ ∞

−∞
vg(t, v)dv

)
dt(2.23)

=

∫ u

−∞

ρτ

σ

t

σ
φ(t/σ)dt = −ρτφ(u/σ).

Substituting (2.22) and (2.23) into (2.21),

φ0(u) = −ρτφ(u/σ)
Φ(u/σ)

.
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3. Scale family

Suppose that (X,Y, Z) has the joint density

ξ−2η−1f(x/ξ, y/ξ, z/η), x > 0, y > 0, z > 0

where f is known, and ξ and η are unknown scale parameters with 0 < ξ ≤ η.
We shall consider the problem of improving a predictor δc = cX by

δφ = φ(Z/X)X

relative to the loss function L(d/y) when predicting Y = y by d, where c is a
positive constant and φ is a positive function. We assume that L(t) (t > 0) is
strictly decreasing for t < 1 and strictly increasing for t > 1 with L(1) = 0.

Let U = Z/X and V = Y/X. Then the risk functions of δc and δφ can be
written as

R(θ, δc) = Eθ{L(c/V )}
and

R(θ, δφ) = Eθ{L(φ(U)/V )}

where θ ∈ ΘL = {θ = (ξ, η) | 0 < ξ ≤ η}. The joint density of (U, V ) is given by
λ−1g(u/λ, v) where λ = η/ξ ≥ 1 and

g(u, v) =

∫ ∞

0
t2f(t, tv, tu)dt.

Let

G(u, v) = u

∫ ∞

1
t−2g(u/t, v)dt.(3.1)

Theorem 3.1. Assume that

G(u, v) is TP2,(3.2)

φ(u) is non-decreasing and lim
u→∞

φ(u) = c,(3.3) ∫ ∞

0
v−1L′(φ(u)/v)G(u, v)dv ≥ 0 for each u.(3.4)

Then R(θ, δφ) ≤ R(θ, δc) for any θ ∈ ΘL.

Proof. Using (3.3), the difference of the risk functions is expressed as

R(θ, δc) −R(θ, δφ)(3.5)

=

∫ ∞

0

∫ ∞

0
{L(c/v) − L(φ(u)/v)}λ−1g(u/λ, v)dudv

=

∫ ∞

0

∫ ∞

0

(∫ ∞

1

{
d

dt
L(φ(tu)/v)

}
dt

)
λ−1g(u/λ, v)dudv

=

∫ ∞

0

∫ ∞

0

(∫ ∞

1

φ′(tu)u
v

L′
(
φ(tu)

v

)
dt

)
λ−1g(u/λ, v)dudv
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=

∫ ∞

0

∫ ∞

0

∫ ∞

1

φ′(u)u
t2v

L′
(
φ(u)

v

)
λ−1g(u/tλ, v)dtdudv

=

∫ ∞

0

∫ ∞

0

φ′(u)
v
L′
(
φ(u)

v

)
G

(
u

λ
, v

)
dudv

=

∫ ∞

0
φ′(u)

(∫ ∞

0
v−1L′

(
φ(u)

v

)
G(u, v)

G(u/λ, v)

G(u, v)
dv

)
du.

It follows from (3.2) that G(u/λ, v)/G(u, v) is non-increasing in v for each
u. Hence from Lemma 2.1 and (3.4)

∫ ∞

0
v−1L′

(
φ(u)

v

)
G(u, v)

G(u/λ, v)

G(u, v)
dv

≥ G(u/λ, φ(u))

G(u, φ(u))

∫ ∞

0
v−1L′

(
φ(u)

v

)
G(u, v)dv

≥ 0,

so that (3.3) and (3.5) yield the result.

It follows from (3.1) that

G(u, v) =

∫ u

0
g(t, v)dt.

Hence if g(u, v) is TP2, then G(u, v) becomes TP2. Let

h(v) = lim
u→∞

G(u, v).(3.6)

Then h(v) is the density of V . Suppose that G(u, y/x) is TP2 in x and y for
each u and

∫∞
0 L(c/v)G(u, v)dv is not a monotone function of c for each u. Then

there exists φ0(u) uniquely such that∫ ∞

0
v−1L′(φ0(u)/v)G(u, v)dv = 0(3.7)

for each u. We also suppose that
∫∞
0 L(c/v)h(v)dv is not a monotone function

of c. Then there exists c0(> 0) uniquely such that∫ ∞

0
v−1L′(c0/v)h(v)dv = 0(3.8)

and the best scale equivariant predictor based on X is given by

δc0 = c0X.

Corollary 3.1. Assume that

G(u, v) is TP2,(3.9)

G(u, y/x) is TP2 in x and y for each u.(3.10)
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Then R(θ, δφ0) ≤ R(θ, δc0) for any θ ∈ ΘL.

Proof. It suffices to show that (3.3) is satisfied. Suppose that there exist
u1 < u2 such that φ0(u1) > φ0(u2). Let c1 = φ0(u1) and c2 = φ0(u2). Then

0 =

∫ ∞

0
v−1L′(c1/v)G(u1, v)dv

=

∫ ∞

0
v−1L′(v)G(u1, c1/v)dv

=

∫ ∞

0
v−1L′(v)

G(u1, c1/v)

G(u2, c1/v)

G(u2, c1/v)

G(u2, c2/v)
G(u2, c2/v)dv.

It follows from (3.9) and (3.10) that

G(u1, c1/v)

G(u2, c1/v)

G(u2, c1/v)

G(u2, c2/v)

is non-decreasing. By Lemma 2.1∫ ∞

0
v−1L′(v)

G(u1, c1/v)

G(u2, c1/v)

G(u2, c1/v)

G(u2, c2/v)
G(u2, c2/v)dv

>
G(u1, c1)

G(u2, c2)

∫ ∞

0
v−1L′(v)G(u2, c2/v)dv = 0,

which shows a contradiction. So φ0(u) is non-decreasing and hence limu→∞ φ0(u)
exists. From (3.7) and (3.8)

0 = lim
u→∞

∫ ∞

0
v−1L′(φ0(u)/v)G(u, v)dv =

∫ ∞

0
v−1L′

(
lim
u→∞

φ0(u)/v
)
h(v)dv,

so that the uniqueness of c0 implies

lim
u→∞

φ0(u) = c0.

The proof is completed.

Example 3.1. Suppose that W1 and W2 are independent random variables
according to the exponential distribution with density ξ−1e−x/ξ, x > 0, ξ >
0. Let X = min(W1,W2) and Y = max(W1,W2). The problem of predicting
the value of Y is considered. We want to improve a predictor based on X by
utilizing Z which is independent of W1 and W2 and is distributed according to
the exponential distribution with density η−1e−x/η, x > 0, η > 0 and η ≥ ξ. The
straightforward calculation shows that

g(u, v) = 4(1 + u+ v)−3, u > 0, v ≥ 1

and

G(u, v) =
2u(2 + u+ 2v)

(1 + v)2(1 + u+ v)2
, u > 0, v ≥ 1.(3.11)
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It is easy to see that g(u, v) is TP2, so that G(u, v) is TP2. It can be shown
that G(u, y/x) is TP2 in x and y for each u. Hence from Corollary 3.1 the best
scale equivariant predictor δc0 can be improved by δφ0 .

For example, let L(t) = (t − 1)2. Then the best scale equivariant predictor
is given from (3.8) by

δc0 = c0X

where

c0 =

∫∞
0 v−1h(v)dv∫∞
0 v−2h(v)dv

=

∫ ∞

1

dv

v(1 + v)2∫ ∞

1

dv

v2(1 + v)2

=
2 log 2 − 1

3 − 4 log 2
.

The improved predictor is written from (3.7) and (3.11) as

δφ0 = φ0(Z/X)X

where

φ0(u) =

∫∞
0 v−1G(u, v)dv∫∞
0 v−2G(u, v)dv

=

∫ ∞

1

dv

v(1 + v)2
−
∫ ∞

1

dv

v(1 + u+ v)2∫ ∞

1

dv

v2(1 + v)2
−
∫ ∞

1

dv

v2(1 + u+ v)2

=
2 log 2 − 1 − 2(1 + u)−2 log(2 + u) + 2(1 + u)−1(2 + u)−1

3 − 4 log 2 − 2(3 + u)(1 + u)−2(2 + u)−1 + 4(1 + u)−3 log(2 + u)
.
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