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DECOMPOSITIONS FOR EXTENDED DOUBLE
SYMMETRY MODELS IN SQUARE CONTINGENCY

TABLES WITH ORDERED CATEGORIES

Kouji Tahata* and Sadao Tomizawa*

For square contingency tables with ordered categories, Tomizawa (1992) pro-
posed three kinds of double symmetry models, whose each has a structure of both
symmetry about the main diagonal and asymmetry about the reverse diagonal of the
table. This paper proposes the extensions of those models and gives the decompo-
sitions for three kinds of double symmetry models into the extended quasi double
symmetry models, the weighted marginal double symmetry models, and the balance
models. Those decompositions are applied to two kinds of data on unaided distance
vision.
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1. Introduction

For an R×R square contingency table, let pij denote the probability that an
observation will fall in the ith row and jth column of the table (i = 1, 2, . . . , R;
j = 1, 2, . . . , R). The symmetry (S) model is defined by

pij = ψij (i = 1, 2, . . . , R; j = 1, 2, . . . , R),

where ψij = ψji (Bishop et al. (1975), p. 282). This describes a structure of
symmetry of the probabilities {pij} with respect to the main diagonal of the
table.

Caussinus (1965) considered the quasi symmetry (QS) model, defined by

pij = µαiβjψij (i = 1, 2, . . . , R; j = 1, 2, . . . , R),

where ψij = ψji. A special case of this model with {αi = βi} is the S model.
Denote the odds ratio for rows i and j (> i), and columns s and t (> s) by
θ(i<j;s<t). Thus θ(i<j;s<t) = (pispjt)/(pjspit). Using the odds ratios, the QS
model is further expressed as

θ(i<j;s<t) = θ(s<t;i<j) (i < j; s < t).

Therefore the QS model has characterization in terms of symmetry of odds ratios.
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Let X1 and X2 denote the row and column variables, respectively. The
marginal homogeneity (MH) model is defined by

Pr(X1 = i) = Pr(X2 = i) (i = 1, 2, . . . , R),

namely
pi· = p·i (i = 1, 2, . . . , R),

where pi· =
∑R

t=1 pit and p·i =
∑R

s=1 psi (Stuart (1955)). This indicates that the
row marginal distribution is identical with the column marginal distribution.

Caussinus (1965) pointed out that the S model holds if and only if both the
QS and MH models hold.

Wall and Lienert (1976) considered the point-symmetry (PS) model, defined
by

pij = ψij (i = 1, 2, . . . , R; j = 1, 2, . . . , R),

where ψij = ψi∗j∗ . The symbol “*” denotes i∗ = R + 1 − i through this paper.
This model indicates a structure of point-symmetry of the probabilities {pij}
with respect to the center point (when R is even) or the center cell (when R is
odd) in the square table.

Tomizawa (1985a) considered the double symmetry (DS) model, defined by

pij = ψij (i = 1, 2, . . . , R; j = 1, 2, . . . , R),

where ψij = ψji = ψi∗j∗ (= ψj∗i∗). This indicates that there is a structure of
symmetry and point-symmetry of the probabilities {pij} in the square table. The
DS model implies each of the S and PS models.

Tomizawa (1992) considered the two parameters double symmetry (2DS)
model, defined by

pij =

{
δφ−(i+j)/2ψij (i+ j < R+ 1),

φ−(i+j)/2ψij (i+ j ≥ R+ 1),

where ψij = ψji = ψi∗j∗ (= ψj∗i∗). A special case of the 2DS model with
δ = φ = 1 is the DS model. The 2DS model indicates that

pij = pji (i �= j)

and
pij
pj∗i∗

= δφR+1−(i+j) (i+ j < R+ 1).

Therefore this indicates that (i) the probability that an observation will fall in
the (i, j)th cell is equal to the probability that it falls in the (j, i)th cell and
(ii) the probability that the observation falls in the (i, j)th cell in the upper left
triangle of the table is δφR+1−(i+j) times higher than the probability that it falls
in the (j∗, i∗)th cell [or point-symmetric (i∗, j∗)th cell] in the lower right triangle
of the table.
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Denote the difference between the average of X1 +X2 (= R+1) and X1 +X2

by D. Thus, D = R + 1 − (X1 + X2). Under the 2DS model, pij/pj∗i∗ for
i + j < R + 1 is the odds that an observation falls in a cell (i, j) satisfying the
distance |D| = k above the reverse main diagonal of the table, instead of in a
cell (j∗, i∗) satisfying the same distance |D| = k below it. The odds depends
only on the distance k between the reverse diagonal containing the cell and the
reverse main diagonal, and the odds increases (or decreases) monotonically as
the distance k increases.

The one parameter double symmetry (1DS) model (Tomizawa (1992)) is
defined by

pij = φ−(i+j)/2ψij (i = 1, 2, . . . , R; j = 1, 2, . . . , R),

where ψij = ψji = ψi∗j∗ (= ψj∗i∗). The constant parameter double symmetry
(CDS) model (Tomizawa (1992)) is defined by

pij =

{
δψij (i+ j < R+ 1),

ψij (i+ j ≥ R+ 1),

where ψij = ψji = ψi∗j∗ (= ψj∗i∗). The 1DS and CDS models are special cases
of the 2DS model.

Consider two sets of data on unaided distance vision of (i) 3242 men aged 30–
39 employed in Royal Ordnance factories in Britain from 1943 to 1946 (Table 1),
analyzed first by Stuart (1953), and (ii) 3168 pupils comprising nearly equal
number of boys and girls aged 6–12 at elementary schools in Tokyo, Japan,
examined in June 1984 (Table 2), analyzed first by Tomizawa (1985b). Each of
the S model and its decomposed models, i.e., the QS and MH models, fits the data
in Tables 1 and 2 well (see Table 4). However, when these models are applied to
the data in Tables 1 and 2, the 69% and 88%, respectively, of information on the
observations, which are the proportions of the observations on the main diagonal
to the total observations, are not utilized because none of the S, QS, and MH
models depend on the main diagonal elements of the table; indeed, the results for
the main diagonal cells of Tables 1 and 2 are always theoretically zero without
depending on the values of observations. So, we should utilize the information
on the main diagonal.

Hence, we shall apply some models depending on the main diagonal to the
data in Tables 1 and 2. Each of the PS and DS models fits these data poorly
(see Table 4). Moreover, the 2DS model fits the data in Table 1 poorly but fits
the data in Table 2 well, and each of the 1DS and CDS models fits the data in
Tables 1 and 2 poorly (see Table 4). Therefore, we are now interested in seeing
the reason why the 2DS model fits the data in Table 1 poorly and why each of
the 1DS and CDS models fits the data in Table 2 poorly.

In this paper, we (i) give the decompositions for the 2DS, 1DS and CDS
models into some new models, and (ii) analyze the data in more details using the
decomposed models. Section 2 proposes some new models, Section 3 gives the
decompositions, and Section 4 analyzes further the data in Tables 1 and 2.
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2. Models

2.1. Quasi double symmetry models
Consider a model defined by

pij = µαiβjψij (i = 1, 2, . . . , R; j = 1, 2, . . . , R),(2.1)

where

ψij = ψji (i �= j),

ψij

ψj∗i∗
= γ (i+ j < R+ 1),

with
∏R

i=1 αi =
∏R

j=1 βj = 1 and
∏R

i=1 ψit = γ3(R+1)/2−t. Note that the 2DS
model is a special case of (2.1). We will refer to (2.1) as the quasi two parameters
double symmetry (Q2DS) model.

Using the odds ratios, the Q2DS model can also be expressed as

θ(i<j;j<k) = θ(j<k;i<j) (i < j < k),(2.2)

and

γθ(i<j;k∗<j∗) = θ(j<k;j∗<i∗)(2.3)

= θ(j∗<i∗;j<k) (i < j < k).(2.4)

We note that (i) (2.2) indicates the symmetry of odds ratios with respect to the
main diagonal in the table and (ii) (2.3) and (2.4) indicate the asymmetry of odds
ratios with respect to the reverse main diagonal or center point in the table. A
special case of the Q2DS model with γ = 1 is the quasi double symmetry (QDS)
model (Tomizawa (1985a)).

From (2.2) and (2.3), the Q2DS model may also be expressed as

Qijk = Qkji (i < j < k),(2.5)

and

Q∗
ijk = γQ∗

kji (i < j < k),(2.6)

where
Qstu = pstptupus, Q∗

stu = pst∗ptu∗pus∗ .

Denote the conditional probability that (X1, X2) for an observation takes value
(i, j) conditional on (X1, X2) = (i, j) or (j, i), by pcij . Thus

pcij =
pij

pij + pji
(i �= j).

Also, denote the conditional probability that (X1, X2) for an observation takes
value (i, j∗) conditional on (X1, X2) = (i, j∗) or (j, i∗), by pc∗ij∗ . Thus

pc∗ij∗ =
pij∗

pij∗ + pji∗
(i �= j).
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Table 1. Unaided distance vision of 3242 men aged 30–39 employed in Royal Ordnance factories

in Britain from 1943 to 1946; from Stuart (1953). (The parenthesized values from above are the

MLEs of expected frequencies under the Q2DS, M2DS-I and M2DS-II models, respectively.)

Left eye grade

Right eye Best Second Third Worst

grade (1) (2) (3) (4) Total

Best (1) 821 112 85 35 1053

(812.49) (124.67) (80.40) (35.44)

(821.19) (110.12) (83.68) (37.62)

(820.90) (109.54) (81.29) (37.94)

Second (2) 116 494 145 27 782

(120.35) (485.49) (148.97) (27.19)

(118.04) (493.99) (145.19) (28.79)

(118.66) (494.24) (145.05) (30.36)

Third (3) 72 151 583 87 893

(76.60) (147.03) (591.51) (77.86)

(73.17) (150.80) (583.01) (98.49)

(75.36) (150.95) (582.79) (97.75)

Worst (4) 43 34 106 331 514

(42.56) (33.81) (98.12) (339.51)

(40.21) (32.00) (94.90) (330.80)

(39.92) (30.63) (95.50) (331.12)

Total 1052 791 919 480 3242

Then the Q2DS model may further be expressed as

pcijp
c
jkp

c
ki = pcjip

c
kjp

c
ik (i < j < k),(2.7)

and

pc∗ij∗p
c∗
jk∗p

c∗
ki∗ = γpc∗ji∗p

c∗
kj∗p

c∗
ik∗ (i < j < k).(2.8)

Here, (2.7) indicates that the probability that one of three observations satisfies
X1 < X2 conditional on (X1, X2) = (i, j) or (j, i), another satisfies X1 < X2

conditional on (X1, X2) = (j, k) or (k, j), but the other satisfies X1 > X2 condi-
tional on (X1, X2) = (i, k) or (k, i), is equal to the probability that one of three
observations satisfies X1 > X2 conditional on (X1, X2) = (i, j) or (j, i), another
satisfies X1 > X2 conditional on (X1, X2) = (j, k) or (k, j), but the other satisfies
X1 < X2 conditional on (X1, X2) = (i, k) or (k, i). In such a sense, (2.5) or (2.7)
indicates a structure of symmetry.

Also, (2.8) indicates that the probability that one of three observations sat-
isfies D > 0 conditional on (X1, X2) = (i, j∗) or (j, i∗), another satisfies D > 0
conditional on (X1, X2) = (j, k∗) or (k, j∗), but the other satisfies D < 0 con-
ditional on (X1, X2) = (i, k∗) or (k, i∗), is γ times higher than the probability
that one of three observations satisfies D < 0 conditional on (X1, X2) = (i, j∗)
or (j, i∗), another satisfies D < 0 conditional on (X1, X2) = (j, k∗) or (k, j∗), but
the other satisfies D > 0 conditional on (X1, X2) = (i, k∗) or (k, i∗). In such a



96 KOUJI TAHATA AND SADAO TOMIZAWA

Table 2. Unaided distance vision of 3168 pupils comprising nearly equal number of boys and

girls aged 6–12 at elementary schools in Tokyo, Japan, examined in June 1984; from Tomizawa

(1985b). (The parenthesized values from above are the MLEs of expected frequencies under

the 2DS, QDS, Q2DS, M2DS-I and M2DS-II models, respectively.)

Left eye grade

Right eye Best Second Third Worst

grade (1) (2) (3) (4) Total

Best (1) 2470 126 21 10 2627

(2469.90) (111.10) (14.19) (11.00)

(2468.63) (128.67) (18.74) (10.96)

(2470.13) (128.59) (17.22) (11.06)

(2470.03) (109.06) (19.32) (9.26)

(2470.33) (118.85) (17.91) (8.67)

Second (2) 96 138 33 5 272

(111.10) (140.53) (37.50) (7.31)

(93.21) (139.49) (35.48) (3.82)

(93.16) (138.13) (35.64) (5.07)

(113.63) (137.97) (35.41) (5.79)

(102.50) (139.45) (37.88) (7.09)

Third (3) 10 42 75 15 142

(14.19) (37.50) (72.47) (15.40)

(15.12) (39.52) (73.51) (13.85)

(13.78) (39.36) (74.87) (13.99)

(10.96) (39.33) (75.03) (15.84)

(11.97) (37.20) (73.58) (17.57)

Worst (4) 12 7 16 92 127

(11.00) (7.31) (15.40) (92.10)

(11.04) (5.32) (17.27) (93.37)

(10.93) (6.92) (17.27) (91.88)

(13.04) (6.15) (15.21) (91.97)

(14.18) (5.47) (13.68) (91.67)

Total 2588 313 145 122 3168

sense, (2.6) or (2.8) indicates a structure of asymmetry. When γ > 1, in such a
sense, two of three observations tend to have X1 +X2 being less than the average
of X1 +X2.

2.2. Marginal double symmetry models
Consider a model defined by

p−i· (Γ,Ψ) = p−·i (Γ,Ψ) = p−i∗·(Γ,Ψ) = p−·i∗(Γ,Ψ) (i = 1, 2, . . . , R),(2.9)

where

p−i· (Γ,Ψ) =
i∗∑
t=1

pit +
R∑

t=i∗+1

ΓΨR+1−(i∗+t∗)pit,
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p−·i (Γ,Ψ) =
i∗∑
t=1

pti +
R∑

t=i∗+1

ΓΨR+1−(i∗+t∗)pti.

This indicates that (i) the row marginal totals summed by multiplying the proba-
bilities for the cells with a distance k (k = 1, 2, . . . , R−1) below the reverse main
diagonal in the table by a common weight ΓΨk (> 0) are equal to the column
marginal totals summed by the same way, and (ii) the row (column) marginal
totals are symmetric with respect to the midpoint of the row (column) categories.
We shall refer (2.9) to the marginal two parameters double symmetry model I
(M2DS-I). We see that the 2DS model implies the M2DS-I model (see Figure 1).

From Γ and Ψ under the M2DS-I model, it may be difficult to obtain the
direct interpretation of the model, however, these would be useful for seeing how
the structure of probabilities is departure from the marginal double symmetry.
If ΓΨk > 1 for every k (k = 1, 2, . . . , R − 1), then Pr(X1 ≤ i) > Pr(X2 ≥ i∗)
and Pr(X2 ≤ i) > Pr(X1 ≥ i∗); thus Pr(X1 ≤ i) + Pr(X2 ≤ i) > Pr(X1 ≥
i∗) + Pr(X2 ≥ i∗) for i = 1, 2, . . . , R − 1. Therefore Γ and Ψ under the M2DS-I
model may be useful for inferring the structure of marginal asymmetry.

We shall now refer (i) (2.9) with Γ = 1 to the marginal one parameter double
symmetry model I (M1DS-I), and (ii) (2.9) with Ψ = 1 to the marginal constant
parameter double symmetry model I (MCDS-I). Note that (2.9) with Γ = Ψ = 1
is the marginal double symmetry (MDS) model, defined by Tomizawa (1985a).

Figure 1. Relationships among various double symmetry models (“A → B” indicates that

model A implies model B and “t” indicates that t = I and II). The parenthesized values

indicate the numbers of degrees of freedom for the corresponding models applied to the data in

Tables 1 and 2.
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Next, consider a model defined by

p+
i· (Ω,Φ) = p+

·i (Ω,Φ) = p+
i∗·(Ω,Φ) = p+

·i∗(Ω,Φ) (i = 1, 2, . . . , R),(2.10)

where

p+
i· (Ω,Φ) =

i∗−1∑
t=1

ΩΦR+1−(i+t)pit +
R∑

t=i∗
pit,

p+
·i (Ω,Φ) =

i∗−1∑
t=1

ΩΦR+1−(i+t)pti +
R∑

t=i∗
pti.

This indicates that (i) the row marginal totals summed by multiplying the proba-
bilities for the cells with a distance k (k = 1, 2, . . . , R−1) above the reverse main
diagonal in the table by a common weight ΩΦk (> 0) are equal to the column
marginal totals summed by the same way, and (ii) the row (column) marginal
totals are symmetric with respect to the midpoint of the row (column) categories.
We shall refer (2.10) to the M2DS-II model. Further we shall refer (i) (2.10) with
Ω = 1 to the M1DS-II model, and (ii) (2.10) with Φ = 1 to the MCDS-II model.

2.3. Balance models
Let

γ =
∑

i<j<k

Q∗
ijk

/ ∑
i<j<k

Q∗
kji.(2.11)

First, consider a model defined by

γ = Γ,(2.12)

where Γ satisfies

p−1·(Γ,Ψ) − p−R·(Γ,Ψ) = 0,

p−2·(Γ,Ψ) − p−R−1·(Γ,Ψ) = 0.

This indicates that γ in the Q2DS model is equal to Γ in the M2DS-I model
when both the Q2DS and M2DS-I models hold. We shall refer (2.12) to the two
parameters balance model I (2BA-I). It may be not meaningful to apply only
the 2BA-I model for the data, but the 2BA-I model would be useful to consider
the decompositions for the 2DS model (see Section 3).

Secondly, consider a model defined by

1

γ
= Ω,(2.13)

where Ω satisfies

p+
1·(Ω,Φ) − p+

R·(Ω,Φ) = 0,

p+
2·(Ω,Φ) − p+

R−1·(Ω,Φ) = 0.
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This indicates that γ−1 in the Q2DS model is equal to Ω in the M2DS-II model
when both the Q2DS and M2DS-II models hold. We shall refer (2.13) to the
2BA-II model.

Thirdly, consider a model defined by

γ = Γ,(2.14)

where Γ satisfies
p−1·(Γ, 1) − p−R·(Γ, 1) = 0.

This indicates that γ in the Q2DS model is equal to Γ in the MCDS-I model
when both the Q2DS and MCDS-I models hold. We shall refer (2.14) to the
constant parameter balance model I (CBA-I).

Lastly, consider a model defined by

1

γ
= Ω,(2.15)

where Ω satisfies
p+
1·(Ω, 1) − p+

R·(Ω, 1) = 0.

This indicates that γ−1 in the Q2DS model is equal to Ω in the MCDS-II model
when both the Q2DS and MCDS-II models hold. We shall refer (2.15) to the
CBA-II model.

Assume that a multinomial distribution applies to the R×R table. The maxi-
mum likelihood estimates (MLEs) of expected frequencies under each model could
be obtained using the Newton-Raphson method to the log-likelihood equations
or using the iterative procedures, for example, the general iterative procedure
for log-linear models of Darroch and Ratcliff (1972). Each model can be tested

Table 3. Numbers of degrees of freedom for various double symmetry models applied to the

R×R table.

When R is even When R is odd

Models Degrees of freedom Degrees of freedom

DS R(3R− 2)/4 (R− 1)(3R + 1)/4

CDS (3R2 − 2R− 4)/4 (3R− 5)(R + 1)/4

(1DS)

2DS (3R + 4)(R− 2)/4 (3R2 − 2R− 9)/4

QDS (R− 2)(3R− 2)/4 (R− 1)(3R− 5)/4

Q2DS R(3R− 8)/4 (3R2 − 8R + 1)/4

MDS (3R− 2)/2 3(R− 1)/2

MCDS-t (3R− 4)/2 (3R− 5)/2

(M1DS-t)

M2DS-t 3(R− 2)/2 (3R− 7)/2

2BA-t 1 1

(CBA-t)

Note: “t” indicates t = I and II.
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for goodness-of-fit by the likelihood ratio chi-squared statistic (denoted by G2)
with the corresponding degrees of freedom. The numbers of degrees of freedom
for models are given in Table 3.

3. Decompositions for the two parameters double symmetry model

We shall consider the decompositions for the 2DS, 1DS and CDS models.
We obtain the following theorem.

Theorem 1. For t = I and II , the 2DS model holds if and only if all the
Q2DS , M 2DS-t and 2BA-t models hold. The number of degrees of freedom for
the 2DS model is equal to the sum of those for the Q2DS , M 2DS-t and 2BA-t
models.

Proof. For t = I and II, if the 2DS model holds, then the Q2DS, M2DS-t
and 2BA-t models hold. Assume that all the Q2DS, M2DS-t and 2BA-t models
hold, and then we shall show that the 2DS model holds.

Consider the case of t = I. Since the Q2DS and M2DS-I models hold, we
obtain

p−i· (Γ,Ψ) = p−·i (Γ,Ψ) (i = 1, 2, . . . , R),(3.1)

where

p−i· (Γ,Ψ) = µαiAi,

p−·i (Γ,Ψ) = µβiBi,

Ai =
i∗∑
t=1

βtψit +
R∑

t=i∗+1

ΓΨR+1−(i∗+t∗)βtψit,

Bi =
i∗∑
t=1

αtψit +
R∑

t=i∗+1

ΓΨR+1−(i∗+t∗)αtψit.

Since (3.1), we see

αi = βihi (i = 1, 2, . . . , R),(3.2)

where

hi =
Bi

Ai
.

By substituting (3.2) in Bi, we obtain

f = Wf,

where
f = (h1, h2, . . . , hR)′

and “′” denotes the transpose and the (i, t)th element of the R×R matrix W is
given by

(W )it =




1

Ai
βtψit (t ≤ i∗),

1

Ai
ΓΨR+1−(i∗+t∗)βtψit (t > i∗).
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All elements of W are positive and satisfy WJR = JR where JR = (1, 1, . . . , 1)′

is a vector of order R whose components are all unity. Therefore, noting that
(3.2) with {hi > 0} and

∏R
i=1 αi =

∏R
j=1 βj = 1 in the Q2DS model, we obtain

h1 = h2 = · · · = hR = 1.

Namely, αi = βi for i = 1, 2, . . . , R. We also obtain

p−i· (Γ,Ψ) = p−i∗·(Γ,Ψ) (i = 1, 2, . . . , R),(3.3)

where

p−i· (Γ,Ψ) = µαiCi,

p−i∗·(Γ,Ψ) = µαi∗Di,

Ci =
i∗∑
t=1

αtψit +
R∑

t=i∗+1

ΓΨR+1−(i∗+t∗)αtψit,

Di =
i∑

t=1

αtψi∗t +
R∑

t=i+1

ΓΨR+1−(i+t∗)αtψi∗t.

Note that Di = Ci∗ . Since (3.3), we see

αi = αi∗Ψ
(R+1)/2−iki (i = 1, 2, . . . , R),(3.4)

where

ki =
Ei

Ci
,(3.5)

Ei =
Di

Ψ(R+1)/2−i
.

By substituting (3.4) in Di, we see

Di =
i∑

t=1

αt∗Ψ
(R+1)/2−tψi∗tkt +

R∑
t=i+1

ΓΨR+1−(i+t∗)αt∗Ψ
(R+1)/2−tψi∗tkt

=
i−1∑
t=1

αt∗Ψ
(R+1)/2−tψi∗tkt + αi∗Ψ

(R+1)/2−iψi∗iki

+ ΓΨ(R+1)/2−i
R∑

t=i+1

αt∗ψi∗tkt.

Since the Q2DS model holds, we obtain

Di =
i−1∑
t=1

γΨ(R+1)/2−tαt∗ψit∗kt + αi∗Ψ
(R+1)/2−iψii∗ki

+ ΓΨ(R+1)/2−iγ−1
R∑

t=i+1

αt∗ψit∗kt.
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In addition, since the 2BA-I model holds, i.e., γ = Γ, we see

Di =
i−1∑
t=1

ΓΨ(R+1)/2−tαt∗ψit∗kt + αi∗Ψ
(R+1)/2−iψii∗ki

+ Ψ(R+1)/2−i
R∑

t=i+1

αt∗ψit∗kt

= Ψ(R+1)/2−i
i∗∑
s=1

αsψisks∗ +
R∑

s=i∗+1

ΓΨ(R+1)/2−s∗αsψisks∗ .

Thus,

Ei =
i∗∑
s=1

αsψisks∗ +
R∑

s=i∗+1

ΓΨR+1−(i∗+s∗)αsψisks∗ .

Therefore, since (3.5), we see
g = Hg,

where
g = (k1, k2, . . . , kR)′,

and the (i, s∗)th element of the R×R matrix H is given by

(H)is∗ =




1

Ci
αsψis (s ≤ i∗),

1

Ci
ΓΨR+1−(i∗+s∗)αsψis (s > i∗).

All elements of H are positive and satisfy HJR = JR. Therefore, noting that
(3.4) with {ki > 0} and

∏R
i=1 αi = 1, we obtain

k1 = k2 = · · · = kR = 1.

Thus,
αi

αi∗
= Ψ(R+1)/2−i (i = 1, 2, . . . , R).

Therefore, we see

pij = pji (i �= j)

and
pij
pj∗i∗

= ΓΨR+1−(i+j) (i+ j < R+ 1).

Namely, the 2DS model holds. The case of t = II can be proved in a similar
way as the case of t = I. The proof on degrees of freedom is easily shown from
Table 3. The proof is completed.

We obtain the following corollaries from Theorem 1:
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Corollary 1. For t = I and II , the 1DS model holds if and only if both
the QDS and M 1DS-t models hold. The number of degrees of freedom for the
1DS model is equal to the sum of those for the QDS and M 1DS-t models.

Corollary 2. For t = I and II , the CDS model holds if and only if all the
Q2DS , MCDS-t and CBA-t models hold. The number of degrees of freedom for
the CDS model is equal to the sum of those for the Q2DS , MCDS-t and CBA-t
models.

4. Analysis of vision data using decompositions

4.1. Analysis of Table 1
The 2DS model fits the data in Table 1 poorly (see Table 4). By using the

decompositions for the 2DS model, we shall consider the reason why the 2DS
model fits these data poorly.

Each of the Q2DS, M2DS-t (t = I, II) models fits these data very well, but
each of 2BA-t (t = I, II) models fits these data poorly. So, the poor fit of the
2DS model is caused by the influence of the lack of structure of the 2BA-t (t = I,
II) models.

Under the Q2DS model, from (2.2), a man’s right eye vision is symmetric to
his left eye vision with respect to the odds ratios. In addition, since the MLE of
γ is γ̂ = 1.516, from (2.4), if the odds that a man’s right eye grade is i instead
of j (i < j) is θ̂(i<j;k∗<j∗) times higher when his left eye grade is k∗ than when
it is j∗ (j < k), then the odds that his right eye grade is i∗ instead of j∗ is
1.516 × θ̂(i<j;k∗<j∗) times higher when his left eye grade is k than when it is j.
Namely, a man’s right eye vision is not point-symmetric to his left eye vision
with respect to the odds ratios.

As another interpretation, from (2.7), under the Q2DS model, the probability
that one of three men has the right eye grade X1 being better than the left eye
grade X2 conditional on (X1, X2) = (i, j) or (j, i), another man has X1 being
better than X2 conditional on (X1, X2) = (j, k) or (k, j), but the other man has
X1 being worse than X2 conditional on (X1, X2) = (i, k) or (k, i), is estimated to
be equal to the probability that one of three men has the right eye gradeX1 being
worse than the left eye grade X2 conditional on (X1, X2) = (i, j) or (j, i), another
man has X1 being worse than X2 conditional on (X1, X2) = (j, k) or (k, j), but
the other man has X1 being better than X2 conditional on (X1, X2) = (i, k) or
(k, i). In such a sense, the right eye vision is symmetric to the left eye vision.

In addition, define a man’s total vision of both eyes by the sum of the right
and left eye grades (i.e., the total vision for a man that takes (X1, X2) = (i, j) is
i+ j), and also define the average vision by the average of sum of the right and
left eye grades (i.e., it is equal to R+ 1 = 5 for these data).

Then, from (2.8), under the Q2DS model, the probability that one of three
men has the total vision of both eyes being better than the average vision, i.e.,
X1 + X2 < 5, conditional on (X1, X2) = (i, j∗) or (j, i∗), another man has the
total vision being better than the average vision conditional on (X1, X2) = (j, k∗)
or (k, j∗), but the other man has the total vision being worse than the average
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vision conditional on (X1, X2) = (i, k∗) or (k, i∗), is estimated to be γ̂ = 1.516
times higher than the probability that one of three men has the total vision
being worse than the average vision conditional on (X1, X2) = (i, j∗) or (j, i∗),
another man has the total vision being worse than the average vision conditional
on (X1, X2) = (j, k∗) or (k, j∗), but the other man has the total vision being
better than the average vision conditional on (X1, X2) = (i, k∗) or (k, i∗). In
such a sense, the total vision of both eyes is not symmetric with respect to the
average vision. Also, in such a sense, two for three men tend to have the total
visions being better than the average vision because γ̂ = 1.516 is greater than 1.

Under the M2DS-I model, the MLEs of Γ and Ψ are Γ̂ = 0.378 and Ψ̂ = 1.901.
Thus, Γ̂Ψ̂ = 0.719 < Γ̂Ψ̂2 = 1.367 < Γ̂Ψ̂3 = 2.599. Since Γ̂Ψ̂ < 1, Γ̂Ψ̂2 > 1 and
Γ̂Ψ̂3 > 1, unfortunately from only the values of these parameters, we cannot
make the inference about the point-asymmetry of the marginal distributions.
However, from the MLEs of expected frequencies obtained under the M2DS-I
model, we see that for i = 1, 2, 3, the probability that a man’s right (left) eye
grade is i or below is estimated to be greater than the probability that it is i∗

or above. Thus, a man’s vision of right (left) eye tends to be better than the
average grade (R+ 1)/2 = 2.5 for right (left) eye grade. A similar interpretation
can also be obtained under the M2DS-II model with Ω̂ = 2.793 and Φ̂ = 0.492
though the detail is omitted.

Finally, we note that as described above, the MLE of γ under the Q2DS
model is γ̂ = 1.516 and that of Γ (Ω) under the M2DS-I (M2DS-II) model is
Γ̂ = 0.378 (Ω̂ = 2.793). Obviously, γ̂ is not close to Γ̂ (Ω̂−1). So, it is natural
that the 2BA-t (t=I, II) models fit the data in Table 1 poorly.

4.2. Analysis of Table 2
The 2DS model fits the data in Table 2 well, however, the CDS and 1DS

models do not fit these data well (see Table 4). By using the decompositions for
the CDS and 1DS models, we shall consider the reason why the CDS and 1DS
models fit these data poorly.

The Q2DS model fits these data very well, but each of the MCDS-t (t = I,
II) and CBA-t (t = I, II) models fits these data very poorly (see Table 4). So,
the poor fit of the CDS model is caused by the influence of the lack of structures
of the MCDS-t (t = I, II) and CBA-t (t = I, II) models.

Also, the QDS model fits these data very well, but the M1DS-t (t = I, II)
models fit these data poorly (see Table 4). So, the poor fit of the 1DS model is
caused by the influence of the lack of structure of the M1DS-t (t = I, II) models.

For the comparison between the QDS and Q2DS models, the difference be-
tween the G2 values for the QDS and Q2DS models is 1.13 with 1 degree of
freedom. Therefore, the QDS model may be preferable to the Q2DS model for
these data. The QDS model shows that the relationship between a pupil’s right
and left eye visions is symmetric and point-symmetric with respect to the odds
ratios.

Moreover, the 2DS model and its decomposed models fit these data very well
(see Table 4). In addition, we shall consider the comparisons between the 2DS
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Table 4. Likelihood ratio statistic G2 for models applied to the data in Tables 1 and 2.

Applied Degrees of For Table 1 For Table 2

models freedom G2 G2

DS 10 274.02* 2958.74*

CDS 9 174.76* 233.44*

1DS 9 91.54* 20.86*

2DS 8 63.33* 10.56

QDS 5 11.80* 3.94

Q2DS 4 4.49 2.81

MDS 5 262.37* 2947.82*

MCDS-I 4 170.57* 107.14*

MCDS-II 4 170.67* 102.67*

M1DS-I 4 80.48* 14.87*

M1DS-II 4 79.65* 13.67*

M2DS-I 3 3.36 6.42

M2DS-II 3 3.99 5.38

2BA-I 1 45.23* 1.23

2BA-II 1 44.19* 1.35

CBA-I 1 4.27* 53.03*

CBA-II 1 4.04* 52.53*

PS 8 271.64* 2950.94*

S 6 4.77 9.69

QS 3 1.09 2.81

MH 3 3.68 6.87

*means significant at 5% level.

model and each of the Q2DS, M2DS-t (t = I, II) and 2BA-t (t = I, II) models.
Then, by the tests based on the difference between the G2 values, the 2DS model
is preferable to each of the decomposed models.

Under the 2DS model, the MLEs of γ and φ are γ̂ = 0.521 and φ̂ = 3.719,
and thus 1 < γ̂φ̂ = 1.939 < γ̂φ̂2 = 7.212 < γ̂φ̂3 = 26.819. Therefore, under
this model, (i) the probability that a pupil’s right and left eye grades are i and
j (> i), respectively, is estimated to be equal to the probability that they are j
and i, respectively, and (ii) the probability that a pupil’s right and left eye grades
are i and j, respectively, with the total vision i+ j being better than the average
vision, i.e., i+ j < 5, is estimated to be 0.521× (3.719)5−(i+j) (> 1) times higher
than the probability that they are j∗ and i∗ [or i∗ and j∗], respectively, with the
total vision being worse than the average vision, i.e., j∗ + i∗ > 5; so, a pupil’s
total vision tends to be better than the average vision.

Finally we note that although the M2DS-t (t = I, II) models may not be
preferable to the 2DS model, but the M2DS-t (t = I, II) models fit the data in
Table 2 well. Under the M2DS-I model, the MLEs of Γ and Ψ are Γ̂ = 0.472 and
Ψ̂ = 3.849. Thus, Γ̂Ψ̂ = 1.818 < Γ̂Ψ̂2 = 6.997 < Γ̂Ψ̂3 = 26.932. Since Γ̂Ψ̂k > 1
(k = 1, 2, 3) under the M2DS-I model, for i = 1, 2, 3, the sum of the probability
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that a pupil’s right eye grade is i or below and the probability that the pupil’s left
eye grade is i or below, is estimated to be greater than the sum of the probability
that the pupil’s right eye grade is i∗ (= 5 − i) or above and the probability that
the pupil’s left eye grade is i∗ or above. Thus, a pupil’s vision of both eyes tends
to be better than the average vision. In addition, from the MLEs of expected
frequencies obtained under the M2DS-I model, we see that for i = 1, 2, 3, the
probability that a pupil’s right (left) eye grade is i or below is estimated to be
greater than the probability that it is i∗ or above. Thus, a pupil’s vision of right
(left) eye tends to be better than the average grade (R + 1)/2 = 2.5 for right
(left) eye grade. A similar interpretation is also obtained under the M2DS-II
model with Ω̂ = 2.087 and Φ̂ = 0.259, though the detail is omitted.

5. Concluding remarks

In Theorem 1, Corollaries 1 and 2, we have given the decompositions for the
2DS, 1DS and CDS models. For the unaided vision data in Table 1, we have seen
the reason why the 2DS model does not fit well by using the decompositions for
the 2DS model. Also, for the unaided vision data in Table 2, we have seen the
reason why the 1DS (CDS) model does not fit well by using the decompositions
for the 1DS (CDS) model. Generally, for a given data, when a model fits poorly,
the decompositions for the model would be useful for seeing the reason why the
model fits the data poorly.
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