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DUAL OF RATIO ESTIMATORS OF FINITE
POPULATION MEAN OBTAINED ON USING LINEAR

TRANSFORMATION TO AUXILIARY VARIABLE

H. S. Jhajj*, M. K. Sharma* and Lovleen Kumar Grover**

The efficiencies of the ratio- type estimators have been increased by using linear
transformation on auxiliary variable in the literature. But such type of estimators
requires the additional knowledge of unknown population parameters, which restricts
their applicability. Keeping in view such restrictions, we have proposed two unbiased
estimators of population mean of study variable on applying linear transformation
to auxiliary variable by using its extreme values in the population that are generally
available in practice. The comparison of the proposed estimators with the existing
ones have been done with respect to their variances. It has also been shown that
the proposed estimators have greater applicability and are more efficient than the
mean per unit estimator even when the existing estimators are less efficient. We have
also shown that under some known conditions the choice of most efficient estimators
among the considered ones can be made for a given population. The theoretical
results obtained are shown diagrammatically and have been verified numerically by
taking some empirical populations.

Key words and phrases: Bias, efficiency, most efficient estimator, preference region,
simple random sampling without replacement, unbiased estimator, variance.

1. Introduction

For estimating the population mean Ȳ of the variable under study y, the
ratio estimator ȳR has been widely used when there is a high positive correla-
tion between study variable y and auxiliary variable x. In literature, it has been
shown by various authors viz Mohanty and Das (1971), Reddy (1974), Reddy and
Rao (1977), Srivenkataramana (1978), Chaudhuri and Adhikari (1979) that the
bias and the mean square error of the ratio estimator ȳR can be reduced with the
application of transformation on the auxiliary variable x. By using such trans-
formation on auxiliary variable, the construction of the estimator of population
mean Ȳ requires the knowledge of unknown parameters, which restrict the appli-
cability of these estimators. To overcome such type of restrictions, Mohanty and
Sahoo (1995) have defined two ratio estimators by making the transformation on
auxiliary variable x, using its minimum value Xm and the maximum value XM in
the population, when the values Xm and XM in addition to its population mean
X̄ are available in advance. The information of extreme values Xm and XM is
generally available in practice, otherwise it can be obtained approximately from
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either the past experience or pilot sample survey, inexpensively. On assuming
auxiliary variable x as positive variable, Mohanty and Sahoo (1995) made the
following transformations on x as

v =
x + Xm

XM + Xm

ω =
x + XM

XM + Xm



.(1.1)

From (1.1), we see that v ∈ (0, 1] and ω ∈ [1, 2). It should be noted that the
correlation coefficients for the bivariate (y, v) and (y, ω) remain same as that of
(y, x).

Assuming that the variables y and x are positively correlated and prior infor-
mation on population mean X̄ of the auxiliary variable x is available then ratio
estimator ȳR is defined as

ȳR =
ȳ

x̄
X̄(1.2)

where ȳ and x̄ are sample means of variables y and x respectively.
Under the transformations as given in (1.1), Mohanty and Sahoo (1995) de-

fined the following ratio estimators of Ȳ by using the known values of population
means V̄ and Ω̄ of variables v and ω respectively,

tMS1 =
ȳ

v̄
V̄(1.3)

and

tMS2 =
ȳ

ω̄
Ω̄(1.4)

where v̄ and ω̄ denote the sample means of variables v and ω respectively.
Srivenkataramana (1980) defined a dual to the conventional ratio estimator

ȳR as

ȳRD =
ȳ(NX̄ − nx̄)

(N − n)X̄
(1.5)

where n and N denote the sample size and the population size respectively. He
has shown that the exact expression for the bias of the estimator ȳRD can be
obtained even for a positive correlation between variables y and x whereas the
exact expression for the bias of the estimator ȳR is not available.

In the present paper, we have proposed two unbiased estimators of population
mean Ȳ , which are respectively dual to the ratio estimators tMS1 and tMS2.
The expressions for their variances have been obtained. The comparisons of the
proposed estimators with the existing estimators have been made with respect
to their variances. The preference regions of various estimators have also been
obtained. The results have also been illustrated diagrammatically as well as
numerically.



DUAL OF RATIO ESTIMATORS OF POPULATION MEAN 109

2. Proposed estimators and their variances

Suppose a simple random sample of size n is drawn from a finite population of
size N without replacement and observation on variable y and x are taken. When
the values of Xm, XM and X̄ are known in advance then under the transformation
v = x+Xm

XM+Xm
and ω = x+XM

XM+Xm
(same as given in (1.1)), the values of V̄ and Ω̄

will also be known. Since the variables y and x are positively correlated therefore
by using the known values of V̄ and Ω̄, we consider the following estimators of
Ȳ which are dual to the ratio estimators tMS1 and tMS2 respectively

ŷD1 =
ȳ(NV̄ − nv̄)

(N − n)V̄
(2.1)

and

ŷD2 =
ȳ(N Ω̄ − nω̄)

(N − n)Ω̄
.(2.2)

The biases of estimator ŷD1 and ŷD2 are obtained as

B(ŷD1) = − 1

N
Ȳ ρyxCy

X̄Cx

Xm + X̄
(2.3)

B(ŷD2) = − 1

N
Ȳ ρyxCy

X̄Cx

XM + X̄
(2.4)

where Cy and Cx are coefficients of variations of variables y and x respectively;
ρyx is the correlation coefficient between y and x. The biases of estimators ŷD1

and ŷD2 given in (2.3) and (2.4) are constant so can be estimated on the basis of
same sample. Hence the corresponding proposed unbiased estimators in place of
ŷD1 and ŷD2 are

ŷ∗D1 =
ȳ(NV̄ − nv̄)

(N − n)V̄
+

sxy
N(Xm + X̄)

(2.5)

ŷ∗D2 =
ȳ(N Ω̄ − nω̄)

(N − n)Ω̄
+

sxy
N(XM + X̄)

.(2.6)

Srivenkataramana (1980) has also defined the unbiased estimator in place of ȳRD

as

ȳ∗RD =
ȳ(NX̄ − nx̄)

(N − n)X̄
+

sxy
NX̄

.(2.7)

The results obtained are given in the following theorem.

Theorem 2.1. For the simple random sampling without replacement
(SRSWOR), the variances of the proposed estimators ŷ∗D1 and ŷ∗D2, up to the
terms of order n−1, are

V (ŷ∗D1) =

(
1

n
− 1

N

)
Ȳ 2

[
C2
y +

(
n

N − n

)2 X̄2C2
x

(Xm + X̄)2
(2.8)

− 2

(
n

N − n

)
ρyxCy

X̄Cx

Xm + X̄

]

and
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V (ŷ∗D2) =

(
1

n
− 1

N

)
Ȳ 2

[
C2
y +

(
n

N − n

)2 X̄2C2
x

(XM + X̄)2
(2.9)

− 2

(
n

N − n

)
ρyxCy

X̄Cx

XM + X̄

]
.

Remark . It is noted that under the given transformation i.e. x to v or x to
ω, as defined in (1.1), there is no change in the form of usual linear regression
estimator ȳlr = ȳ + byx(X̄ − x̄).

3. Comparison of proposed estimators with existing ones

For comparing the proposed estimators with existing ones, we first write the
expressions for the variances of the existing estimators, namely ȳ, ȳR, ȳ∗RD, tMS1

and tMS2 (under the same sampling scheme) up to the terms of order n−1 (the
biases of these estimators if exist is of order n−1, so their contributions to the
mean square errors will be of order n−2) as

V (ȳ) =

(
1

n
− 1

N

)
Ȳ 2C2

y(3.1)

V (ȳR) =

(
1

n
− 1

N

)
Ȳ 2(C2

y + C2
x − 2ρyxCyCx)(3.2)

V (ȳ∗RD) =

(
1

n
− 1

N

)
Ȳ 2

[
C2
y +

(
n

N − n

)2

C2
x − 2

(
n

N − n

)
ρyxCyCx

]
(3.3)

V (tMS1) =

(
1

n
− 1

N

)
Ȳ 2

[
C2
y +

X̄2C2
x

(Xm + X̄)2
− 2ρyxCy

X̄Cx

Xm + X̄

]
(3.4)

V (tMS2) =

(
1

n
− 1

N

)
Ȳ 2

[
C2
y +

X̄2C2
x

(XM + X̄)2
− 2ρyxCy

X̄Cx

XM + X̄

]
.(3.5)

Reddy (1978) has shown that the values of parameter K = ρyx
Cy

Cx
remain

stable in any repetitive survey. So we find the conditions on the values of K
under which the proposed estimators are superior to the existing ones. For the
present situation, we note that 0 < K <

Cy

Cx
. In the survey sampling situations,

usually n
N−n < 0.1 but we assume that n

N−n < 1 which hold good in almost all
the situations of survey sampling. For the sake of comparison in the compact
form, we take

m1 = 1 +
Xm

X̄

m2 = 1 +
XM

X̄


(3.6)

� =
n

N − n
.(3.7)

Noting that m1 ∈ (1, 2] and m2 is a finite number so that m2 ≥ 2 and by
assumption we note that 0 < � < 1.
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Using the expressions (2.8), (2.9) and (3.1) to (3.5), the results obtained are
given in the following theorems.

Theorem 3.1. Up to the terms of order n−1, we have

V (ŷ∗D1) < V (ȳ) for K >
�

2m1

V (tMS1) < V (ȳ) for K >
1

2m1

V (ŷ∗D2) < V (ȳ) for K >
�

2m2

V (tMS2) < V (ȳ) for K >
1

2m2
.

Remark . From the results of above theorem, we see that the proposed es-
timators ŷ∗D1 and ŷ∗D2 which are dual to tMS1 and tMS2 respectively are superior
to the mean per unit estimator ȳ even for smaller values of K when tMS1 and
tMS2 are inferior than ȳ.

Theorem 3.2. Up to the terms of order n−1, the variance of the proposed
estimator ŷ∗D1 is less than the variances of all the other estimators ȳ, ȳR, ȳ∗RD,
tMS1, tMS2 and ŷ∗D2 for K ∈ I1, where

I1 =




(
�

2

(
1

m1
+

1

m2

)
,
�

2

(
1

m1
+ 1

))
when 0 < � <

1

m2(
�

2

(
1

m1
+

1

m2

)
,
1

2

(
�

m1
+

1

m2

))
when

1

m2
< � <

m1

m2(
1

2

(
�

m1
+

1

m2

)
,
�

2

(
1

m1
+ 1

))

when
m1

m2
< � <

1

m1
with m2

1 < m2(
1

2

(
�

m1
+

1

m2

)
,

1

2m1
(� + 1)

)

when either
1

m1
< � < 1 with m2

1 < m2

or
m1

m2
< � < 1 with m2

1 > m2.

.(3.8)

Theorem 3.3. Up to the terms of order n−1, the variance of the proposed
estimator ŷ∗D2 is less than the variances of all the other estimators ȳ, ȳR, ȳ∗RD,
tMS1, tMS2 and ŷ∗D1 for K ∈ I2, where

I2 =




(
�

2m2
,
�

2

(
1

m1
+

1

m2

))
when 0 < � <

m1

m2(
�

2m2
,

1

2m2
(� + 1)

)
when

m1

m2
< � < 1

.(3.9)
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Theorem 3.4. Up to the terms of order n−1, the estimator ȳ will become
most efficient among the estimators ȳ, ȳR, ȳ∗RD, tMS1, tMS2, ŷ

∗
D1 and ŷ∗D2 for

K ∈
(

0,
�

2m2

)
= I3.(3.10)

Theorem 3.5. Up to the terms of order n−1, the estimator ȳR will become
most efficient among the estimators ȳ, ȳR, ȳ∗RD, tMS1, tMS2, ŷ∗D1 and ŷ∗D2 for
K ∈ I4, where

I4 =




(
1

2

(
1 +

1

m1

)
,
Cy

Cx

)
when � <

1

m1(
1

2
(1 + �) ,

Cy

Cx

)
when � >

1

m1

.(3.11)

Theorem 3.6. Up to the terms of order n−1, the estimator ȳ∗RD will become
most efficient among the estimators ȳ, ȳR, ȳ∗RD, tMS1, tMS2, ŷ∗D1 and ŷ∗D2 for
K ∈ I5, where

I5 =




(
�

2

(
1 +

1

m1

)
,
1

2

(
� +

1

m2

))
when 0 < � <

1

m2(
1

2

(
� +

1

m2

)
,
1

2

(
� +

1

m1

))

when either
1

m2
< � <

m1

m2
with m2

1 < m2

or
1

m2
< � <

1

m1
with m2

1 > m2(
1

2

(
� +

1

m1

)
,
1

2
(� + 1)

)

when
1

m1
< � <

m1

m2
with m2

1 > m2(
1

2

(
� +

1

m1

)
,
1

2
(� + 1)

)

when
m1

m2
< � <

1

m1
with m2

1 < m2(
1

2

(
� +

1

m1

)
,
1

2
(� + 1)

)

when either
1

m1
< � < 1 with m2

1 < m2

or
m1

m2
< � < 1 with m2

1 > m2

.(3.12)
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Theorem 3.7. Up to the terms of order n−1, the estimator tMS1 will be-
come most efficient among the estimators ȳ, ȳR, ȳ∗RD, tMS1, tMS2, ŷ

∗
D1 and ŷ∗D2

for K ∈ I6, where

I6 =




(
1

2

(
1

m1
+

1

m2

)
,
1

2

(
1 +

1

m1

))
when 0 < � <

1

m2(
1

2

(
� +

1

m1

)
,
1

2

(
1 +

1

m1

))
when either

1

m2
< � <

m1

m2
with m2

1 < m2

or
1

m2
< � <

1

m1
with m2

1 > m2(
1

2

(
1

m1
+

1

m2

)
,
1

2

(
� +

1

m1

))
when

1

m1
< � <

m1

m2
with m2

1 > m2(
1

2

(
� +

1

m1

)
,
1

2

(
1 +

1

m1

))
when

m1

m2
< � <

1

m1
with m2

1 < m2(
1

2m1
(� + 1) ,

1

2

(
1

m1
+ �

))
when either

1

m1
< � < 1 with m2

1 < m2

or
m1

m2
< � < 1 with m2

1 > m2

.(3.13)

Theorem 3.8. Up to the terms of order n−1, the estimator tMS2 will be-
come most efficient among the estimators ȳ, ȳR, ȳ∗RD, tMS1, tMS2, ŷ

∗
D1 and ŷ∗D2

for K ∈ I7, where

I7 =




(
1

2

(
1

m2
+ �

)
,
1

2

(
1

m1
+

1

m2

))
when 0 < � <

1

m2(
1

2

(
�

m1
+

1

m2

)
,
1

2

(
1

m2
+ �

))
when either

1

m2
< � <

m1

m2
with m2

1 < m2

or
1

m2
< � <

1

m1
with m2

1 > m2(
1

2

(
�

m1
+

1

m2

)
,
1

2

(
1

m1
+

1

m2

))
when

1

m1
< � <

m1

m2
with m2

1 > m2(
1

2m2
(� + 1) ,

1

2

(
�

m1
+

1

m2

))
when

m1

m2
< � <

1

m1
with m2

1 < m2(
1

2m2
(� + 1) ,

1

2

(
�

m1
+

1

m2

))
when either

1

m1
< � < 1 with m2

1 < m2

or
m1

m2
< � < 1 with m2

1 > m2

.(3.14)
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4. Diagrammatic representation of preference regions of various esti-
mators

The preference region for the estimator is the interval of K on which the
estimator is more efficient than the other estimators. To have a bird’s eye view of
the preference regions for the different estimators obtained earlier in the Section 3,
we have made an effort by representing them diagrammatically. For the sake of
convenience to mark the limits of the preference regions in the diagrams, we take

P1 =
l

2m2
, P2 =

l

2

(
1

m1
+

1

m2

)
, P3 =

l

2

(
1 +

1

m1

)
,

P4 =
1

2

(
1

m2
+ l

)
, P5 =

1

2

(
1

m1
+

1

m2

)
, P6 =

1

2

(
1

m1
+ 1

)
,

P7 =
1

2

[
l

m1
+

1

m2

]
, P8 =

1

2

(
1

m1
+ l

)
, P9 =

1

2
(1 + l),

P10 =
1

2m2
(1 + l), P11 =

1

2m1
(1 + l).

The order of the various preference regions is shown in the following diagrams
by considering the whole range of K under various situations.

Diagram 4.1. When 0 < � < 1
m2

then we have

                             
            

                                                                                                         

Diagram 4.2. When either 1
m2

< � < m1
m2

with m2
1 < m2 or 1

m2
< � < 1

m1

with m2
1 > m2 then we have

                             
         

                                                                                                         

Diagram 4.3. When 1
m1

< � < m1
m2

with m2
1 > m2 then we have
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Diagram 4.4. When m1
m2

< � < 1
m1

with m2
1 < m2 then we have

                             
         

 

                                                                                                           

Diagram 4.5. When either 1
m1

< � < 1 with m2
1 < m2 or m1

m2
< � < 1 with

m2
1 > m2 then we have

                             
         

 

                                                                                                         

The above diagrams 4.1 to 4.5 clearly indicate that
(i) There is no advantage of using known auxiliary information for improving

the estimator of Ȳ when the value of K is very small i.e. close to zero.
(ii) The use of ordinary ratio estimator ȳR is very beneficial for estimating Ȳ

when the value of K is very large.
(iii) The proposed estimators ŷ∗D1 and ŷ∗D2 which are dual to tMS1 and tMS2

respectively are superior to the mean per unit estimator ȳ even for smaller
values of K when tMS1 and tMS2 are inferior to ȳ.

(iv) The interval I2 is always adjacent to I3 in the diagrams which shows that
the estimator ŷ∗D2 is better than ȳ even when ȳR, ȳ∗RD, tMS1, tMS2 and ŷ∗D1

are not better than ȳ.
Hence we conclude that the use of the proposed estimators ŷ∗D1 and ŷ∗D2 for

estimating Ȳ will be more beneficial for moderate values of K. So the choice
of sample size can be made accordingly for which the proposed estimators ŷ∗D1

and ŷ∗D2 will become most efficient with known values of K, m1 and m2. On the
other hand, for a given sample size, the choice of most efficient estimator among
the considered estimators namely ȳ, ȳR, ȳ∗RD, tMS1, tMS2, ŷ

∗
D1 and ŷ∗D2 can also

be made accordingly with known values of K, m1 and m2.

5. An empirical study

To get a rough idea about the efficiencies of the estimators, we have taken
seven empirical populations from the literature. The description of the pop-
ulations and the values of population constants are given in Tables 1 and 2
respectively. The expressions of biases of ratio estimator and ratio estimators
defined by Mohanty and Sahoo (1995) are given in Appendix A, so the biases
of these estimators are calculated which are given in Table 3. The preference
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Table 1. Description of populations.

Population Source of N Variable Variable n �

number population y x

1 Singh and 16 Area under wheat Total cultivated 5 0.4545

Chaudhary (1986) during 1979–80 area during

p-166 1978–79

2 Cochran (1977) 10 Number of persons Number of rooms 4 0.6667

p-325 in a block in a block

3 Singh and 10 Number of Number of 4 0.6667

Chaudhary (1986) inhabitants (’000) inhabitants (’000)

p-306 in 1981–82 in 1980–81

4 Singh and 17 Number of milch Number of milch 6 0.5454

Chaudhary (1986) animals in survey animals in census

p-155 (1977–78) (1976)

5 Singh and 15 Area under Area under 5 0.5000

Chaudhary (1986) wheat in 1973 wheat in 1971

p-177(1–15)

6 Sampford (1962) 9 Acreage under Acreage of crops 3 0.5000

p-61(1–9) oats in 1957 and grass in 1947

7 Panse and 10 Parental plot Parental plant 4 0.6667

Sukhatme (1967) mean value

p-124 (1–10) (mm) (mm)

Table 2. Constants of the populations.

Population number ρyx Cx Cy m1 m2

1 0.9600 0.74 0.6900 1.21 4.06

2 0.6500 0.14 0.1500 1.82 2.22

3 0.8800 0.60 0.6400 1.54 3.43

4 0.4371 0.02 0.0165 1.98 2.04

5 0.1732 0.82 0.8903 1.08 4.59

6 0.0700 0.10 0.2900 1.86 2.12

7 0.0833 0.07 0.0647 1.92 2.13

Table 3. Biases of estimators.

Population |B(·)|
( 1
n
− 1

N
)Ȳ

× 100

number Estimator

ȳR tMS1 tMS2

1 5.742400 3.108596 8.751211

2 0.595000 0.158284 0.217170

3 2.208000 6.763232 6.791946

4 0.025576 0.002918 0.002541

5 54.5956 45.93969 0.436784

6 0.797000 0.179911 0.126744

7 0.452273 0.113272 0.090291
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regions of all the estimators in which one estimator is superior to all others and
the efficiencies of all the estimators with respect to the estimator ȳ are given in
Table 4.

Note.
(1) Bold figure in Table 3 indicates the minimum bias for the given population.
(2) Bold figure in Table 4 indicates the maximum efficiency for the given pop-

ulation.
(3) For Table 4, figure in bracket in each box indicates the preference region of

the corresponding estimator for the given population.
From Table 4, we see that in all the populations the value of K for the

most efficient estimator really lies in the corresponding preference region of the
same estimator. Hence it may be concluded that for the known value of K in
any population, we can choose the most efficient estimator among the estimators
namely ȳ, ȳR, ȳ∗RD, tMS1, tMS2, ŷ

∗
D1 and ŷ∗D2.

Appendix A
Up to the terms of order n−1, we have

B(ȳR) =

(
1

n
− 1

N

)
Ȳ (C2

x − ρyxCyCx)(A.1)

B(tMS1) =

(
1

n
− 1

N

)
Ȳ

1

Xm + X̄

(
X̄2C2

x

Xm + X̄
− ρyxCyX̄Cx

)
(A.2)

B(tMS2) =

(
1

n
− 1

N

)
Ȳ

1

XM + X̄

(
X̄2C2

x

XM + X̄
− ρyxCyX̄Cx

)
.(A.3)
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