
J. Japan Statist. Soc.
Vol. 36 No. 2 2006 149–171

INFERENCE ON THE COINTEGRATION RANK AND
A PROCEDURE FOR VARMA ROOT-MODIFICATION

Taro Takimoto* and Yuzo Hosoya**

The paper presents a feasible numerical procedure for evaluating the maximum
Whittle likelihood estimates and the likelihood-ratio statistics, where to obtain the
maximum Whittle likelihood estimates under specific cointegration ranks, we intro-
duce an iterative method in which the set of the ARMA coefficient estimates is
adjusted so as to guarantee that in each step they satisfy the root conditions im-
posed by respective cointegration rank hypotheses. The method is incorporated in
the Whittle likelihood maximization.

Key words and phrases: Cointegration rank test, invertibility, Jordan canonical
form, stationarity, Whittle estimator.

1. Introduction

Since the multivariate time-series analysis enables us to scrutinize not only
temporal dependence structures but also interactive relations among the compo-
nent variables, it has a wide range of applications to such fields as the portfolio
analysis and the term-structure analysis of interest rates in finance in addition
to traditional macroeconomic time-series analysis. In this paper, we make two
major improvements to the Whittle-likelihood-based computational procedure
proposed previously by Takimoto and Hosoya (2004). Namely, on the basis of
the multivariate autoregressive-movingaverage (ARMA) processes, we propose in
this paper an eigenvalue control algorithm for estimating the maximum Whittle
likelihood. Our algorithm consists of

(1) eigenvalue contraction method, and
(2) penalty-imposed likelihood function maximization.

The objective of (1) is to locate the initial values of coefficient estimates for
the optimization iteration in the admissible set (where we call a set of ARMA
coefficients admissible if it satisfies the root conditions given in Section 2) and (2)
is to prevent the maximizer of the likelihood to depart from the admissible set.
Secondly, we propose testing a null-hypothesis rank not against a constant-mean
stationary VARMA process but against the trend-stationary full rank alternative.

Cointegration analysis initiated by Granger (1981) has been prevalent in the
literature of long-run relationships among economic time series. Particularly for
vector autoregressive (VAR) models, a number of estimation and testing methods
have been proposed aiming at numerical tractability or mitigating computational
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requirement. (See, for example, Engle and Granger (1987) for a single equation
approach and Johansen (1988, 1991) for a system estimation approach.) On
the other hand, it is known that the VARMA model can capture more complex
features of data fluctuation by parsimonious use of parameters compared with
the VAR model. Recently procedures to deal with the VARMA model have
been provided by Yap and Reinsel (1995) (the Gaussian (conditional) likelihood
approach), Lütkepohl and Claessen (1997), Poskitt (2003) (the echelon form
combined with the error correction form) and Takimoto and Hosoya (2004) (the
Whittle likelihood approach) among others. One reason we prefer the frequency-
domain approach to the time-domain counterpart is its mathematical and com-
putational tractability when the framework is extended to a wider class of time
series models such as a fractional cointegrating system. (See Hosoya (2004) and
Shimotsu and Phillips (2005).) For another reason, simulation and empirical re-
sults given by Takimoto (2001) and Takimoto and Hosoya (2004) suggest that the
frequency-domain method is superior to the time-domain counterpart in locating
the maximum of the likelihood.

Suppose that a p-vector MA process {ξ(t)} is generated by ξ(t) =∑b
l=0 Θ(l)ε(t − l), where Θ(0) = Ip, the ε(t)’s are independent random vectors

with mean 0, covariance matrix Ω and E[{εi(t)}4] < ∞, (i = 1, . . . , p), and a
p-vector observation process {Z(t)} is generated by

�Z(t) = ΠZ(t− 1) +
a−1∑
k=1

Γ(k)�Z(t− k)(1.1)

+ µ + 1{rank(Π) = p}νt + ξ(t),

where � indicates (1−L)Ip for the lag operator L, and 1{·} is the indicator func-
tion. The model having the term 1{rank(Π) = p}νt has the merit that it gener-
ates a trend-stationary process when the Π is full-rank, whereas, if the term is
missing as in Johansen (1995), the full-rank stationary process does not generate
trend effects. As the null hypothesis generates a unit-root process with a linear
time trend, it would be more appropriate to allow a trend stationary component
in the full-rank stationary hypothesis, for it to be a comparable alternative to
the null hypothesis. On the basis of the model (1.1) and the asymptotic theory
of Hosoya and Takimoto (2003), the paper presents a feasible numerical proce-
dure for evaluating the maximum Whittle likelihood (MWL) estimator and the
likelihood-ratio statistics.

The stationarity and invertibility conditions of VARMA coefficients are usu-
ally presumed to hold in the literature on numerical estimation methods for sta-
tionary ARMA models, although computational outcomes may sometimes violate
those conditions unless certain restrictions are imposed on it. Neither Hannan
and Rissanen (1982)’s three step estimation method for stationary ARMA mod-
els nor Johansen’s likelihood ratio method based on the concentrated likelihoods
is equipped with a built-in mechanism automatically producing estimates satis-
fying those conditions. Johansen’s derivation of the concentrated likelihood, for
example, conceals that the estimated AR coefficients implicitly obtained by the
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projections of �Z(t) and Z(t− 1) on �Z(t− 1), . . . ,�Z(t− a+ 1) may not sat-
isfy those conditions. In contrast, our method uses an iterative method, where
in each step the root conditions of the ARMA coefficient estimate are explicitly
examined; that is, it examines whether all values of z satisfying detA(z) = 0 and
detB(z) = 0 lie outside or on the unit circle exactly as specified by the respective
hypotheses, where

A(z) = �(z) − Πz −
a−1∑
j=1

Γ(j)�(z)zj and B(z) =
b∑

l=0

Θ(l)zl.

By means of the Jordan canonical form, the eigenvalues of companion matrices
of the AR and the MA parts for the stationary component of the estimated
cointegration model are evaluated and they are adjusted, if necessary, so as to
fulfill the stationarity and invertibility conditions in the reduced-rank set-up of
the cointegration model. Thanks to this eigenvalue contraction procedure, we
can test a statistical hypothesis against others, in which the coefficient estimates
belong to the respective proper parameter spaces.

Based on Monte Carlo simulations, Section 5 reports rejection probabilities
by the rank test of the hypothesis rank(Π) = 0 against a full-rank model, where
our root-modification procedure is observed useful to guarantee the valid root
requirements automatically. For numerical illustration, our statistical method
is applied in Section 6 to a trivariate U.S. short-term interest-rates series data
and compared to the previous results in Takimoto and Hosoya (2004) which
assumed a constant-mean stationary process when rank(Π) = 3. The empirical
analysis concludes that the trend-stationary process is the appropriate modelling
in contrast to the previous result which claimed that the series had at least
one cointegration rank. (See also Reinsel and Ahn (1992) and Yap and Reinsel
(1995).)

The paper is organized as follows: Section 2 presents our root modification
procedure. Section 3 provides a modified three-step procedure in optimizing
the Whittle likelihood. In Section 4, we present a cointegrating rank testing
procedure which is essentially based on the Whittle log-likelihood ratio and give
a computational algorithm for evaluating the p-value for this cointegration rank
test. Section 5 conducts Monte Carlo simulations in order to examine the small-
sample performance of the proposed procedure for a simple case. Section 6
analyses the trivariate U.S. interest-rate series by our test procedure.

As for the notations used in the paper: A′ denotes the ordinary transpose
of a matrix A, whereas A∗ is the conjugate transpose; all vectors are assumed to
be column vectors; the identity matrix of order p is denoted by Ip.

2. The root conditions and a root-contraction procedure

In this section, we propose an eigenvalue contraction algorithm which guar-
antees a set of ARMA coefficient estimates to satisfy the stationarity and in-
vertibility conditions. Suppose that a p-vector process {Z(t), t = 1, . . . , T} is
generated by (1.1), where the initial values Z(−a + 1), . . . , Z(0) are assumed to
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be observed. Let β and (β, β⊥) be p × r and p × p matrices such that β⊥β⊥
and rank(β, β⊥) = p. We focus on the model of cointegration rank r. As Hosoya
(2003, pp. 38–39) showed, we have the relationship:

A(z)[β, β⊥] =

[
A(z)β, β⊥ −

a−1∑
k=1

Γ(k)zkβ⊥

] [
Ir 0

0 (1 − z)Ip−r

]

≡ C(z)

[
Ir 0

0 (1 − z)Ip−r

]
.(2.1)

Therefore, all the roots of detC(z) = 0 are outside the unit circle if and only if
(p − r) roots of detA(z) = 0 are ones and the rest of them are outside the unit
circle.

In practical estimation circumstances, it is difficult to specify the character-
istic roots of detA(z) = 0 derived from an estimate of A(z) so that r of them are
unities and (p− r) are outside of the unit circle. For computational tractability,
we propose a root modification method based on C(z), since under the rank r
hypothesis, it is equivalent to that all of the roots exceed unity in modulus. So
we define the root conditions as follows:

Definition (the root conditions). Under the cointegration rank r hypoth-
esis, the characteristic polynomial satisfies the condition that detC(z) = 0, only
if |z| > 1. Moreover all the roots of detB(z) = 0 are assumed to be outside the
unit circle and do not share any common zero with detA(z).

In the sequel, a set of ARMA coefficients is said to be admissible if it satisfies
the root conditions.

The remainder of this section exhibits a root-contraction procedure based on
the Jordan representation, which is implemented in Steps 2 and 3 to generate
an admissible set of estimators in our three-step algorithm. To be explicit, the
matrix C(z) in (2.1) is represented as

C(z) =




[β, β⊥] − [(Ip + Π)β, 0]z, if a = 1,

[β, β⊥] − [(Ip + Π + Γ(1))β,Γ(1)β⊥]z

− 1{a ≥ 3}
a−1∑
k=2

[(Γ(k) − Γ(k − 1))β,Γ(k)β⊥]zk

+ [Γ(a− 1)β, 0]za if a ≥ 2

≡
a∑

k=0

Ckz
k,(2.2)

where the bracketed matrix pairs consist of p×r and p×(p−r) matrices. Suppose
at first that a ≥ 2, and set Da ≡ Γ(a − 1)β and define by Jr the r × p matrix
whose (i, j) component is 1 if i = j and 0 otherwise. The companion matrix for
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the generating mechanism C(z) is defined as the following square matrix of size
(a− 1)p + r ≡ q

D ≡




−C−1
0 C1 −C−1

0 C2 · · · −C−1
0 Ca−1 −C−1

0 Da

Ip 0 · · · · · · 0

0 Ip
...

. . .
...

0 0 · · · Jr 0


 .(2.3)

Let the vi and ωi, i = 1, . . . , q, be the eigenvectors and eigenvalues of D respec-

tively, and let v
(j)
i be the partitions of the eigenvector vi such that the v

(j)
i are

p-vectors for 1 ≤ j ≤ a−1 and v
(a)
i is a r-vector, and hence vi = (v

(1)′

i , . . . , v
(a)′

i )′.
In view of the form of D, the characteristic equation

Dvi = ωivi(2.4)

implies that for each i we have, as long as |ωi| = 0,

(
I + C−1

0

a−1∑
k=1

Cjω
−k
i + C−1

0 DaJrω
−a
i

)
v

(1)
i = 0,

v
(j)
i = ω−j+1

i v
(1)
i , j = 2, . . . , a− 1,

v
(a)
i = ω−a+1

i Jrv
(1)
i .

It also follows from (2.4) that

D = [v1, . . . , vq]diag(ω1, . . . , ωq)[v1, . . . , vq]
−1.

(In this paper, we assume without much loss of generality that all the non-zero
eigenvalues v1, . . . , vq are distinct.)

The characteristic roots of detC(z) = 0 are nothing but the inverse of the
eigenvalues of the matrix D, so that the zero condition of C(z) is equivalent to
that all ωi’s are inside the unit circle. (See Miller (1968), p. 37.) We would
sometimes encounter such cases as some ωj ’s for D in conventional estimation
procedures of (1.1) fall on or outside the unit circle, violating the assumption of
the posited hypothesis whose rank of Π is equal to r. This would be the case in
particular if a data set is generated by a process whose cointegration rank is less
than r. For example, the Cj ’s induced from the unrestrictive ML estimate might
quite possibly produce such an eigenvalue set. For testing cointegration rank r,
r = 0, 1, . . . , p−1 against rank p based on LR statistics, we have to prepare all of
the likelihoods, where each likelihood should be estimated with a specified rank
of Π. Our root-modification procedure aims at keeping the respective hypothesis
in concern valid. A way of modification of the model parameters to secure the
condition of stationarity is given as follows. If the ωi, i = 1 . . . , s, are eigenvalues
such that |ωi| > 1 − ε1 for a suitably chosen small number ε1 and |ω1| > |ω2| >
· · · > |ωs|, contract them to ω†

1, . . . , ω
†
s so that |ω†

1| > |ω†
2| > · · · > |ω†

s|, |ωs+1| ≤
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|ω†
i | ≤ 1 − ε1 and arg(ω†

i ) = arg(ωi), i = 1, . . . , s, where ωs+1 is the eigenvalue
such that |ωs+1| = maxs+1≤j≤q |ωj |. A way to do this is to set

ω†
i ≡

ωi

|ωi|

{
|ωs+1| +

(s− i + 1)(1 − ε1 − |ωs+1|)
s

}
.(2.5)

We contract only the roots on or outside the (1 − ε1) circle for the correction to

be minimal. Using those modified ω†
i ’s, define D† by

D† ≡ [v†1, . . . , v
†
s, vs+1, . . . , vq] diag(ω†

1, . . . , ω
†
s, ωs+1, . . . , ωq)

· [v†1, . . . , v†s, vs+1, . . . , vq]
−1,

where the new eigenvectors v†i , i = 1, . . . , s, are given by

v
(1)†
i = v

(1)
i ; v

(j)†
i = (ω†

i )
−j+1v

(1)
i , j = 2, . . . , a− 1;

v
(a)†
i = (ω†

i )
−a+1Jrv

(1)
i .

By virtue of this construction, D† is given as

D† =




−C−1
0 C†

1 −C−1
0 C†

2 · · · −C−1
0 C†

a−1 −C−1
0 D†

a

Ip 0 · · · 0 0

0 Ip
. . .

...
...

0 0
. . . 0 0

0 0 · · · Jr 0



,(2.6)

whose eigenvectors and eigenvalues are given by v†1, . . . , v
†
s, vs+1, . . . , vq and

ω†
1, . . . , ω

†
s, ωs+1, . . . , ωq respectively. Based on the elements of D†, we can pro-

duce the desirable AR coefficients whose characteristic roots are outside the unit
circle.

In the case of a = 1, the companion matrix D is defined by D = C−1
0 C1.

If we denote the r × r upper left block of C−1
0 C1 by (C−1

0 C1)
(1,1), the nonzero

eigenvalues of D is given by the roots of det{ωIr − (C−1
0 C1)

(1,1)} = 0. Suppose
that ω1, . . . , ωr are those non-zero eigenvalues (hence ωr+1 = · · · = ωp = 0) and
that these are distinct. If the absolute values of the eigenvalues ωi, i = 1, . . . , s,
are greater than (1− ε1), then define the contracted ω†

i ’s as in (2.5), so that the
modified D† is given by

D† = (v1, . . . , vp) diag(ω†
1, . . . , ω

†
s, ωs+1, . . . , ωp)(v1, . . . , vp)

−1.

The change of the coefficients Ci to C†
i produces the new parameters α†,

Γ(k)†, k = 1, . . . , a−1. Namely, setting C†
i = [C

(1)†
i , C

(2)†
i ] where C

(1)†
i and C

(2)†
i

are p× r and p× (p− r) matrices, we have for given β and β⊥,

Γ(a− 1)† = [C(1)†
a , C

(2)†
a−1](β,−β⊥)−1;

Γ(k − 1)† = [C
(1)†
k + Γ(k)†β,C(2)†

k−1][β,−β⊥]−1 for 2 ≤ k ≤ a− 1;

α† = −(C
(1)†
1 − β − Γ(1)†β)(β′β)−1.(2.7)
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Thus we have a new set of AR coefficients whose Jordan-form eigenvalues are
inside the unit circle.

The validity of the root condition for the MA coefficient estimate B(z) is also
examined and if some eigenvalues of the Jordan form are outside the unit circle,
we modify them in a parallel way so that all of them are inside the unit circle.
For MA coefficients, there is another modification approach. See Remark 2.2.

Remark 2.1. Johansen’s algorithm for LR is based on solving an eigen-
equation derived from the concentrated likelihood in which the parameters Γ(j)’s
are eliminated by maximization. The point is that the procedure has no built-in
mechanism for the estimated Γ(j)’s to satisfy the root conditions. In contrast,
our numerical method can keep number of unit roots exactly the same as the
one specified by a hypothesis in concern. The case may be illustrated by the
Dickey-Fuller test for a scalar-value process

�x(t) = ax(t− 1) + ε(t), t = 1, . . . , T,

where ε(t) is a Gaussian white noise. For testing a = 0 against −2 < a < 0.
Suppose the test is conducted as is commonly done by the t-statistic√
T â/{∑T

t=1 x(t − 1)2}1/2, where â is “uncontrolled” OLS estimate of a. The
test statistic is not proper for â > 0 if we test the random-walkness against sta-
tionarity. But the case is automatically ignored in one-side test in which the null
hypothesis is rejected if â < −c for some positive c. But if we apply F test (or
the LR test) which corresponds to Johansen’s test, we face difficulty since the F
statistic in general is not “signed” as the t-statistic. A large F may be due to
large positive â which is not an evidence favourable to the stationarity alternative
at all. Our algorithm searches the ML estimate â in the range −∞ < â ≤ −ε1.

Remark 2.2. Another, computationally simpler, method of contracting the
eigenvalues is the contraction of the coefficients Ci to C†

i ≡ λiCi, i = 1, . . . , a
for λ = (1 + ε)−1 max1≤j≤q |ωj |. Since then C†(z) =

∑a
i=0 Ci(λz)

i, the roots
of detC†(z) = 0 are constituted of λ−1ω1, . . . , λ

−1ωq so that all the roots are
on or inside the circle {z : |z| ≤ (1 + ε)−1}. As for the MA coefficients, they
may be modified by the canonical factorization of the spectral density which
has the advantage of keeping the spectral density matrix invariant under the
modification. (See Hosoya (1997).) Those approaches are not pursued in this
paper.

3. Three-step estimation procedure

This section aims at implementing the procedure given by Takimoto and
Hosoya (2004) with a mechanism which guarantees the estimated coefficients
in Steps 2 and 3 to satisfy the root conditions automatically. Our modified
three-step algorithm is organized as this: (1) Step 1 produces a consistent initial
estimate of β and residuals; (2) Step 2 estimates the ARMA coefficients for each
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pair of ARMA orders (a, b) by substituting the disturbances with the residuals
produced in Step 1. If the root conditions of the estimated model are violated,
the estimated set of ARMA coefficients is modified so as to be located inside
the admissible set by the root-contraction method presented in Section 2; (3)
For each pair of lag orders, Step 3 sets the estimated parameters in Step 2 as
the initial values for the maximizing iteration. In order to maximize the Whittle
likelihood, our method uses an optimality algorithm in which penalty functions
are added to the log likelihood in order to keep the ARMA estimate satisfying
the root conditions. We identify the ARMA orders in the final stage by means
of the BIC, producing the final selection of the pair (â, b̂).

Remark 3.1. The consistency of lag orders and parameters involved in the
model, which is required in deriving the asymptotic distribution of the WLR
statistic, is guaranteed by our way of application of information criteria. Namely,
we use the AIC in Step 1 for approximating the virtually infinite-order AR model
by a truncated version and the BIC in Step 3 for selection of the finite lag
orders of ARMA model. For stationary ARMA series, Theorem 3 of Hannan and
Rissanen (1982) showed that, under a set of regularity conditions, if the maximal
lag order within which selection is made in Step 1 increases monotonically to
infinity by a rate faster than log T but not faster than (log T )b for some b > 1,
their three-step method based on the BIC produces

√
T -consistent estimators of

the model parameters. The OLS estimator of β is T -consistent as Stock (1987)
showed.

To be more specific, our three-step procedure is conducted as follows:

Step 1 (Estimation of the disturbance series). The purpose of this step is
to produce an estimate of the unobserved innovation sequence by means of a
consistent initial estimate of β. We set β′ = [Ir, β0] for Π = αβ′ as in Ahn and
Reinsel (1990), where β0 is an r × (p − r) matrix of unspecified parameters. A
consistent initial estimate β̂ of β can be obtained by the OLS procedure thanks
to its superconsistency. If Π has full rank, we set β̂ = Ip for which the data
generation process is reduced to a stationary VARMA model. We set the fitted
AR order as n, and denoting by ε̂n(t) the orthogonal projection residual of Z(t)
onto the linear span of β̂Z(t−1),�Z(t−1), . . . ,�Z(t−n+1), 1 and 1{rank(Π) =
p}t, set Ω̂ = 1/(T−n)

∑T
t=n+1 ε̂n(t)ε̂′n(t). We then apply the information criterion

AIC(n) = log det Ω̂ +
2p((n− 1)p + r + 1 + 1{rank(Π) = p})

T
.

The order n which minimizes AIC(n) is selected as the order estimate n̂, and
the corresponding residual sequence {ε̂(t), t = n̂ + 1, . . . , T} is obtained.

Remark 3.2. Another identifying restriction is provided by Johansen (1991)
who uses the normalization α̂′Rα̂ = In, where R is the sample moment matrix
of residuals. For a relationship between those two identifying restrictions, see
Watson (1994), p. 2891.
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Step 2 (Estimation and its modification). In this step, based on Hosoya’s
representation theorem (Hosoya (2003, Theorem 2.1)), the AR part of a coin-
tegration model is separated into the unit-root component and the stationary
component so that we can focus only on the latter component. The stationarity
component is expressed in the Jordan form in which the eigenvalues exceeding
unity in modulus are contracted so as to be inside the unit circle.

• Step 2.1. The OLS coefficient estimate is obtained by the regression of
�Z(t) on β̂′Z(t−1),�Z(t−1), . . . ,�Z(t−a+1), 1, 1{rank(Π) = p}t, ε̂(t−
1), . . . , ε̂(t− b).

It is not necessarily the case that the coefficient estimate obtained in Step 2.1
belongs to the admissible set. Under Hr : rank(Π) = r, for 0 ≤ r < p, the
roots of detA(z) = 0 must consist of r unit roots and (p − r) roots which lie
outside the unit circle. But it is not guaranteed by Step 2.1 estimation, since
no restriction is imposed in the estimation procedure. The ARMA coefficient
modification procedure proceeds as follows:

• Step 2.2. Express the cointegrated AR coefficients A(z) in terms of C(z)
given in (2.1).

• Step 2.3. Express coefficients of C(z) in the Jordan form representation as
in (2.3).

• Step 2.4. Modify the eigenvalues so that all the values fall inside the unit
circle as in (2.5).

• Step 2.5. Produce new C(z) based on the modified Jordan form as in (2.6).
• Step 2.6. Produce new A(z) from new C(z) as in (2.7).
• Step 2.7. Express MA coefficients in the Jordan form.
• Step 2.8. Modify the eigenvalues of the Jordan form and produce new MA

coefficients.

Remark 3.3. We assume that each component of {Z(t)} is an I(1) process.
If, under the hypothesis of non-cointegrated I(1), we need to modify the esti-
mated coefficients in Step 2.1, it indicates the possibility that {Z(t)} may be an
I(2) process. In such a situation, we may require estimation and testing proce-
dures which allow for the integration order bigger than one. This paper does not
go into that issue.

By the root-contraction method of Steps 2.2 to 2.8, the coefficient estimate
of the ARMA model is pulled into the admissible set and we use it as the initial
value for the optimization iteration in Step 3.

Step 3 (MWL estimation). Step 3 consists of a quasi-Newton maximiza-
tion of the Whittle likelihood function augmented by penalty functions. The
procedure proposed in this paper differs essentially from Takimoto and Hosoya
(2004) in that two penalty functions are added to the objective function so that
the maximizer of the argumented objective function automatically satisfies the
root conditions. The (possibly modified) coefficient estimate in Step 2 is used as
the initial value for the iteration of this step. Denote by fξξ the spectral density
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of the MA process ξ(t) =
∑b

l=0 Θ(l)ε(t− l); namely

fξξ(λ) =
1

2π

{
b∑

l=0

Θ(l)eilλ
}

Ω

{
b∑

l=0

Θ(l)eilλ
}∗

.

Let W
(1)
1 (λ) and W

(1)
2 (λ) be p and (r+p×(a−1)+s)-vector functions respectively

defined on [−π, π] by

W
(1)
1 (λ) = (2π(T − c + 1))−1/2

T∑
t=c

eitλ�Z(t),

W
(1)
2 (λ) = (2π(T − c + 1))−1/2

T∑
t=c

eitλ{(β̂′Z(t− 1))′,�Z ′(t− 1), . . . ,

�Z ′(t− a + 1), 1, 1{rank(Π) = p}t}′,

where c = max(n̂ + a + 1, n̂ + b + 1); s = 1 for Hr, 0 ≤ r ≤ p − 1, and s = 2
for Hp in view of the additional trend term under the full rank hypothesis. Let
Q1(ψ

(1),Ω(1)) be the real-valued function defined by

Q1(ψ
(1),Ω(1)) = log det Ω(1) +

1

2π

∫ π

−π
{W (1)

1 (λ) − (W
(1)
2 (λ)′ ⊗ Ip)ψ

(1)}∗

· fξξ(λ)−1{W (1)
1 (λ) − (W

(1)
2 (λ)′ ⊗ Ip)ψ

(1)}dλ

where ψ(1) = (vec(α)′, vec(Γ(1))′, . . . , vec(Γ(a− 1))′, µ′, (ν1{rank(Π) = p})′)′ is a
p× (r + p× (a− 1) + s)-vector. Setting

LR(r) = −(T − c + 1)/2 ×Q1(ψ
(1),Ω(1)).(3.1)

We call it Type 1 Whittle likelihood (L1), whereas Type 2 Whittle likelihood
(L2) uses the full sample data, exploiting the assumption that �Z(t) and β′Z(t−
1) are stationary under Hr. Set

W
(2)
1 (λ) = (2πT )−1/2


Ip −

a−1∑
j=1

Γ(j)e−ijλ




T∑
t=1

eitλ�Z(t),

W
(2)
2 (λ) = (2πT )−1/2

T∑
t=1

eitλ{(β̂′Z(t− 1))′, 1, 1{rank(Π) = p}t}′,

ψ(2) = (vec(α)′, µ′, (ν1{rank(Π) = p})′)′,

where W
(2)
1 (λ), W

(2)
2 (λ) and ψ(2) are p, (r + s) and p(r + s)-vector functions

respectively. Type 2 Whittle likelihood is then defined by

LR(r) = −T/2 ×Q2(ψ
(2),Ω(2))(3.2)

where Q2 is defined by replacing W
(1)
1 ,W

(1)
2 , ψ(1),Ω(1) in Q1 by W

(2)
1 ,W

(2)
2 ,

ψ(2),Ω(2). Setting Θ(λ) =
∑b

l=0 Θ(l)eiλl, the minimizer Ω(i) of Qi for i = 1, 2 is
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given by

Ω̂(i) =

∫ π

−π
Re[{Θ(λ)−1W

(i)
1 (λ) − (W

(i)
2 (λ)′ ⊗ Θ(λ)−1)ψ(i)}

· {Θ(λ)−1W
(i)
1 (λ) − (W

(i)
2 (λ)′ ⊗ Θ(λ)−1)ψ(i)}∗]dλ,

whence we have the relation

Qi(ψ
(i), Ω̂(i)) = log det Ω̂(i) + p.

Setting the coefficient estimate obtained in Step 2 as the initial value, we solve
the minimizing problem of log det Ω̂ for the parameter vector ψ by means of a
quasi-Newton method. For the likelihood to be maximized in the time-domain
representation, it is necessary to evaluate residual sequences in each iteration
step to estimate the covariance matrix Ω. In contrast, the Whittle approach
reduces the computational amount by omitting the exploitation of residuals. The
root modification method in Step 2 places the initial estimate in the admissible
set. To keep the coefficient estimate remaining inside the admissible set during
the optimization iteration, we add two penalty terms to the objective function
log det Ω̂. For a suitably small positive ε2 and a suitably fixed positive value d,
define a new objective function by

log det Ω̂ + 1{max |ωi1 | > 1 − ε2}de−1/u1(3.3)

+ 1{max |ωi2 | > 1 − ε2}de−1/u2 ,

where ωi1 and ωi2 are eigenvalues of the companion matrix for the AR and
MA parts respectively, i1 = 1, . . . , (a − 1)p + r and i2 = 1, . . . , bp, and uj =
max |ωij | − (1− ε2). Namely, the uj expresses the distance between the maximal
eigenvalue and unity. Therefore, the further uj > 0 is away from zero, the heavier
the penalty e−1/uj becomes. If uj is negative, all of the eigenvalues are inside
the unit circle and these penalty terms do not work. The constant d should be
chosen so that log det Ω and the penalties are comparable magnitudes.

After obtaining the MWL estimates for each combination of the ARMA
orders (a, b), we select the lag structure of the ARMA model by means of the
BIC, which is given by

BIC(a, b) = log det Ω̂ + p · log
1

2π
+ p

+
p(p(a− 1) + bp + r + 1 + 1{rank(Π) = p}) log T

T
,

for a ≤ ā and b ≤ b̄, where ā and b̄ are chosen beforehand to be sufficiently large.

4. Testing procedure

This section explains the testing procedure for the rank r hypothesis against
the rank p hypothesis based on the Whittle likelihood, where the full-rank alter-
native is supposed to be given by the stationary model involving the linear time
trend.
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The LR statistic for cointegrated ARMA models is not reducible, in finite-
sample circumstances, to the eigenvalue problem as Johansen (1988, 1995) posed
for VAR models, but rather a direct computation of the WLR statistics is re-
quired. For testing against the cointegrating rank p, we evaluate the p-value based
on the asymptotic distribution given in Corollary 5.1 of Hosoya and Takimoto
(2003) which gives the asymptotic distribution of the WLR statistics in case the
full-rank alternative explicitly involves a linear time trend.

Remark 4.1. The BIC applied to different cointegration-rank models would
possibly choose different ARMA orders. For convenience of inferential purposes,
we set ARMA lag orders for the hypotheses of r = 0, . . . , p − 1 to equal to the
one for the full-rank trend-stationary model. Namely, only in estimating the
full-rank hypothesis, the lag structure is identified by the information criterion
BIC after evaluating the likelihoods for each combination of the lag orders and
for other hypotheses of smaller ranks, we simply apply that set of lag orders.

Suppose that the null hypothesis of cointegration rank r (0 ≤ r < p) is given
by

Hr : Π = αβ′,

whereas the alternative hypothesis of cointegration rank p is given by

Hp : Π = αβ′ + α(p−r)β⊥,

where α and β are p× r full rank matrices, and α(p−r) is a full rank p× (p− r)
matrix and β⊥ is a p × (p − r) matrix which is a full rank p × (p − r) matrix
orthogonal to β. Define the log-WLR statistic by LR(r, p) = 2{LR(p)−LR(r)},
where LR(·) is defined by either (3.1) or (3.2).

Given a standard Brownian motion {B(u, Ip−r), 0 ≤ u ≤ 1}, define

G(u) =

[
B(u, Ip−r) − B̄

u− 1/2

]
,

where G(u) is the (p− r + 1)-vector process and B̄ =
∫ 1
0 B(u, Ip−r)du. The log-

WLR statistic LR(r, p) for testing the rank r against the rank p is asymptotically
distributed as

LRA(r, p) ≡ tr

[∫ 1

0
dB(u, Ip−r)G(u)′

{∫ 1

0
G(u)G(u)′du

}−1

(4.1)

·
∫ 1

0
G(u)dB(u, Ip−r)

′
]
.

(See for those limit results Hosoya and Takimoto (2003). Note that (4.1) differs
from what Johansen (1995) gave. In the latter, G(u) is a (p− r)-vector process
with B(·)−B̄ replaced by B(p−r−1)(·)−B̄(p−r−1) which is a subprocess constituted
of Bk(·, Ip−r), 1 ≤ k ≤ p− r − 1.)

For the purpose of evaluating p-value based on this asymptotic expressions,
we use Monte Carlo simulation of the stochastic integrals in (4.1) which is con-
ducted as follows:
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• Step 1. By means of standard-normal random numbers, generate the trace
statistic given in (4.1) by setting the number of partitions for numerical
integration equal to 400 and the number of iterations equal to 100000.

• Step 2. Based on 100000 observed trace statistics, calculate p-value by
counting the number of the simulated trace statistics exceeding the observed
WLR.

Remark 4.2. For the limiting result (4.1) to hold, a weaker set of conditions
for ε(t) than the ones in (1.1) suffices; see Hosoya (2005).

Remark 4.3. In respect of discrete approximation of the stochastic integrals
in (4.1), our trials by several combinations of the number of partition and it-
eration confirm that 400-step Gaussian random walks suffice to approximate
stochastic integrals.

5. Small sample performance

To investigate the effects of deterministic trend under the full-rank alterna-
tive hypothesis, this section examines the rejection probability of the cointegra-
tion rank test of Section 4 in small-sample circumstances and the performance
of the root-contraction mechanism in Steps 2 and 3 by means of Monte Carlo
simulation. Many authors investigate the finite sample performance of various
cointegrating rank tests intensively in the 1990s. They report that in some sit-
uation the small-sample properties of Johansen’s trace statistics are at variance
with what the asymptotic theory predicts and the asymptotic distributions tend
to have large size distortions. In particular, Hubrich et al. (2001) reviews the
literature on cointegration tests and presumptions for the asymptotics based on
a unifying framework, and provide new simulation studies to evaluate the perfor-
mance of rank tests for the same data generating processes (DGP). Furthermore,
Johansen (2002) and Nielsen (2004) provide some correction procedures to im-
prove the finite sample bias. But, in this paper, we focus on the finite-sample
performance of our eigenvalue contraction procedure in a simple model and do
not go into the correction issue.

The empirical sizes are known to be influenced by cointegrating vectors,
covariances of innovation and the dimension of the model. In this paper, we deal
with the case of a bivariate random walk with a drift as the DGP. Consider the
following simple bivariate series {Z(t)} generated by

�Z(t) = ΠZ(t− 1) + µ + 1{rank(Π) = 2}νt + ε(t).(5.1)

Suppose that the null hypothesis of cointegration rank zero is given by H0 :
rank(Π) = 0, whereas the alternative hypothesis of rank two is given by H2t :
rank(Π) = 2. Assume that the true generating process is a two-dimensional
random walk with Π = 0, µ = (0.5, 0.5)′ and the ε(t)’s are i.i.d.N (0, I2) in (5.1).
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We are concerned with rejection probabilities of rank tests against the full-
rank trend-stationary hypothesis and the effectiveness of our root-contraction
procedure. For comparing with usual rank tests against the constant-mean sta-
tionary alternative hypothesis, we conduct another simulation: The two dimen-
sional model is given by

�Z(t) = ΠZ(t− 1) + µ + ε(t).

Assume that the DGP is a two-dimensional random walk with a drift as in the
previous setting. Under this model, the alternative hypothesis is denoted by
H2c : rank(Π) = 2 to discriminate it from H2t. To produce the empirical size,
the sample sizes are chosen to be T = 50 and 100 and generate 1000 sets of data
series. In order to eliminate the effect of initial values in data generation, data
from the 101th observation on are used.

We investigate the two WLR tests; namely, (i) H0 vs H2c and (ii) H0 vs
H2t. Table 1 exhibits the quantiles of rejection probability, where rejection prob-
abilities are observed to be roughly close to the nominal sizes expected from the
asymptotic theory in each case, but it seems that empirical sizes against trend-
stationary alternatives, H2t, are slightly higher than those against constant-mean
ones, H2c. Table 2 shows how many times the root-contraction procedure is em-
ployed to let all of the characteristic roots stay outside the unit circle in Step
2 for obtaining initial values and in Step 3 for guaranteeing the root condition

Table 1. Rejection probabilities for rank(Π)=0.

H0 vs H2c nominal 10% test nominal 5% test nominal 1% test

T = 50 0.117 0.062 0.013

T = 100 0.100 0.045 0.010

H0 vs H2t

T = 50 0.118 0.058 0.013

T = 100 0.109 0.056 0.010

Note. H2c and H2t mean that the full-rank alternative hypotheses are reduced to a

constant-mean and trend stationary models, respectively.

Table 2. Observed number of the root contraction.

Step sample size H2c H2t

Step 2 50 344 14

100 395 8

Step 3 50 112 14

100 65 8

Note. The row of Step 2 denotes the observed number of the root-contraction procedure

conducted for initial values and the row of Step 3 provide the average observed number of

the root-contraction procedure conducted to keep parameter coefficients belonging to the

admissible set in 1000 replication.
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in the iterative optimization. It provides the observed number of root modifi-
cation in Step 2 and the average observed number of root modification in Step
3 in 1000 replication. Under the rank zero hypothesis, it does not report the
observed number, since no AR coefficients are contained in the model. In esti-
mating the constant-mean stationary model by using 50 and 100 samples, the
observed number in Step 2 are 344 and 395 respectively. In Step 3, the penalty
term works 112 and 65 times in average to keep estimates to stay in the admis-
sible set. On the other hand, estimates of the trend-stationary model belong to
the admissible set in almost all replication. In 50 and 100 samples, 14 and 8
cases need to be contracted for initial values in 1000 replication. The observed
numbers in Step 3 are reduced from 112 and 65 to 14 and 8 by containing trend
term. Since estimates given by unrestricted estimation may not satisfy the root
condition, the LR statistics constructed from these estimates may violate the
hypothesis in concern. Characteristic roots derived of coefficient estimates by
unrestricted OLS in Step 2 may not satisfy the root condition even for this sim-
ple bivariate random walk. Regardless of whether we use the time-domain or
the frequency-domain approaches, to obtain the maximized likelihood satisfying
the root condition, we need to start from valid initial values. Implementing our
root-modification mechanism in Steps 2 and 3 makes the estimates conformable
to the hypothesis in concern.

Also, it seems unreasonable to set a constant-mean stationary as the full-
rank alternative hypothesis if the DGP has a drift, since we need then to con-
tract characteristic roots more often for estimating coefficients. By including the
trend term in the full rank model, the number of root modification is decreased
drastically and the frequency increases for obtaining valid coefficient estimate
without contraction mechanism.

6. An applied example

We apply our three-step procedure to a trivariate series of the U.S. interest-
rates which are the Federal Fund rate (FF), 90-day Treasury Bill rate (GM3) and
1-year Treasury Bill rate (GT1) over the period January, 1960 through December,
1979. (All the three series were obtained from the citibase financial data base).
These series were investigated by Stock and Watson (1988) in views of testing
for common trends, by Reinsel and Ahn (1992) and Yap and Reinsel (1995)
who fitted VAR(2) and VARMA(1, 1) models respectively, and also by Takimoto
and Hosoya (2004) who fitted VARMA models based on the Whittle likelihood
approach. All of those analyses concluded that there is at least one cointegrating
relationship among those series in which the alternative hypothesis is posited as
the full-rank constant-mean stationary model. But Figures 1 to 3 indicate that
those economic series can not be constant-mean stationary processes; rather the
mean depends on the time t.

We investigate the same series under the trend-stationary model and compare
with the results given by the preceding literature. As in the above cited papers,
we use the log-transformed data, which seem to behave more homogeneously over
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Figure 1. ln FF.

Figure 2. ln GM3.

Figure 3. ln GT1.
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the observation period than the original series. All series are plotted in levels and
differences in Figures 1 through 3. For determining the lag structure of ARMA,
we use 220 observations over the period from September, 1961 to December, 1979,
because the 20 lags are chosen by the AIC in Step 1 and they need to be kept
as initial values. But after choice of the order (2, 0), in order to exploit as much
observations as possible, we use the original 240 in the subsequent estimation
procedure, since the selected ARMA(2, 0) model involves no MA terms. Because
of high volatility in the beginning part of the observation period, we use Type 1
Whittle likelihood in the following analysis.

Before conducting the three-step procedure we must investigate the influence
of some constant values, ε1, ε2 and d, on the objective function given in Step
3. For numerically maximizing the Whittle likelihood, we set ε1 equal to 0.05
for Step 2 and ε2 equal to 0.02 for Step 3. (See (2.5) and (3.3).) The setting
ε1 > ε2 seems to work better, since this allows eigenvalues of the third-step
estimates to be located nearer to the unit circle. For the penalty terms to work
effectively, we set d equal to 1030. The values of uj for j = 1, 2 in the penalty
functions indicate the distance between 1− ε2 and the maximum absolute value
of eigenvalues of the Jordan matrix for the AR or MA parts. Table 3 illustrates
the cases uj = 0.01, 0.015, 0.02 and 0.03. It shows that if uj = 0.01, that is,
the maximum absolute eigenvalue is at most 0.99, influence of the penalty terms
3.7× 10−14 is negligible, because the leading term of objective function log det Ω̂
for each combination of a and b is around −18. But if uj is 0.015, the penalty
term 1030e−1/uj is 1.1 × 10, which is very large in comparison with log det Ω̂.
This setting can prevent eigenvalues to be more than 0.995 in Step 3 iteration
and it seems to be good enough for the interest-rate series for the purpose of
optimization conducted inside the admissible set.

We determine the lag order of ARMA model by evaluating the BIC based on
the Whittle likelihoods under the full-rank trend-stationary hypothesis. Maxi-
mum lag order ā and b̄ are set as 5 in this illustration. The computation involves
ARMA(5, 5) model as the largest possible model and this model has as many
as 96 parameters under the alternative hypothesis. All the first derivatives of
the objective function evaluated at the estimate does not necessarily vanish for
some steps of iterations, but, as Huber (1967) and Pollard (1985) showed, for
the asymptotic results of the maximum likelihood estimator to hold, it suffices
for the first derivatives divided by the sample size T to go to zero as the sample
size increases.

Table 3. Values of uj and 1030e−1/uj .

uj 1030e−1/uj

0.01 3.7 × 10−14

0.015 1.1 × 10

0.02 1.9 × 108

0.03 3.3 × 1015
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Before proceeding to Step 3, if necessary, the initial coefficients as for AR
and MA parts are modified so as to belong to the admissible set, but, all of initial
coefficients of AR and MA parts belong to the admissible set; each eigenvalue is
less than unity in estimating full-rank model. In Step 2, eigen-value contraction
algorithm was not employed in all of the lag-order combinations.

As regards the convergence criteria in optimization, the relative rates of
changes for the objective function and variables and the absolute value of deriva-
tives are set equal to 10−4, 10−4 and 1, respectively. We set the absolute value
of derivatives relatively large to reduce the computational cost. The observed
maximum of those values is 0.195 and the rest ones are less than 10−2 and we
may judge that the maximum of the Whittle likelihood is attained by our con-
vergence conditions. Although for this data set it is not necessary to contract
eigenvalues in Step 2, we observe that the maximum of eigenvalues is larger than
unity in the optimization iteration in Step 3, and that penalty terms work well
to keep the ARMA coefficient estimate inside the admissible set and thanks to
this mechanism, our procedure avoids automatically iteration drift.

Based on the outcomes of Step 3 for each lag structure, the BIC selects the
ARMA(2, 0) for the trend-stationary model among 30 combinations of the lag
structure. Table 4 exhibits the BIC values for AR order from one to three and
MA order from zero to three. The BIC is minimized for the ARMA(2, 0) model
and the following analysis is based on the ARMA(2, 0) model.

For testing cointegration rank, in addition to the full-rank likelihood, we
must evaluate the Whittle likelihood for ARMA(2, 0) model with reduced ranks
0 to 2. We examine how many times the initial coefficients obtained in Step 2 are
modified and the penalty terms work to keep coefficients inside the admissible
set in Step 3. In all of the models the set of initial coefficient estimates by
unrestricted OLS procedure is admissible; any modification of estimates are not
observed.

As for the root-contraction procedure in Step 3, except for the rank two

Table 4. The BICs after Step 3 under H3.

lag order BIC

(1, 0) −21.25

(1, 1) −21.32

(1, 2) −21.20

(1, 3) −21.08

(2, 0) −21.45

(2, 1) −21.28

(2, 2) −21.12

(2, 3) −21.00

(3, 0) −21.42

(3, 1) −21.21

(3, 2) −20.99

(3, 3) −20.81
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model, the eigenvalues evaluated in the optimizing iteration did not exceed unity
and the penalty was not employed. But in the rank two model, the observed
number of times on which penalty was enforced is 3. In estimating the models
with ranks 0 to 3, the number of direction searched are 1, 89, 149 and 1, respec-
tively. The likelihoods of the rank 1 and 2 model, where the initial likelihoods are
improved in the process of iteration, gain from −20.517 and −20.552 to −20.535
and −20.596, respectively. We may conclude that our eigen-value contraction al-
gorithm provides pertinent estimates whose characteristic roots satisfy the root
condition exactly.

The test results for the ranks 0 to 2 against the full-rank trend stationary
alternative hypothesis are listed in Table 5. Our tests strongly reject all the non-
stationary hypotheses and supports the trend-stationary hypothesis in contrast
to the results reported in the literature. Yap and Reinsel (1995) and Takimoto
and Hosoya (2004) dealing with the stationarity hypothesis with constant term,
and Reinsel and Ahn (1992) dealing with the one with no constant term, support
the possibility of one or two cointegrating relationships for these trivariate series;
all of them support that the series involve at least one nonstationary component.

Consequently our finally identified model is given as:

�Ẑ(t) =



−0.259 0.335 −0.004

0.049 −0.114 0.015

0.051 0.013 −0.149


Z(t− 1)

+



−0.053 −0.015 0.345

0.064 0.021 0.275

0.039 −0.014 0.360


�Z(t− 1) +



−0.039

0.050

0.105


+




0.00006

0.0002

0.0004


 t;

Ω̂ =




7.800 × 10−3 2.543 × 10−3 2.166 × 10−3

2.543 × 10−3 3.153 × 10−3 2.462 × 10−3

2.166 × 10−3 2.462 × 10−3 2.644 × 10−3


 .

The graphs of residuals based on this model are given in Figures 4 to 6.

Table 5. The p-value of the rank test for U.S. interest-rates.

null alt L(r, 3)

r = 0 j = 3 66.93

(0.00003)∗∗∗

r = 1 j = 3 33.19

(0.00443)∗∗∗

r = 2 j = 3 18.76

(0.00390)∗∗∗

Note. ∗∗∗ denotes 1% significance level.
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Figure 4. ln FF − ln F̂F.

Figure 5. ln GM3 − ln ˆGM3.

Figure 6. ln GT1 − ln ˆGT1.
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7. Concluding remarks

In this paper, we presented a detailed account of a new numerical proce-
dure for evaluating the MWL estimates. One of the difficulties involved in the
numerical evaluation in finite samples is that the maximum of the Whittle like-
lihood is not necessarily attained inside the admissible parameter set. Based on
a representation theorem of cointegrated processes, we proposed an eigen-value
contraction method in the case that the root condition is violated and also a
numerical iteration procedure for maximization of the Whittle likelihood in each
step of which the root condition is implemented by means of penalty functions
so that the outcome in each stage of iteration is guaranteed to fall inside the
admissible set.

For further development of our approach, we may need to take into ac-
count the heteroscedasticity of the error terms. Possible extensions to deal with
this situation are to incorporate the Box-Cox transformation into our three-step
procedure, to remodel the error process {ξ(t)} as a non-linear process to ac-
commodate conditional heteroscedasticity and/or to take structural breaks into
account in the model (1.1). As for the literature of the related topics, Ling and
McAleer (2003) proposed vector ARMA-GARCH models in the time-domain ap-
proach and Zaffaroni (2003) presented univariate nonlinear MA models in the
frequency-domain one. (See also Robinson and Zaffaroni (1997, 1998).) In the
time-domain method, moreover, by extending Ahn and Reinsel (1990), Li et al.
(2001) investigated partially nonstationary multivariate AR model with condi-
tional heteroscedasticity. Extension of our approach in those directions remains
open.

Another direction of extension is to incorporate fractionally integrated pro-
cess, whose integrated order can take fractional number. Based on the Whittle
likelihood, Hosoya (2004) and Shimotsu and Phillips (2005) dealt with testing the
fractional cointegration rank and semiparametric estimation of fractional cointe-
grating system respectively. By exploiting these approaches, we may extend the
presented estimation and testing procedure to the fractional cointegrated time
series.

Many authors have pointed out that the finite sample performance of the
cointegration rank test has size distortion. For more accurate test in small sam-
ple, we may need to implement such correction procedures as suggested Johansen
(2002) and Nielsen (2004), if necessary.
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