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ON BIVARIATE REVERSED HAZARD RATES

P. G. Sankaran* and V. L. Gleeja*

In this paper we discuss various definitions of bivariate reversed hazard rate
and their properties. An exponential representation of bivariate distribution using
reversed hazard rates is given and we also develop a new family of bivariate distribu-
tions using bivariate reversed hazard rate. Finally we give a local dependence measure
using bivariate reversed hazard rates and study its properties. Various applications
of the models are pointed out.
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1. Introduction

Let T be a non-negative random variable representing lifetime of a component
with distribution function F (t). The reversed hazard rate (RHR) of T is defined
as

h(t) = lim
∆t→0

P (t− ∆t < T ≤ t | T ≤ t)/∆t.(1.1)

h(t)∆t is the approximate probability that component fails in the interval (t −
∆t, t] given that it failed before time t. If T has continuous density function f(t),
(1.1) becomes

h(t) = f(t)/F (t) = d logF (t)/dt.(1.2)

It is easy to show that h(t) determines the distribution uniquely by the relation-
ship F (t) = exp{−

∫∞
t h(u)du}.

Earlier, Keilson and Sumita (1982) discussed the role of reversed hazard rate
in the context of stochastic ordering. Block et al. (1998) studied properties of
RHR and characterized a class of distribution having constant RHR in their
interval of support. Recently, Sengupta et al. (2004) studied proportional RHR
models and their applications in reliability analysis. For more properties and
applications of RHR function, one could refer to Kalbfleisch and Lawless (1989),
Gupta and Nanda (2001), Chandra and Roy (2001), Gupta and Wu (2001) and
Nair et al. (2006).

Unlike the univariate set up, one can give more than one definition for RHR
in the multivariate setup. Recently, Roy (2002) defined bivariate reversed hazard
rate as a vector and studied its properties. Further, Roy (2002) introduced a class
of bivariate distributions using RHR vector. In this paper we consider various
definitions of RHR in the multivariate setup. We, then, study properties of these
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bivariate RHRs. Using bivariate RHRs, a general class of bivariate distributions
that extend the result given in Roy (2002) is introduced. Further, we give a local
dependence measure using bivariate RHR, which is analogous to the well known
cross ratio function given in Oakes (1989). Various applications of the models
are given.

The text is organized as follows. In Section 2, we give various definitions
of bivariate RHR and discuss their properties. An exponential representation of
bivariate distributions using bivariate RHR is given in Section 3. In Section 4, we
develop a new family of bivariate distributions and study its properties. Various
special cases of the family are pointed out. In Section 5, we introduce a local
dependence measure using bivariate RHRs and study its properties. We, then,
propose a simple nonparametric estimator of the measure in Section 6. Various
applications of the proposed class of models are pointed out in Section 7.

2. Bivariate reversed hazard rate

Let T = (T1, T2) be a nonnegative random vector representing lifetimes of
two components of a system with an absolutely continuous distribution function
F (t1, t2). Suppose that the probability density function (p.d.f.) of T , f(t1, t2)
exists. Bismi (2005) defined bivariate reversed hazard rate as a scalar, given by

m(t1, t2) = f(t1, t2)/F (t1, t2).(2.1)

It is very easy to see that (2.1) is a natural extension of the univariate RHR given
in (1.2). m(t1, t2)∆t1∆t2 + o(∆t1,∆t2) can be interpreted as the probability
of failure of components 1 and 2 in intervals (t1 − ∆t1, t1] and (t2 − ∆t2, t2]
respectively, given that they failed before (t1, t2).

Unlike the univariate setup, m(t1, t2) does not determine F (t1, t2) uniquely.
However, one can prove that m(t1, t2) = m1(t1)m2(t2) implies the independence,
where mi(ti) is marginal RHR of Ti, i = 1, 2.

Theorem 1. The variables T1 and T2 are independent if and only if

m(t1, t2) = m1(t1)m2(t2), all t1, t2 > 0.(2.2)

The proof is given in Appendix.
Since (2.1) does not determine F (t1, t2) uniquely, other types of RHR should

be considered. Roy (2002) defined bivariate RHR as a vector, r(t1, t2) =
(r1(t1, t2), r2(t1, t2)), where

ri(t1, t2) = lim
∆ti→0

P (ti − ∆ti ≤ Ti ≤ ti | T1 ≤ t1, T2 ≤ t2)/∆ti(2.3)

= ∂ logF (t1, t2)/∂ti, i = 1, 2.

For i = 1, r1(t1, t2)∆t1 is the probability of failure of the first component in
the interval (t1 − ∆t1, t1] given that it has failed before t1 and the second has
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failed before t2. The interpretation for r2(t1, t2) is similar. From Roy (2002), it
follows that ri(t1, t2) determine F (t1, t2) uniquely by the relationships

F (t1, t2) = exp

{
−
∫ ∞

t1

r1(u,∞)du−
∫ ∞

t2

r2(t1, u)du

}
(2.4)

or

F (t1, t2) = exp

{
−
∫ ∞

t1

r1(u, t2)du−
∫ ∞

t2

r2(∞, u)du

}
,(2.5)

where r1(t1,∞) = m1(t1) and r2(∞, t2) = m2(t2) are the marginal RHR of T1

and T2 respectively. Further, from (2.4) and (2.5), we can easily show that T1

and T2 are independent if and only if ri(t1, t2) = mi(ti), i = 1, 2.
A third definition of RHR that play vital role in the analysis of dependent

data is given by r∗(t1, t2) = (r∗1(t1, t2), r
∗
2(t1, t2)), where

r∗i (t1, t2) = lim
∆ti→0

P (ti − ∆ti ≤ Ti ≤ ti | Ti ≤ ti, Tj = tj)/∆ti(2.6)

= f(ti | Tj = tj)/F (ti | Tj = tj), i = 1, 2, i �= j,

with f(ti | Tj = tj) as the conditional density function of Ti given Tj = tj and
F (ti | Tj = tj) as the conditional distribution function of Ti given Tj = tj .
Thus the definition (2.6) is nothing but univariate RHR of conditional variable
Ti given Tj = tj . Since conditional distributions, in general, does not uniquely
determine the joint density, (2.6) does not provide F (t1, t2) uniquely. However,
it can be shown that T1 and T2 are independent if and only if r∗i (t1, t2) = mi(ti),
i = 1, 2. Further, if T1 and T2 are independent then ri(t1, t2) = r∗i (t1, t2). Thus
r∗i (t1, t2)/ri(t1, t2) can be considered as a measure of association of T1 and T2,
which is analogous to the well known cross ratio function of Oakes (1989).

3. Exponential representation

From (2.4) and (2.5), it follows that F (t1, t2) can be represented by ri(t1, t2),
i = 1, 2 in two different ways. In the following, we give a unique representation
for F (t1, t2) in terms of bivariate RHR given in (2.1) and (2.3).

Theorem 2. The distribution function of T = (T1, T2) can be represented
in terms of reversed hazard rates as

F (t1, t2) = exp

{
−
∫ ∞

t1

m1(u)du

}
exp

{
−
∫ ∞

t2

m2(v)dv

}
(3.1)

× exp

{∫ ∞

t1

∫ ∞

t2

(m(u, v) − r1(u, v)r2(u, v))dudv

}
.

Proof. The bivariate distribution function F (t1, t2) of T = (T1, T2) can be
written as

F (t1, t2) = F1(t1)F2(t2) exp{A(t1, t2)},(3.2)
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where A(t1, t2) = log[F (t1, t2)/F1(t1)F2(t2)] and Fi(ti) = exp{−
∫∞
ti

mi(u)du}.
The function A(t1, t2) can be viewed as a measure of dependence between T1

and T2 and we can write A(t1, t2) =
∫∞
t1

∫∞
t2

ϕ(u, v)dudv, where ϕ(u, v) is some
bivariate function.

Consider the representation

F (t1, t2) = exp{−H(t1, t2)},(3.3)

where

H(t1, t2) =

∫ ∞

t1

m1(u)du+

∫ ∞

t2

m2(v)dv −
∫ ∞

t1

∫ ∞

t2

ϕ(u, v)dudv.(3.4)

The representation (3.3) can be viewed as a generalization of the univariate
exponential representation to the bivariate case.

Now consider

ri(t1, t2) = −∂H(t1, t2)/∂ti = mi(ti) + ∂A(t1, t2)/∂ti, i = 1, 2.(3.5)

Differentiating both sides of (3.5) we get

∂2A(t1, t2)/∂t1∂t2 = [f(t1, t2)/F (t1, t2)]− [∂ logF (t1, t2)/∂t1][∂ logF (t1, t2)/∂t2],

which gives

ϕ(u, v) = m(u, v) − r1(u, v)r2(u, v).(3.6)

Thus from (3.3), (3.4) and (3.6) we obtain (3.1).

Remark 1. It may be noted that (3.1) can be written as

F (t1, t2) = exp

{
−
∫ ∞

t1

r1(u,∞)du

}
exp

{
−
∫ ∞

t2

r2(∞, v)dv

}

× exp

{∫ ∞

t1

∫ ∞

t2

(m(u, v) − r1(u, v)r2(u, v))dudv

}
.

Remark 2. If m(u, v) − r1(u, v)r2(u, v) = −γm1(u)m2(v), 0 ≤ γ ≤ 1, then
(3.1) reduces to the model given in Roy (2002),

F (t1, t2) = F1(t1)F2(t2) exp{−γ logF1(t1) · logF2(t2)}.

Remark 3. If m(u, v)− r1(u, v)r2(u, v) = θf1(u)f2(v)/[1+ θ(1−F1(u))(1−
F2(v))]

2, then (3.1) reduces to Morgenstern (1956)’s family given by

F (t1, t2) = F1(t1)F2(t2)[1 + θ(1 − F1(t1))(1 − F2(t2))].



ON BIVARIATE REVERSED HAZARD RATES 217

4. A new family of bivariate distributions

On the basis of (3.1), we construct a new class of bivariate distributions.

Theorem 3. Let F (t1, t2) be a bivariate distribution function defined by
exponential representation (3.1). Assume that

I) αi > 0, βi ≥ 0, i = 1, 2,
II) β2 ≥ β1,

III) αi − β2 ≥ 0, i = 1, 2,
and

IV) m(u, v)/r1(u, v)r2(u, v) ≥ β2/β1, u, v ≥ 0.
Then

Fα1,α2,β1,β2(t1, t2)(4.1)

= (F1(t1))
α1(F2(t2))

α2

× exp

{∫ ∞

t1

∫ ∞

t2

(β1m(u, v) − β2r1(u, v)r2(u, v))dudv

}

define a class of bivariate distribution function for some lifetimes T
(α1,α2,β1,β2)
1

and T
(α1,α2,β1,β2)
2 with marginals (F1(t1))

α1 and (F2(t2))
α2 , respectively.

Proof. Condition (IV) is just a stronger version of ϕ(u, v) ≥ 0 on a
parental distribution F (t1, t2). When β1 = β2, condition (IV) reduces to the con-
dition ϕ(u, v) ≥ 0. Obviously, due to conditions (I) to (IV) of the theorem, the
corresponding boundary conditions trivially hold. Thus, Fα1,α2,β1,β2(−∞, t2) =
Fα1,α2,β1,β2(t1,−∞) = Fα1,α2,β1,β2(−∞,−∞) = 0.

To check the non-negativity of the joint probability density function, we
differentiate (4.1) twice. This leads to

fα1,α2,β1,β2(t1, t2)(4.2)

= Fα1,α2,β1,β2(t1, t2)

×
[
α1m1(t1) −

∫ ∞

t2

(β1m(t1, v) − β2r1(t1, v)r2(t1, v))dv

]

×
[
α2m2(t2) −

∫ ∞

t1

(β1m(u, t2) − β2r1(u, t2)r2(u, t2))du

]

+ Fα1,α2,β1,β2(t1, t2)[β1m(t1, t2) − β2r1(t1, t2)r2(t1, t2)].

Now using assumptions (I) to (IV), we get
[
α1m1(t1) −

∫ ∞

t2

(β1m(t1, v) − β2r1(t1, v)r2(t1, v))dv

]
(4.3)

≥
[
α1m1(t1) − β2

∫ ∞

t2

(m(t1, v) − r1(t1, v)r2(t1, v))dv

]

= [α1m1(t1) + β2(r1(t1, t2) −m1(t1))]

= [(α1 − β2)m1(t1) + β2r1(t1, t2)] ≥ 0.
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Similarly,

[
α2m2(t2) −

∫ ∞

t1

(β1m(u, t2) − β2r1(u, t2)r2(u, t2))du

]
(4.4)

≥ [(α2 − β2)m2(t2) + β2r2(t1, t2)] ≥ 0.

Now substituting (4.3), (4.4) and the assumption (IV) in equation (4.2), we get
fα1,α2,β1,β2(t1, t2) ≥ 0, which completes the proof.

Remark 4. For i = 1, 2, αi = α, and βi = β the model (4.1) reduces to

Fα,α,β,β(t1, t2) = (F1(t1))
α(F2(t2))

α exp{β ·A(t1, t2)}.

Remark 5. If αi = βi = α, i = 1, 2, conditions (I) to (IV) reduce to α > 0
and ϕ(u, v) > 0.

Remark 6. If αi = βi = k and m(u, v) − r1(u, v)r2(u, v) = −γm1(u)m2(v)
for 0 ≤ γ ≤ 1, then (4.1) reduces to the characterized extended bivariate model
of Roy (2002) given by

Fk,k,k,k(t1, t2) = (F1(t1))
k(F2(t2))

k exp
{
−
(γ
k

)
log(F1(t1))

k · log(F2(t2))
k
}
.

Remark 7. Let the dependence structure of the parental distribution func-
tion F (t1, t2) be such that r∗i (t1, t2) = (1 + θ)ri(t1, t2), for θ > 0. Then, the
bivariate distribution function is

F (t1, t2) = [(F1(t1))
−θ + (F2(t2))

−θ − 1]−(1/θ).(4.5)

Now,

β1m(u, v) − β2r1(u, v)r2(u, v) = m(u, v)[β1 − (β2/(1 + θ))](4.6)

= [(1 + θ)/θ][β1 − (β2/(1 + θ))]ϕ(u, v)

= βϕ(u, v),

where β = [(1+θ)/θ][β1−(β2/(1+θ))]. Using condition (IV), (β1(1+θ)−β2) ≥ 0.
Now (4.5) can be generalized using (4.6) as

Fα1,α2,β1,β2(t1, t2)(4.7)

= (F1(t1))
α1−β(F2(t2))

α2−β[(F1(t1))
−θ + (F2(t2))

−θ − 1]−(β/θ).

The bivariate model (4.5) is analogous to the Clayton copula model (Clayton
and Cuzick (1985)) based on cross ratio function.

Remark 8. Generally, the evaluation of the Fisher information matrix for
the family (4.1) is not an easy task as m(t1, t2), r1(t1, t2) and r2(t1, t2) involves
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parameters other than α1, α2, β1 and β2. However, for specific distributions,
one can obtain the Fisher information matrix and correlation coefficient. For
example, the bivariate inverse exponential distribution with distribution function

F (x1, x2) = exp

(−α1

x1
− α2

x2
− β

x1x2

)
(4.8)

is a member of the family (4.1) with β1 = β2 = β. One can evaluate the Fisher
information and correlation coefficient using the relationship between (4.8) and
the Gumbel’s (1960) bivariate exponential distribution.

5. A local dependence measure

The dependence among variables plays a vital role in many practical situa-
tions. There are various measures of dependence in literature such as correlation
coefficient, Kendal’s tau, Spearman’s rho etc. Clayton (1978) and Oakes (1989)
defined an association measure known as cross ratio function, as

p(t1, t2) = S(t1, t2)f(t1, t2)/[∂S(t1, t2)/∂t1][∂S(t1, t2)/∂t2],

where S(t1, t2) = P [T1 > t1, T2 > t2] is the survival function of (T1, T2). Oakes
(1989) interpreted the p(t1, t2) as the ratio of the hazard rate of the conditional
distribution of T1 given T2 = t2, to that of T1, given T2 > t2.

Recently, Gupta (2003) has extensively studied relationships among hazard
rate and cross ratio function in the bivariate setup. Further Gupta (2003) and
Finkelstein (2003) have obtained a class of bivariate distributions for which the
cross ratio function is constant.

Analogous to the cross ratio function p(t1, t2), we define a new local depen-
dence measure in terms of reversed hazard rates, given by

λ(t1, t2) = F (t1, t2)f(t1, t2)/[∂F (t1, t2)/∂t1][∂F (t1, t2)/∂t2],

which can be expressed as

λ(t1, t2) = m(t1, t2)/r1(t1, t2)r2(t1, t2).(5.1)

Obviously λ(t1, t2) > 0 for all t1, t2 > 0. λ(t1, t2) can be interpreted as the ratio
of the reversed hazard rate of the conditional distribution of T1 given T2 = t2
to that of T1 given T2 < t2. By symmetry, a similar interpretation holds with
(T1, T2) interchanged. Thus

λ(t1, t2) = r∗i (t1, t2)/ri(t1, t2), i = 1, 2.

One can easily see that λ(t1, t2) = θ + 1, where θ is the parameter in the model
(4.5), governing the association between T1 and T2.

Now we study various properties of λ(t1, t2).

Theorem 4. λ(t1, t2) = 1 if and only if T1 and T2 are independent.
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Proof. If T1 and T2 are independent, then F (t1, t2) = F1(t1)F2(t2),
which leads to λ(t1, t2) = 1. Conversely, if λ(t1, t2) = 1, then m(t1, t2) =
r1(t1, t2)r2(t1, t2).

Substituting the above in (3.1), we get F (t1, t2) = F1(t1)F2(t2), which com-
pletes the proof.

Theorem 5. λ(t1, t2) = r∗1(t1, t2)/r1(t1, t2) = r∗2(t1, t2)/r2(t1, t2).

Proof. Consider ∂F (t1, t2)/∂t2 =
∫ t1
0 f(u, t2)du = f2(t2)F (t1 | T2 = t2),

which gives

F (t1 | T2 = t2) = (∂F (t1, t2)/∂t2)/f2(t2).(5.2)

Now substituting (5.2) in (2.6), we get

r∗1(t1, t2) = f(t1 | T2 = t2)f2(t2)/(∂F (t1, t2)/∂t2) = m(t1, t2)/r2(t1, t2).(5.3)

Thus from (5.3) and (5.1) we get

r∗1(t1, t2)/r1(t1, t2) = λ(t1, t2).(5.4)

Similarly we can obtain

r∗2(t1, t2)/r2(t1, t2) = λ(t1, t2),(5.5)

which completes the proof.

From the discussions in the above sections, we have following theorem, whose
proof is direct.

Theorem 6. The following statements are equivalent :
I) λ(t1, t2) = 1.

II) r∗1(t1, t2) = r1(t1, t2).
III) r∗2(t1, t2) = r2(t1, t2).
IV) r1(t1, t2) = m1(t1).
V) r2(t1, t2) = m2(t2).

VI) r∗1(t1, t2) = m1(t1).
VII) r∗2(t1, t2) = m2(t2).

VIII) m(t1, t2) = r1(t1, t2)r2(t1, t2).
IX) m(t1, t2) = m1(t1)m2(t2).
X) p(t1, t2) = 1.

XI) T1 and T2 are independent.

Theorem 7. The bivariate RHRs and λ(t1, t2) are related by

r1(t1, t2)r2(t1, t2)[λ(t1, t2) − 1] = r2(t1, t2)[r
∗
1(t1, t2) − r1(t1, t2)]

= r1(t1, t2)[r
∗
2(t1, t2) − r2(t1, t2)].

Proof. The proof follows from (5.4) and (5.5).
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6. Estimation of λ(t1, t2)

In Section 5, we proved that λ(t1, t2) = 1 (θ = 0) if and only if T1 and T2

are independent. In order to use λ(t1, t2) as test of independence, we first need
to find an estimate of λ(t1, t2) from the sample. Based on samples (T1i, T2i),
i = 1, 2, . . . , n from the bivariate distribution (4.5), we propose a non-parametric
estimator of λ(t1, t2) using Kendall’s (1962) coefficient of concordance. For 1 ≤
i < j ≤ n, define Xij = 1 or Xij = −1 according as T1i < T1j or T1i > T1j . Define
Yij similarly for T2i and T2j and let Zij = XijYij . Set U =

∑n
i=1

∑n
j>i Zij/

(
n
2

)
.

Since the probability of concordance is λ(t1, t2)/λ(t1, t2) + 1, U is an unbiased
estimator of (λ(t1, t2) − 1)/(λ(t1, t2) + 1). Thus, we propose a nonparametric
estimator of λ(t1, t2) by λ̂(t1, t2) = (1 + U)/(1 − U). The asymptotic normality
of U follows from the results of Hoeffding (1948).

7. Applications

The class of models (4.1) can be used to represent the lifetime of a parallel
system in reliability analysis. Suppose that there are k-identical systems, each
has two components. Let Ti = (T1i, T2i) be the lifetime vector of the i-th system,
i = 1, 2, . . . , k. Consider a bivariate parallel combination as a collection of two
parallel connections, the first one with all the first components and the second one
with all the second components. Thus the bivariate lifetime vector of the parallel
combination is given by U = (U1, U2), where U1 = max(T1i) and U2 = max(T2i),
i = 1, 2, . . . , k. When the distribution of T = (T1, T2) is of the form (4.1), the
distribution of U = (U1, U2) is obtained as

F ∗(t1, t2) = F1(t1)
α1kF2(t2)

α2ke
∫ ∞
t1

∫ ∞
t2

(β1km(u,v)−β2kr1(u,v)r2(u,v))dudv
.

Thus, we have a closure property of the model (4.1) under a bivariate parallel
combination.

The bivariate lifetime model (4.5) can be used as a lifetime model induced
by frailties in the following way.

Suppose that T = (T1, T2) represents the lifetime of a two component system.
Suppose that there exists a positive random variable W such that the conditional
distribution function of Ti given W = w is

P (Ti < ti | W = w) = Fi(ti)
w, i = 1, 2(7.1)

and that given W = w, T1 and T2 are conditionally independent. Then (7.1) can
be considered as a frailty model in the univariate setup. Then a bivariate frailty
model is given by F (t1, t2) =

∫
(F1(t1)F2(t2))

wdG(w), where F1(t1) and F2(t2)
are some baseline distribution functions and G(·) is the distribution function of
W . (7.1) is equivalent to a proportional reversed hazards model of Sengupta et al.
(2004). If Fi(ti) is a distribution function, so also is F ∗

i (ti) = exp[−{ 1
Fi(ti)

}θ +1],
i = 1, 2.

A random effects interpretation of the model (4.5) can be given in terms of
F ∗
i (ti), i = 1, 2. Let W have a gamma density with p.d.f. g(w) ∝ e−ww(1/θ)−1
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and suppose that conditionally on W = w, T1 and T2 are independent with
distribution functions F ∗

1 (t1)
w and F ∗

2 (t2)
w, respectively. Then it is easy to see

that, unconditionally, T1 and T2 have joint distribution function (4.5). This gives
another interpretation of the model (4.5). Further, this representation gives a
convenient method for simulating T1 and T2. As θ → 0, F (t1, t2) → F1(t1)F2(t2)
corresponding to independence between T1 and T2.

The joint p.d.f. of T1 and T2 is

f(t1, t2) = [(1 + θ)f1(t1)f2(t2)K(t1, t2)
−((1/θ)+2)]/[(F1(t1)F2(t2))

(1+θ)]

where K(t1, t2) = (F1(t1))
−θ + (F2(t2))

−θ − 1.
One can generalize (4.5) by considering the distribution of Ti, givenW = w as

Fi(ti)
riF ∗

i (ti)
w, i = 1, 2 where γi is an additional parameter and the distribution

of W is gamma with shape parameter β/θ. In this case, the joint distribution of
T1 and T2 will be of the form (4.7) with αi − β = γi, i = 1, 2.

Thus, when two observed lifetimes T1 and T2 each depend on the same un-
observed frailty via a proportional reversed hazards model, this common depen-
dence induces an association between the observed times.

Appendix A: Proof of Theorem 1
When T1 and T2 are independent, we can have f(t1, t2) = f1(t1)f2(t2) and

F (t1, t2) = F1(t1)F2(t2), where fi(ti) and Fi(ti) respectively denotes the marginal
density and distribution functions of Ti, i = 1, 2. Thus from (2.1) we can easily
obtain (2.2).

To prove the converse, from (2.2) and (3.2) we have

F (t1, t2)/F1(t1)F2(t2) = f(t1, t2)/f1(t1)f2(t2) = exp{A(t1, t2)},

which gives

f(t1, t2) = exp{A(t1, t2)}f1(t1)f2(t2).(A.1)

Now differentiating (3.2) with respect to t1, we get

∂F (t1, t2)/∂t1 = m1(t1)F (t1, t2) + F (t1, t2)∂A(t1, t2)/∂t1.(A.2)

Also we have

∂F (t1, t2)/∂t1 =

∫ t2

0
f(t1, v)dv.(A.3)

Now using (A.1) in (A.3) we get

∂F (t1, t2)/∂t1 = m1(t1)F (t1, t2) −
∫ t2

0
m1(t1)F (t1, v)(∂A(t1, v)/∂v)dv.(A.4)

Equating (A.2) and (A.4), we get

F (t1, t2)∂A(t1, t2)/∂t1 = −m1(t1)

∫ t2

0
F (t1, v)(∂A(t1, v)/∂v)dv.(A.5)



ON BIVARIATE REVERSED HAZARD RATES 223

Similarly we get

F (t1, t2)∂A(t1, t2)/∂t2 = −m2(t2)

∫ t1

0
F (u, t2)(∂A(u, t2)/∂u)du.(A.6)

Substituting (3.5) in (A.5) and (A.6) we get

F (t1, t2)r1(t1, t2) = m1(t1)

∫ t2

0
F (t1, v)m2(v)dv(A.7)

and

F (t1, t2)r2(t1, t2) = m2(t2)

∫ t1

0
F (u, t2)m1(u)du.(A.8)

Dividing (A.7) by (A.8) we get

m1(t1)r2(t1, t2)

∫ t2

0
F (t1, v)m2(v)dv(A.9)

= m2(t2)r1(t1, t2)

∫ t1

0
F (u, t2)m1(u)du.

Now using (3.5) in (A.9) we get

F (t1, t2)[m1(t1)r2(t1, t2) −m2(t2)r1(t1, t2)](A.10)

= m1(t1)r2(t1, t2)

∫ t2

0
F (t1, v)(∂A(t1, v)/∂v)dv

−m2(t2)r1(t1, t2)

∫ t1

0
F (u, t2)(∂A(u, t2)/∂u)du.

The equation (A.10) is satisfied for all t1, t2 if either

F (t1, t2) =

∫ t2

0
F (t1, v)(∂A(t1, v)/∂v)dv(A.11)

=

∫ t1

0
F (u, t2)(∂A(u, t2)/∂u)du

or

∂A(t1, v)/∂v = ∂A(u, t2)/∂u = 0.(A.12)

If possible (A.11) is true, then differentiating with respect to t2, we get r2(t1, t2) =
∂A(t1, t2)/∂t2 = r2(t1, t2) −m2(t2), which gives m2(t2) = 0 and similarly if we
differentiate (A.11) with respect to t1 we get m1(t1) = 0. But this is not possible.
So the condition (A.11) is not true.

Now, if (A.12) is true, then r2(t1, t2) = m2(t2) and r1(t1, t2) = m1(t1). Thus
from (2.2), we obtain

m(t1, t2) = r1(t1, t2)r2(t1, t2).(A.13)

Substituting (A.13) in (3.1), we get F (t1, t2) = F1(t1)F2(t2), which completes
the proof.
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