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ABSTRACT

Discrimination between internal waves and finestructure in the ocean is made difficult because of over-
lapping scales of each process. We have assumed as a working hypothesis tbat low frequency/wavenumber
variability is predominantly wave-like, while high frequency/wavenumber variability is step-like. Thermal
finestructure is modeled as a steppy Poisson process in the vertical, while internal waves are modeled as a
random Gaussian process. The model developed is an extension of one of McKean (1974). We describe the
vertical temperature spectrum of finestructure, and moored temperature and temperature difference
measurements of the internal wave experiment (IWEX). For the data considered, the contamination
of moored spectra and cross-spectra is small for low frequencies. The vertical temperature difference,
measured over a vertical distance which is small compared to the correlation length of the internal wave
field, is shown to provide a critical check of the model, since this signal is directly related to finestructure
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variability. Thus, it appears possible  to use moored differential temperature sensors as monitors of fine-

structure activity.

1. Introduction

The small-scale vertical temperature structure in the
oceans is highly irregular and often consists of small-
scale regions of uniform temperature on the order of
meters or tens of meters separated by regions of rapid
changes in temperature. These scales of variability
have been named finestructure and have been the sub-
ject of study for over 15 years. Internal waves displace
this structure vertically as well as contribute to the
signal by straining the existing thermal field. Those
interested in the measurement of internal gravity
waves have tried to infer vertical displacements at a
point in the ocean by the relation

where y is the vertical coordinate, T is temperature,
T’ is temperature anomaly and the overbar denotes
some “‘appropriate” average. In the presence of a highly
irregular temperature structure, the validity of this
approximation is not always clear. It was first pointed
out by Phillips (1971) that the use of the above method
would induce errors in the inferred internal wave field.
Others (Reid, 1971 ; Garrett and Munk, 1971 ; McKean,
1974) have also found that the temperature frequency
spectrum can be expressed as the sum of two terms: a
“gradient spectrum” simply related to the mean tem-

perature gradient and a finestructure spectrum pro-
portional to the inverse square of the frequency.
Assuming the finestructure to be statistically sta-
tionary in depth and the vertical displacement jointly
normal, Garrett and Munk (1971) derive an integral
relation between the finestructure spectrum and the
vertical wavenumber spectrum of the finestructure.
One difficulty in utilizing their model is the inability
to distinguish the purely passive finestructure compo-
nent from the straining due to internal waves in the
vertical spectra of temperature, especially when
vertical temperature spectra were consistent with the
supposition that the variability was due to high mode
number internal waves (Garrett and Munk, 1975;
Hayes et al., 1975). A new approach to the problem
was made by McKean (1974), who modeled that portion

'of the thermal field which is characterized as sheets and

layers and then studied its effect upon the measurements
of internal gravity waves.

In this paper we will use and extend the formalism
suggested by McKean. The finestructure parameters
are obtained from several CTD casts and are shown to
be well represented by a vertical Poisson process. The
model is then applied to moored temperature data from
the internal wave experiment (IWEX). The theory is
also extended to model temperature difference time
series and vertical temperature spectra. Before pro-
ceeding we will for completeness define some of the
statistical quantities soon to be discussed.
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For a stationary random variable x;(f) with zero

mean, the covariance v, frequency spectrum P, and
structure function D are defined and related as follows:

Y1 (7) = (s ¢+ 1) (0)) W
= /w Pn(f) cos21rf1~df

1)

Pll(f)=4fw ’Y]](T) C0821I'f1'd1' L
Du(r)=([m(+n)—=() 1)

= 2/ Py (f)[l —COSZWft]df
0 /
The brackets { ) denote an ensemble average.

2. Theoretical models

The temperature profile is represented locally as a
superposition of homogeneous layers of thickness z; with
temperature jump 8; across the interfaces.

The temperature difference over a vertical interval A
containing N layers is

N
AT=A+Y 6

=1 ?

)

(ATY=cA, o=t+u(b)

where ¢ is a residual gradient, while the probability
of finding N steps over the distance A is given by the
Poisson distribution

sy

p(N,s) =gy STHEA @)

where p~! is the average layer thickness. We extend the
result of McKean to allow covariance between adjacent
temperature steps.

a. Moored temperature medsurements

The vertical displacements of the internal wave field
are stationary and jointly normal with variance Z2
and autocorrelation function p(7). For measurements at
a fixed point, McKean (1974) introduced a structure
function that is more appropriate than the correlation
function. The temperature spectrum is then found
to be the sum of two terms (Garret and Munk, 1971)

PT(f)=PT()+PTF(f), PT(f)=c?Pi(f). (4)

The first term, the gradient spectrum P7, is related to
the mean temperature gradient «; the second is the
finestructure spectrum. For a displacement spectrum

of the form
Pi(f)=Af2, (5)
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two approximations are obtained for PTF:
P’{'—F=/3A }f_,?/ (27"%); f<ny (6)
PYT=pZS[?/(2m%)},  f>n, (7)

where B=p[(#?2)+2 cov(0;6;)]. In these expressions
(6*) is the mean-square temperature jump across the
layers, cov(0;,8;) is the covariance between temperature
jumps ¢, j for 1% j, n is the local bouyancy frequency

and
p(0)

so that ZS is the root-mean-square (rms) vertical
velocity of the internal waves.

For cross spectra of measurements taken at two
points ¢ and 4, one writes as in (4),

Pi(f)=Py+ Py, 9)

and the coherence RY; is defined as the modulus of the
quotient of PJ; by (PLP/)}, i.e.,

§=— ®

T CE+rCTF
Ry(f)=|——" (10)
1+4r
The notation is as follows:
Ci=P/ PPy} (11)
is the normalized gradient cross spectrum, and
CHF=PE/(PFFPT ) (12a)

is the normalized finestructure cross spectrum. It has
been called the finestructure coherence (denoted A) by
Garrett and Munk, a somewhat misleading appelation
since C5* could, a priori, be complex, whose real part
will turn out to take positive and negative values.
Finally _
r=P;"/Pi=Pj]/P}

is the finestructure ratio.

For sensors vertically separated by A, McKean
(1974) gave

(12b)

5 =et(cost+sint), t=(f/rA)A, f<n, (13)
CiF=2 / exp(—#2)u~ coshudu,
’ N=\DrfA/ZS, [>m, (14)

the last expression being Garrett and Munk’s “fine-
structure coherence.”

b. The temperature difference measurements

During Woods Hole Oceanographic Institution’s
internal wave experiment (IWEX), a number of
sensors recorded directly the temperature difference AT
over a vertical separation A=1.74 m. We shall show
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that these measurements provide an estimate of the
finestructure activity.

6‘

1) THE SPECTRUM OF AT

Consider two sensors at points 1 and 2, vertically
separated by A; let AT=T,—7,. The spectrum of the
difference temperature PAT(f) is

00

pAT(f)=4/ ¥2T(7) cos2m frdr, | (15)

0

where Y2T(r)=(AT()AT(t+7)) is the temperature
difference covariance function. We have

VAT= ((ToTot o1~ ToTy — TuT5))

=vi+vi1—2viz, (16)

where the prime implies evaluation at ¢4 7. For small
enough separations (over which the ocean can be
considered homogeneous), after taking the Fourier
transform, we then obtain

PAT(f)=2PT—2P%,. a7
Substituting (4) and (9) into (17), we finally have
PAT(f)=2PTF(1-CT)+2PTP(1-CTf),  (18)

where PTF and Ciy are given by (6), (7), (13) and (14).
The spectrum of the temperature difference signal is
thus the sum of internal wave and finestructure
contributions. ’

2) CROSS SPECTRA OF AT

We consider now two AT pairs of sensors, vertically
separated by Y. The cross spectrum of the AT signal
is another measure of the finestructure field and provides
a further check of the model. The four sensors aligned

vertically are located at yi, ¥s, ¥s, ¥4 from the bottom .

up, with separations ys—y=yi—y;=A and yis—7y.
=y;—y,=Y; the pair 1, 2 is denoted by ¢; 3, 4 by j.

The cross spectrum Py” (y,f) is the transform of the
cross-covariance function

v (1) = (AT«(OAT; (1))
= ((T2:=T1)(Ts—T3))
= ((T2T4+ T1T5— T1 T4 — T:Ts))
and is
P (Y, f)= Pt Pl — PL,— Pis. (20)
Based essentially on the model of Garrett and Munk
(1975), Cairns and Williams (1976) and Desaubies
(1976) have shown that the internal wave normalized
cross spectrum can be written

C=exp[ —2mgn(y:— ;)]

(g is a constant). For the small separations ¥ and A
we shall be concerned with here, the exponential can
be approximated by a linear function of separation

(19) -
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and we have Pf+ P}, —PT,—PL=0, so that only the

finestructure contributions remain in (20). Dividing

through by (18), we have for the coherence
2CTF(Y)—~CTF(Y —A)—CTF(Y4-A)

RAT(V, )=
(¥,f) T )]

, (21)

where the C7"’s are the normalized finestructure cross
spectra defined in (12) with the separation shown as the
argument.

c. Vertical spectra

In a manner similar to that employed for moored
spectra, vertical or dropped spectra can also be cal-
culated from the parameters available. To eventually
derive vertical spectra it will be necessary to eliminate
from the temperature structure function contributions
arising from nonzero mean values for the temperature.

Dr¥)= (TG4, =T+ ¥, 9]

Averaging over the random steps gives

DT (V)=a{(t2— 1))+ (| V+Ea—51])
§'2=§'(}’+Y, t)
§'1=§'(y;t)

The brackets in (23) denote ensemble averaging over
the internal wave field.

(23)

T+t = / ap D]

Cus=t—h

For a jointly normal homogeneous internal wave field,

1 ( uz)
expt —— )
o.m 202

ot =221 —p(¥)].

pT)=

The first term in (23) is the mean gradient term and is
solely due to internal waves, while the second is the
finestructure term. Vertical structure functions differ
from moored or horizontal ones in that the signature
of the sheets and layers will be present in the total
absence of internal waves. :
DTF(V|u=0)=8Y, B=("+2covlu. (25)
The vertical spectrum of finestructure P7¥(k) will be
proportional to k-2 Furthermore it will have no low
wavenumber cutoff (since the Poisson process is
aperiodic). The necessity to have but the inability to
measure a largest scale of finestructure was a major
difficulty of earlier papers using spectral models.
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Fi6. 1. Schematic of the internal wave experiment (TWEX) Trimoor.

In the presence of internal waves and finestructure
the contribution in (23) can be evaluated as follows:

DTF(Y)

—p / dup V) u+ 7|

i dup(u, Y)Y (u+Y)

~Y

=ﬂ/ dup(u,¥)(—u—Y)+8

0 Y
—p f dup (¥ (w-¥) — 28 / dup Y (- 7)

ol e L) e -2)]

Together with an internal wave model for p(¥), this
constitutes a formal solution to the calculation of

vertical spectra. We will examine two particular limits
(Y/eV2)>1, K1.

For (YV/eV2Z)>>1

(26)

DTF(¥)=4Y, @7
PTF(k)=g8/(2n%k?). (28)
For (¥/oV2)«1
DTF(Y)=2/xBqs
=2/xpND;(¥). (29)

If the internal wave vertical spectrum Pf(E) is pro-

portional to %4~% then the finestructure spectrum is
proportional to k7%, with qg=14 ((—1)/2, for 1<¢<3.

These two limits correspond respectively to wave-
lengths much larger than or smaller than the rms
vertical displacement of the isotherms Z. The former
limit corresponds exactly to the result for no internal
waves, while the latter limit may in fact be nonphysical,
since it applies to vertical scales of tens of centimeters.
The mode! for the finestructure is nonphysical on these
smaller scales: it predicts an infinite variance to the
temperature gradient when in fact the transitions from
one layer to the next have finite thicknesses of the order
of tens of centimeters. We will further consider only
the former limit given by (28).

3. Data base

The data used in this study were collected in the
Sargasso Sea of the northwest Atlantic Ocean and
include both moored and vertically profiling measure-
ments. The basic moored data were obtained during the
internal wave experiment (IWEX) from a highly
stable subsurface trimooring shown in Fig. 1. The upper
main thermocline (600-800 m) was highly instrumented
with vector averaging current meters modified to mea-
sure temperature as well as vertical temperature dif-
ference over one instrument length (1.74 m). A full
discussion of the IWEX experiment can be found in
Briscoe (1975).

Vertical profiles of temperature and salinity were
taken with the WHOI/Brown CTD unit. Six “typical”
stations were selected for subsequent analysis. These
were located in the vicinity of the trimoor and are
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TasLe 1. Sample CTD stations selected for estimation of
finestructure statistics in the main thermocline, 600-800 db.

* Station Latitude Longitude Date
CH107/08 27°33.9N 69°44.8W 10/31/72
CH107/17 27°33.IN 69°41.8W 11/03/72
CH112/148  28°00.9N 69°35.7W 8/04/73
KN34/09 27°45.1N 69°49.1W 10/25/73
KN34/13 27°45.3N 69°52.5W 10/28/73
KN34/16 27°46.2N 69°51.0W 10/31/73
IWEX 27°43.9N 69°51.0W  11,04/73-12/13/73

lisited in Table 1. The list includes stations near the
IWEX site over a two-year period. The natural vari-
ability of finestructure with vertical and horizontal
locations in the Sargasso Sea has been described by
Hayes et al. (1975) and Joyce (1976), respectively. For
comparison with the IWEX data, only a portion of the
main thermocline (600-800 m) was selected for model-
ing of the statistical structure of the temperature field.
For vertical scales as small as 2 m in this region Joyce
(1976) showed that the temperature and salinity fields
are well correlated and that variations in temperature
are statistically the same as density. Instrument limita-
tions preclude study of smaller scales in the thermocline.

4, Statistical model of finestructure

It has been observed that much of the small-scale
structure of the temperature/salinity field in the ocean
can be characterized as layers (regions of relatively
mixed water) and sheets (regions of large vertical
gradients). Gregg (1975) has coined the phrase “ir-
regular steppy”’ to describe this phenomenon. An ex-
ample of the vertical temperature gradient from CTD
station 17 seen in Fig. 2 depicts the “irregular steppy”’
nature of the thermal field on scales in excess of 30 cm.
Vertical spectra of the temperature field are easily
calculated and tend to be ‘“‘red” with a power law
dependence £~" on wavenumber with # approximately
2.6 for scales between 50 and 0.5 m. We will, however,
utilize the original traces of temperature versus depth
(or pressure) to construct a statistical model for the
finestructure steps. The resulting profile will reproduce
the step-like phenomena but not necessarily the vertical
spectrum.

The temperature difference 6; between the ¢ and 741
steps is a random variable as is the thickness of the ith
step Z;. The manner in which 8; and Z; are found in a
CTD profile is most easily described by reference to
Fig. 2. The differenced series shown can be thought of
as consisting of events (temperature jumps) occurring
randomly in space with a random amplitude. To find
such an event in a temperature series it is only necessary
to locate local maximum of the differenced series. The
values of the maxima yield the 8;, while the distances
between successive maxima give the Z/s. In an ob-
served profile, account must be taken of any noise in
the system as it will obviate the detection scheme.
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Fr1c. 2. Vertical temperature gradient in the main thermocline
of the Sargasso Sea. Differencing interval is 30 cm; uncertainty
due to instrumental noise is indicated. The data are from CTD
Station CH 107/17.

The rms noise level of the lag-corrected pressure-
sorted CTD temperature series used was 10~2% °C or
0.0039, full scale of the instrument (~30°C). For a
first differenced series which has been decimated to a
data point every 30 cm, we estimate the noise level
to be approximately 0.8 m °C. Events were selected,
therefore, only when the local maximum of the dif-
ferenced series exceeded neighboring values by some
noise limit. For random Gaussian noise a limit of 1 m
°C would encompass 809, of the possible noise values.
Sensitivity tests to imposed noise limits of 09, (all
noise allowed to pass) and 99% (2 m °C noise) were
made as well. Larger noise limits effectively filter out
small 8; and Z;; thus a compromise was necessary.
Further discussion of this will follow.

From the desired series 8;, Z;, first and second order
moments were calculated. (0;), (Z:), var;, varZi
cov(8:,8;), cov(Z;Z;) and cov(0;Z;). An ensemble
average of all six stations was taken and the results

TasLE 2. Results from analysis of stations in Table 1 using a
noise level of 1 m °C. Over 700 “events” are included in this
summary.

(Z:) varZ: cov(ZiZ;)) {8  ward: cov(8:8;) cov(8;Z:)
(m) (m) (m)? (m°C) (m°C)2 (m°C)? (m°C-m)

1.65m 1.18 0

11.85 45.6 4.56 0
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summarized in Table 2 and Figs. 3 and 4. A noise limit
of 1 m °C was used.

From these it can be seen that to second order, 8;
and Z; are independent and that each step Z; is inde-
pendent of its neighbors. Both of these results are con-
sistent with the Poisson model discussed earlier. The
histograms of both 6; and Z; are highly skewed. Fora
Poisson process, the probability of encountering N
steps in a vertical distance A is given by Eq. (3). The
probability density function for the step thickness
p(Z;) can be expressed

p(Z)=p exp(—pZy). (30)

75k 0\ 4
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Fic. 3. Probablllty hlstograms for (a) step size and (b)

" temperature jumps. Also shown in (a) is the analytical relation
(34).
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Fic. 4. Autocorrelation coefficients for step size Z; and tem-
perature jump 6;. Ninety-five percent confidence limits are
indicated.

Hence

(Z:) =[ Zip(Z)dZ;, (31)

varZ;= / Z2p(Z)dZi~(Z:). (32)

Since we cannot measure Z;<Z;=0.6 m, the prob-
ability density function $(Z;) must be renormalized to
be $(Z;) so that

/‘°° P(Zi)dZi':/w p(Z)dzZ,=1. (33)

Thus
p(Z)=p exp[—u(Zi—2Z1)], (34)
<Zi>=/ Z:p(Z)dZi=Z+u7, 35)
varZi=/Z¢2ﬁ(Z,-)dZ,~—-(ZL+;F‘)2=#'2« (36)

In order to apply the model of finestructure to moored
and dropped measurements the only further parameter
necessary to extract from the data is the mean rate of
occurrence of ‘“‘events” u. This can be done by using
(34), (35) or (36), since all of these equations only
depend upon u. We find

£=0.92 (m)™! using (35),
© p=0.95 (m)~! using (36).
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TaBLE 3. Sensitivity of pérameters of Table 2 to different
noise limits for one of the six CTD stations.

Noise i 0 var  cov(f) 8 .

limit (m)™ (m°C) (m°C)? (m°C)? (m°CZ-m™)
Om°C 2.28 10.0 43.4 12.2 382
tm°C 1.01 10.2 41.5 4.2 154
2m°C 0.52 13.8 39.8 0 120

In Fig. 3 are shown the analytical relation (34) and the
observed distribution of step size. The data/model fit
is evidently self-consistent.

As was shown earlier, the intensity of the fine-
structure signal is proportional to

B=u[ #)}+2 cov(@:5)]

The sensitivity of the individual parameters and the
above intensity to different noise limits are shown in
Table 3 for one of the six stations. It is clear from the
table that the values of the individual parameters are
sensitive to the limits. The intensity, however, does not
strongly depend upon.the particular choice of either
1 or 2 m °C noise. We expect our estimates of the fine-
structure intensity, which will be used subsequently, to
be correct to within 209.

5. Results

The finestructure parameters have been obtained in
Section 4. In determining these values from CTD pro-
files, it has been implicitly assumed that the small-scale
thermal structure was only slightly distorted by in-
ternal wave straining. Similarly, the internal wave
parameters appearing in the model will now be derived
from the observed temperature spectra, an appropriate
procedure only if the finestructure contamination is
small. Our results will have to be checked a posteriori

vto verify these assumptions. From Table 2 we obtain
for the finestructure intensity 8=1.81X10~* (°C)2 m™.,
The displacement spectrum [Eq. (5)] is related to the
temperature spectrum through the mean temperature
gradient o::

Pi(f)=Af?=a?PT(f)=a 2B @37

The constant B is obtained by fitting the f—2 law to
the observed spectrum so as to preserve the variance
of the signal. We find B=5.96X10"* (°C)? cph, and,
with the observed «=0.01768 (°C m™!), 4=1.91 m?
cph. The rms displacement

n 3
Z=[A -24f | ~[Af1=6.90 (38)
[ s | ~tas m
and the quantity S, defined in (8), is
St=—p"(0)/p(0)=4nZ2 | f2P5(f)df
fi
=~4a*nf;= (2.00 cph)?, (39)
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where #=2.52 cph is the local Viisila frequency at 604
m and f;=0.04 cph is the local inertial frequency.

6. Moored temperature measurements

The finestructure spectrum PTF, given by (6) and
(7), is compared to the gradient spectrum PT=q2P?
in Fig. 5. Over the internal wave frequency band, PTF
is about one-tenth of P7; at higher frequencies (f>n)
the finestructure spectrum is smaller than but com-
parable to the tail of P7. Because of the two approxi-
mations [ (6) and (7)] there is a discontinuity at f=#.
The finestructure contamination is small in the internal
wave band, a 109, effect, while above the buoyancy
cutoff the finestructure is a significant contribution to
the observed temperature spectrum. Thus the fine-
structure contamination is small, in the range f;< f<#,
and moored temperature observations are an appro-
priate measure of internal waves.

An estimate of the effect of finestructure on moored
vertical coherence can be derived from (10). The
normalized internal wave cross spectrum C7 is given by

Cli= £ R (147 —rCIF, (40)

where Rj; is the observed coherence, C%" is given by
(13) and (14), and the finestructure ratio r [Eq.
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F1e. 5. Observed temperature frequency spectrum from IWEX
instrument A4, PT4(f) and model results from text. ,



Janvary 1977 TERRENCE M.

1.0

OS5

JOYCE AND YVES ]J.

F. DESAUBIES 29

0.0 —r L

COHERENCE

1
00 Y

FREQUENCY, CYCLES /7 HR.

Fi16. 6. Observed coherence of temperature fluctuations for separations ¥ =2.1,
7.0 and 28.9 m (top to bottom). Sample points using Eq. (40) in text are indicated.
They represent “uncontaminated” internal wave measurements. Modeled co-
herences in excess of 1 are due to statistical fluctuations in the data and would
be absent with increased degrees of freedom. .

(12b)7] is estimated from (37) and (6):

8
2Vmra?Z

yr=

\/_j;=1.21><10—l Vflephdt, (41)

where f; is the inertial frequency (0.04 cph). The
modulus of CJ; given by (40) is shown in Fig. 6 as
circled points for three different separations. In each
case the internal wave coherence is higher than the
temperature coherence, it is more nearly constant
over most of the frequency range, and it shows an
increase near the buoyancy frequency before dropping

TEMPR GRADIENT AT 640M. DEPTH, B5

3
E 80
N
s 40
S
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O T T 1 O
12 13
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73 73

Fic. 7. Time series of temperature gradient from one of the
IWEX differential temperature sensors. Note the similarity with
Fig. 2.
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Fic. 8. Frequency spectrum of differential temperature (AT)
time series with 26 degrees of freedom. Also shown is the model
spectrum as described in text.
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F16. 9. Observed and modeled vertical coherence and phase for AT series
(a) ¥Y=2.1 m, (b) ¥=4.9 m. The dashed lines are model results.
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off. These features conform to what we expect for
internal waves (Garrett and Munk 1975; Cairns and
Williams 1976 ; Desaubies, 1975, 1976).

Note that as the separation increases CTF— 0
rapidly and Cj;= RJ;(1+7) ; the loss of coberence due to
finestructure is than given by (147)~! and reaches a
value of 10 to 15%. For separations in excess of the rms
displacement Z, the finestructure field acts as in-
coherent “noise.”

7. The temperature difference measurements

In Fig. 7 we show an example of an AT time series
from IWEX; it looks quite similar to vertical profiles
of temperature gradient (Fig. 2). The power spectrum
of this time series is plotted on Fig. 8. In the internal
wave band the slope is close to —3% and beyond the
buoydncy frequency it is —2. '

The mode! prediction for the spectrum is given by
(18), the second term, 2PTF(1—CTF), is shown on
Fig. 8; it is related to the finestructure. The first term
2PT(1—CT) represents the straining of the mean
gradient by the internal wave field, thus contributing
to the fluctuations in the temperature difference signal

AT. If the wave field was perfectly coherent over
A=1.74 m, CT=1, this contribution would vanish.
However, even though CT is close to 1 (probably
>0.99), the first term cannot be discarded a priori;
this is because PT is so much larger than P2T (two or
three orders of magnitude) that the product 2PT(1—C7)
can be of the order of P27, and is very sensitive to the
value of C7 as well as its frequency dependence.
Present internal wave models already referenced
purport that C7 is independent of frequency; thus any
internal wave contribution to PAT(f) would have a
slope of —2. It appears from Fig. 8 that the fine-
structure term accounts for most, but not all, of the
variance in the AT signal for f<# and overestimates
the spectral level for f>n.

The vertical coherence RAT as given by (21) is
plotted in Fig. 9 with ¥=2.1 and 49 m, A=1.74 m.
The prediction of the model is quite satisfactory; note
in particular the change in phase from 0O to 4-180°,
and the significant coherence for f>n. This effect is
definitely related to the finestructure and cannot be
accounted for by the internal wave field.
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F1c. 10. Observed coherence and phase for AT measurements separated
horizontally by 14 m (dashed), 44 m (heavy black) and 130 m.

As the vertical separation ¥ of the sensor pairs in-
creases, the coherence decreases rapidiy.

Our model, which does not include any horizontal
structure, cannot explain the observed coherence for
AT sensors horizontally separated. Fig. 10 shows
horizontal AT coberences with separations of 14, 44
and 139 m. For the smallest separation the coherence is
high at all frequencies, even beyond n. The correspond-
ing temperature coherences are uniformly higher than
the AT coherences. We infer that Fig. 10 reflects the
horizontal structure of the layered structure. The
significant loss of coherence for larger separations sug-
gests that there exist inhomogeneities of that horizontal
scale.

Finally we note that in the presence of internal waves,
regions of high temperature (density) gradient are also
regions of high velocity shear, corresponding to “velo-
city finestructure.” The modeling of this field is under-
way and could be relevant to the observed differences

between moored temperature/velocity coherences noted
by Briscoe (1975).

8. The dropped temperature measurements

The original vertical series were used to obtain the
finestructure parameters rather than the vertical
spectra. In Section 2 a model spectrum was derived
which included a wave-like and a step-like component.
We will now compare the measured/modeled spectra.
In Fig. 11 the temperature spectrum observed in the
main thermocline by Hayes (1975) is compared with
the spectrum from (28), which purports to model the
finestructure for vertical scales larger than Z=~7 m.

As discussed in Section 2, following (24) the vertical
spectra are the sum of two contributions: a finestruc-
ture spectrum given by (28), and an internal wave
spectrum. The finestructure spectrum contributes about
one-half of the variance to the total observed spectrum
(Hayes, 1975) for the region as is shown in Fig. 11.
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F1c. 11. Vertical wavenumber spectrum of temperature in the
main thermocline and modeled finestructure contribution. The
latter is only formally correct for wavelengths in excess of Z=7 m.
See text for details.

9, Conclusions

We have investigated the possibility of discriminating
between internal waves and finestructure in moored
and dropped temperature measurements. The basic
mode}, involving a Gaussian statistic of the displace-
ment field and a Poisson model for the finestructure,
is that of Garrett and Munk (1971) and McKean
(1974). It has been extended to describe vertical tem-
perature spectra and the temperature difference mea-
surements of IWEX, with emphasis on accurate estima-
tion of the model parameters and on quantitative
predictions.
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We find that for the data considered the contamina-
tion of moored temperature spectra by finestructure is
small, of the order of 109, for low frequencies. However,
at high frequencies the effect becomes comparatively
more important. A more significant effect is the loss of
measured coherence, which increases with frequency
and finestructure level; the loss can be of the order of
209, near the buoyancy frequency. This reaffirms our
original assumption that internal wave parameters could
be obtained from moored measurements (i.e., fine-
structure contributions are relatively small). The
dropped spectra indicate that both internal waves and
finestructure contribute about equally to the variability
on scales of 10~300 m. This is somewhat disturbing and
may indicate that some of our finestructure parameters
may be contaminated by waves.

~ The moored temperature difference measured over a
small distance (small with respect to the correlation
length of the internal wave field) has been shown to
provide a critical check of the model, since this signal
is directly related to the finestructure variability. This
opens the possibility of using the AT measurements as
“moored finestructure” time series; one could thus
monitor the time variability of the finestructure level
intensity and relate it to larger scale phenomena.

Acknowledgments. We wish to acknowledge the
assistance of the buoy and CTD groups at the Woods
Hole Oceanographic Institution who played a major
role in obtaining the IWEX and CTD data. This
research was supported by the Applied Physics Labora-
tory of The Johns Hopkins University, Contract 372111,

VOLUME 7

and the Office of Naval Research via Contract N00014-
74-C-0262 NR 083-004.

REFERENCES

Briscoe, Melbourne G., 1975: Preliminary results from the tri-
moored internal wave experiment (IWEX). J. Geophys. Res.,
80, 3872-3884.

Cairns, J. L., and G. O. Williams, 1976: Internal wave observa-
tions from a midwater float. Part II. J. Geophys. Res.; 81,
1943-1949.

Desaubies, Y. J. F., 1975: A linear theory of internal wave spectra
and coherences near the Viisild frequency. J. Geophys. Res.,
80, 895-899.

——, 1976: Analytical representation of internal wave spectra.
J. Phys. Oceanogr., 6, 976-981.

Garrett, C., and W. Munk, 1971: Internal wave spectra in the
presence of finestructure. J. Phys, Oceanogr., 1, 196~202.
——, and ——; 1975: Space-time scales of internal waves—a

progress report. J. Geophys. Res., 80, 291-297.

Gregg, M. C,, 1975: Microstructure and intrusions in the Cali-
fornia current. J. Phys. Oceanogr., 5, 253-278.

Hayes, S. P., 1975: Preliminary measurements of time-lagged
coherence of vertical temperarure profiles. J. Geophys. Res.,
80, 307-311.

——, T. M. Joyce and R. C. Millard, Jr., 1975: Measurements of
vertical finestructure in the Sargasso Sea. J. Geophys. Res.,
80, 314-319.

Joyce, Terrence M., 1976: Large-scale variations of small-scale
temperature/salinity finestructure in the main thermocline
of the northwest Atlantic. Deep-Sea Res. (in press).

McKean, R. S., 1974: Interpretation of internal wave measure-
ments in the presence of finestructure. J. Phys. Oceanogr.,
4, 200-213.

Phillips, O. M., 1971: On Spectra Measured in an undulating
layered medium. J. Pkys. Oceanogr., 1, 1-6.

Reid, R. O., 1971: A special case of Phillips’ general theory of
sampling statistics for a layered medium. J. Phys. Oceanogr.,
1, 61-62.



