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ABSTRACT

The generation of baroclinic Rossby waves in a continuously stratified ocean by fluctuating fields of
wind stress, buoyancy flux and atmospheric pressure at the sea surface is studied by means of boundary
layer theory. The internal wave field has been represented analytically in terms of the generating meteo-
rological fields and the damping influence of bottom friction. A preliminary application to an example from
the eastern Pacific shows that the influence of the atmospheric pressure is negligible compared to that of
the other generating agents; on the other hand, fluctuations of the wind stress and the buoyancy flux could
be strong enough to generate the waves observed by Emery and Magaard (1976). A more exacting applica-
tion requires more knowledge about the meteorological fields at the sea surface and has to be left to a later

investigation.

1. Introduction

The oceanographic literature contains many papers
on the generation of baroclinic gravity waves in the
ocean. These papers have been summarized by Thorpe
(1975). _

Much less is known about the generation of baroclinic
Rossby waves. The classic paper by Veronis and
Stommel (1956) contains the case of Rossby wave
generation by wind in a two-layer inviscid ocean ex-
cluding the case of resonance. Perhaps there was little
incentive for further theoretical studies in subsequent
years because observational evidence of the existence
of baroclinic Rossby waves in the ocean was lacking.

In this decade, investigations have concentrated on
baroclinic eddies in the Atlantic (e.g., Robinson and
McWilliams, 1974) and in the Pacific (Bernstein and
White, 1974). These eddies have length scales of up to
several hundred kilometers (internal Rossby radius of
deformation) and time scales according to the corre-
sponding Rossby wave periods. McWilliams and
Robinson (1974) have made an attempt to explain
observed fluctuations of these scales by Rossby wave
dynamics and have had “partial success.” The genera-
tion of the eddies is mainly attributed to baroclinic
instability (Robinson and McWilliams, 1974; Holland
and Lin, 1975).

In a recent paper, Emery and Magaard (1976)
pointed out the importance of much longer Rossby
waves in the Pacific with periods of one to two years
and wavelengths between 1200 and 1700 km. Their
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findings gave rise to the study of the local generation
of such waves by meteorological forces which is
described here.

This paper considers the generation of long baroclinic
Rossby waves in a continuously stratified viscous ocean
by a prescribed fluctuation of wind stress, buoyancy
flux and atmospheric pressure at the sea surface. The
analysis is done by means of boundary layer theory
(viscous top boundary layer in case of prescribed wind
stress, diffusive top boundary layer in case of buoyancy
flux, no top boundary layer in case of atmospheric
pressure; viscous bottom boundary layer in all three
cases). Special attention is given to the case of resonance
(calculation of equilibrium amplitudes).

In case of generation by atmospheric pressure, we
have a vertical velocity at the sea surface to drive the
waves in the interior. In case of generation by wind or
buoyancy flux the horizontal divergence of the wind-
driven circulation or thermohaline circulation, respec-
tively, in the top boundary layer creates a vertical
velocity at the lower boundary of the layer which drives
the waves in the interior. In boundary layer theory this
velocity can formally be attached to the otherwise rigid
sea surface. Hence we consider the motion in the interior
to be driven by a vertical velocity at the sea surface.

2. Generation by a prescribed vertical velocity at
the sea surface

We assume the motion in the interior to satisfy the
equations
3“1

1 3p
+f‘l)1=——~— —-‘_I'y (21)
ot po O0x
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Our vy Jw; For the corresponding vertical displacement ¢ (repre-
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dx dy 9z
7
by . . Fre= —— 95
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at

For symbols not explained in the text see the
Appendix,

For the motion in the bhottom boundary layer we
assume

(2.6)

67;3 0 a'l)B
———fus=—(A—~), 27)
a dz\ Iz
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The boundary conditions are
wr=-—wr at z=0, (29)
urtup=0 at z=H, (2.10)
vrt+1p=0 at z=H, (2.11)
wr+twp=0 at z=4H. (2.12)
Assuming
‘P(“’,yﬁ,t) = Z ‘Z(K’n,z’w)ei(u—!—rm——wt) (213)

for all unknowns ¢, we can derive the following equa-
tions from (2.1)-(2.5) by using the 8-plane approxi-
mation : )

AWy :
——+NN%g; =0, (2.14)
dz?
where
xf3
__._KhZ i
w
= ) (2.15)
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n  dd;
fly=— —_—, (2.16)
wfo}\2 dz
K dzﬁ,
Jr= 2.17)

Let Ay, ¢n(2) be the system of eigenvalues and eigen-
functions, respectively, of the boundary value problem

&
NN =0, 2.21)
dz?
with
¢=0 at z=0 and z=H. (2.22)
Let ¢.(z) be normalized so that
H
/ Nigidz=1. (2.23)
0

According to (2.9) and (2.12) the boundary condi-
tions for the solution of (2.14) are

D W=~ at 2=0, (2.24)
at z=H, (2.25)

The solution of (2.14) with (2.24) and (2.25) can be
represented in two different ways:

Wy = ~—PL

ﬁ1=i’0(z)+ Z Anﬂon(z)) (226)
n=1
Wr=2_ Bag.(2), (2.27)
n=1
where
TP — "
Wo(z) = —w‘°)+Tz, (2.28)
Az H
A= / Ny pndz, (2.29)
A2—=A2
)\n2 H
B,= / NWopnds. (2.30)
An2—A2 0

Note that the sum in (2.26) is uniformly convergent,
while the sum in (2.27) is not uniformly convergent.

Solving Egs. (2.6)-(2.8) for constant A using the
boundary conditions (2.10) and (2.11) and again
applying the §-plane approximation, we obtain

wgn=2~;7;Aif0—é[(,<+n)ﬁ§”)—{-(‘,,——x)ﬂy’”. (2.31)
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Using (2.16), (2.17) and (2.26) we get

(A+b—aH)hw®

) , (2.32)
QA+b)r+H
where
1A %2
=-— ) (2.33)
Zéfo’;w)\2
© A2
a= z - ak’Yk, (2.34)
k=1 Ak2__)\2
© A2
b=2 By, (2.35)
k=1 sz—)\2
H
o= / N?pidz, (2.36)
o
H
Br= / N2gpadz, (2.37)
0
dox
Ye=—— at 2z=H. (2.38)
dz

Using (2.28) and (2.32) we find from (2.29)

—_ 753(0
An—q’n'w;');

(2.39)
where

)\2{Bn—an3+k[afl.3n_ (1+b’)an]}
An= .
A2=NO[H+ (140 B]+ 2B,y

(2.40)

The terms &’ and b’ result from e and b, respectively,
by omitting the term with 2= in the sums. In case of
resonance (2.40) reduces to :

Bn—anH+ htalﬁn_ (1+bl)an]
"By n '

el =

(2.41)

Assuming a random field of 3 uncorrelated resonant
baroclinic Rossby wave modes the frequency (hori-
zontal) wavenumber spectrum of the vertical displace-
ment { is '

M aPad”

Epr(k,m,8,0) =2

n=1 w2

e (Z)Eww (K"”)w)’ (242)

where E,, is the spectrum of w{®. In (2.42) «,n,w have
to satisfy the dispersion relation

[3 2
(,(__) +r=Ra, (2.43)
2w
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where
2
R =—— fo'\, (2.44)
4(.02
We will now study # and E,, as generated by the
various meteorological forces.

3. Generation by a fluctuating wind field

The motion in the top boundary layer has to satisfy
the equations

our 1 R
—+f'l)1'=— 3 (31)
4 po
dvp 1 0Rs;
—— fur=— , 3.2)
a¢ pPo 9z
dur OJdvy OJwr
T, (3.3)
dx Jdy Oz
with boundary conditions
R13= —71 at Z=0, (34)
R23= —T2 at Z=0. (3.5)
The thickness of the boundary layer is
7(®
D,= . (3.6)
pofou'®

Using again the B-plane approximation, we find
from (3.1)-(3.5)

w;9)=—(nf1—l(1—'2). (37)
pofo
For the corresponding spectrum E. we have
Eypw= [712E7111+K2E7272"K"I(Ef.fz"!'Efzn)]; (3.8)
po’ fo*

where E,;,, E: .z, Esyr)y Enyr, are the components of the
spectrum tensor of the wind stress.

4. Generation by a fluctuating buoyancy flux

This mechanism was studied by Magaard (1973a) for
the generation of internal gravity waves. The scaling
and the derivation of the boundary layer equations as
well as their treatment follows Magaard (1973a,b) and
will not be repeated here.



362

The equations of motion in the top boundary layer
are

Jur 1 ‘aPT
— fop=——-—, 4.1)
ot po 02
dvr 1 ap'p
—— fUr=———\ (4.2)
ot po Oy .
1 opr
r=——— (4.3)
pPo 9z
our Ovy OJwr
—_t— =0, (4.4)
ox oy 0z .
obr oF
—_—— 4.5)
ot 0z
with boundary condition
F=F® at z=0. (4.6)
The thickness of the boundary layer is
F®
D= . 4.
— @n

Introducing an Austausch coefficient K of buoyancy,

8br :
F=—K—, (4.8)
dz
we get
Dy=(K/w)t. 4.9

Again applying the B-plane approximation we cobtain
from (4.1)-(4.6)

DY = — (144) (K /20)NF O, (4.10)
K
Eyy=—MEpr, (4.11)

w .

where Erp is the buoyancy flux spectrum at the sea
surface. Moreover, we get

br(2)=b7® exp[ (i—1)(w/2K)¥].

Expressing F©® in terms of the density disturbance
generated at the sea surface, we have

(4.12)

w5 =KNgp® /pq, (4.13)
g2K2)\4
ww — . Epp, (414)
Po

where E,, is the spectrum of the sea surface density.
Considering the influence of a temperature disturbance
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at the sea surface alone we obtain
B = — gaKNT O, (4.15)
Ewu, = g2a2K2>\4ETT, (4- 16)
where Err is the spectrum of the sea surface
temperature.
5. Generation by a fluctuating atmospheric
pressure

The boundary condition at the sea surface is

1 0pr 1 dpa

wrt——=—

£gpo ot gpo ot

. (.1)

If we restrict ourselves to frequencies and wavenumbers
which are sufficiently distant from the dispersion curve
of barotropic Rossby waves we get

1 9pa

=

gpo 01 .

(5.2)
From (2.9) we conclude that

(5.3)

(54)

" where E,, is the spectrum of the atmospheric pressure
" at the sea surface.

6. Discussion

We will discuss the significance of the various
generating agents by utilizing the results of Emery and
Magaard (1976) who analyzed temperature fluctuations
in the area between the Hawaiian Islands and the posi-
tion of weather station November (30°N, 140°W). At a
wave period of 28 months, 78.4% of the observed
fluctuations could be explained by first-order baroclinic
Rossby waves propagating along 24.2° west of north
with a wavelength of 1390 km and a rms amplitude of
8.2 m (at 500 m depth). Let us consider fluctuations of
meteorological fields propagating in the same direction.
and having the same.length and time scales. What
amplitudes would these fluctuations need in order to
generate the observed waves? Using the eigenvalues A,
and eigenfunctions ¢.(2) as calculated by Emery and
Magaard (1976), we find from (2.41)

) (1.44 X108 cm? s+ (3.11 cm? sk
= p _

a1’ , (6.1)

where

h=—3.08X10%A4* [cm] (6.2)
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and 4 is given in cm? s~ Assuming 4 to be smaller than
100 cm? s we can neglect the second term in the
numerator of a{”, when estimating the order of magni-
tude of a:®. Hence with sufficient accuracy

a?=5X10%4"* [cm? s71]. (6.3)

The corresponding rms magnitude of @ is 3107 4%
cm sL That means that a disturbance of the wind
stress (directed perpendicular to the wavenumber
vector) would have a rms amplitude of

To=4X10"%4% [g cm™ 577 (6.4)

in order to generate the observed waves. We will express
the necessary magnitude of a buoyancy flux disturbance
at the sea surface by considering the corresponding
disturbance of the sea surface temperature. The latter
would have to have a rms amplitude of

To=10""4}K1 [°C]. (6.5)

An atmospheric pressure fluctuation would need a rms
amplitude of

Po= 3414 [mb]

to generate the observed waves.

It is seen that the direct influence of atmospheric
pressure is negligible because the atmospheric pressure
(6.6) would imply a (geostrophic) wind disturbance
which is several orders of magnitude larger than that
of (6.4). That is to say, the disturbance of the sea level
height generated by a fluctuation of the atmospheric
pressure is very small compared to the vertical displace-
ment of the lower edge of the top boundary layer
generated by the corresponding geostrophic wind.

For a comparison of the wind influence and that of
the buoyancy flux, we need a value for K. White and
Walker (1974) estimate the rate at which temperature
disturbances of time scales from 3 to 6 years penetrate
through the top boundary layer to be approximately
100 m per year. According to (4.12) this means K has
values between 1 and 2 cm? s~%. Assuming K to be of
order 1 cm? s7%, we see that a wind stress disturbance
with 7 given by (6.4) and a sea surface temperature
disturbance with Ty=10"'4% [°C] can likewise generate
the observed waves. Assuming 4 to be in the range
between 1 and 10 cm? s, the necessary values of 7, and
T, appear to be small. This is particularly true for .
One must realize, however, that these values are rms
values for a sufficiently large number of wave periods.
It is planned that spectra of sea surface temperature
and wind stress will be calculated. The results should
shed more light on the significance of the processes
under consideration. An important test will be whether
the disturbances show a preference with respect to the
direction of propagation of the Rossby waves.

(6.6)
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APPENDIX
List of Symbols Not Explained in Text

A Austausch coefficient (vertical) for momen-
tum (horizontal) in the bottom boundary
layer

br buoyancy (associated with the wave field)

in the interior

b® scale of buoyancy in the top boundary layer

by buoyancy in the top boundary layer

by br at =0

f Coriolis parameter [ =fo+B8y (fo=6.163
X10-% 571, B=2.075X10"% cm~ st in
the numerical example)

F buoyancy flux in the top boundary layer

Fo® F at z=0 '

F® scale of buoyancy flux in the top boundary
layer

g acceleration of gravity (981 cm s~%)

H depth of water (assumed constant,
H=4750 m in the numerical example)

N(2) Brunt-Viisild frequency

Pa atmospheric pressure at the sea surface

pr pressure (associated with the wave field)
in the interior

pr pressure in the top boundary layer

Ru;, Ry components of the Reynolds stress in the

top boundary layer
¢ time

TO® sea surface temperature

us, v8, Wg %,7y,2 components of the velocity in the
bottom boundary layer

ur, vr, Wr %,v,% components of the velocity in the
interior

ur, v, wr %, y,% components of the velocity in the
top boundary layer

u® scale of the horizontal velocity in the top
boundary layer

w wrp at =0

wi? wp at z2=H

x, 9,2 Cartesian coordinates (x westward, y

northward, z downward)
« coefficient  of thermal
(@=3X%X10* (°C)™)
components of the horizontal wavenumber
vector (k to the west, » to the north)
Ka? K2 n?

expansion

Ky 7

po constant reference density
T1, T2 components of the wind stress at the sea
surface
T7® scale of wind stress
w frequency
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