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ABSTRACT

The dispersion characteristics of stable, discrete, barotropic, continental shelf wave (CSW) modes
propagating in a barotropic boundary current are strongly modified by the dynamical effects of nonuniform
horizontal shear. For example, the CSW’s propagate cum sole with no mean current, but their direction
of propagation can be reversed by an opposing uniform mean current. In contrast, an opposing sheared
mean current increases the tendency for cum sole propagation relative to an opposing uniform mean cur-
rent, and produces a high-wavenumber cutoff, at least for modes higher than the first. If the sheared mean
flow vanishes somewhere, the discrete CSW modes all propagate cum sole once again. For the mean current
profiles considered, the high-frequency cutoff is lowered in the nonuniform shear case compared to the
zero current case.

In a simple geometry motivated by the Florida Current and Florida Straits, southward CSW propaga-
tion can occur, in opposition to the Current, primarily because the cyclonic shear of the Current is similar in
magnitude to the local Coriolis parameter. The short-period cutoff (zero group speed) for the first mode
CSW is about 12 days; this CSW has a wavelength of about 190 km, corresponding to a southward
phase speed of about 17 cm s™. Within the limitations of the model, the results indicate that the Florida
Straits—Florida Current system can accumulate energy at time scales of 10-14 days, corresponding to
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those of atmospheric cold front forcing.

1. Introduction and motivation

Pilisbury (1890) noted that the Florida Current
was perturbed by atmospheric disturbances. Recently,
evidence for atmospheric forcing of the Florida Cur-
rent’s fluctuations has been more fully documented
by Mooers and Brooks (1977), Brooks and Mooers
(1977) and Diiing et al. (1977). Hamon (1962) ob-
served sea level disturbances propagating along the
Australian coasts which were correlated with atmo-
spheric forces. Robinson (1964) interpreted these
motions as topographically trapped (continental shelf)
waves (CSW’s) generated by atmospheric forces.

Present theories do not explain how an intense,
sheared mean current modifies CSW’. This short-
coming is particularly serious in western boundary
currents because the wave phase velocities of stable
CSW’s and the current velocity are of the same order
of magnitude but opposed in direction. Furthermore,
the horizontal velocity shear in a western boundary
current can be similar in magnitude to the Coriolis
parameter; and it contributes to the mean potential
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vorticity, whose variation provides the restoring force
for CSW’s.

Mysak (1967) considered the effects of an “off-
shelf,” uniform mean current on CSW propagation.
For mean current values typical of the East Australian
Current, he found reasonable agreement between the
theoretical lowest mode phase speed and the propa-
gation speed of sea level disturbances calculated by
Hamon (1962). However, the model mean current
had no horizontal shear and was located over a flat
bottom offshore, where the wave motion is evanescent.

More general CSW problems have been addressed.
For example, Wang (1975) employed a two-layer
model without a mean current; he found a “resonance
interaction” between the baroclinic Kelvin wave and
the lowest CSW mode in strongly stratified cases.
In a subsequent paper, Wang and Mooers (1976)
included continuous stratification without a mean
current, and found that CSW wave speeds were
increased somewhat compared to the barotropic case.
Niiler and Mysak (1971) considered a barotropic
model with discontinuous mean current and depth
profiles. They found that relatively long CSW’s could
travel along the shelf in both directions, and that
the short waves could only travel northward and were
unstable for certain short wavelengths. Here we in-
vestigate the importance of a barotropic mean cur-
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rent with nonuniform but continuous horizontal shear,
and a continuous depth profile, on the dispersion
characteristics of stable CSW’s. As explained later,
unstable wave solutions have been deliberately ex-
cluded through choice of methodology. The motivation
for this study is drawn from the Florida Straits—
Florida Current system, of which our model is an
approximation. A discriminant analysis for the gov-
erming equation sets bounds on CSW phase speeds
and provides a qualitative check on numerical solu-
tions. In order to focus on the effects of a sheared
mean current, a case in which the bottom topography
does not contribute to the variable part of the wave
restoring force is presented. Finally, a general case in
which both the depth and mean current profiles
provide restoring forces dependent on the cross-shelf
coordinate is examined. The relevance of the results
to the actual Florida Current-Florida Straits system
is discussed in the Appendix.

2. The model equations

We consider an infinitely long, north-south (y)
channel in the Northern Hemisphere with depth %
and a sheared, barotropic northward mean current V
(Fig. 1). The depth and the mean current are as-
sumed to vary only in the cross-channel (east-west, x)
direction. The latitudinal variation of the Coriolis
parameter f (the “8 effect”) is neglected, in favor
of the topographic vorticity restoring effect which is
much larger in the cases considered. To nondimen-
sionalize the variables, the following scale factors are
used: the shelf width L for the horizontal coordinates,
the reciprocal Coriolis parameter f~' for time, the
maximum water depth H for the depth profile and
the geostrophic velocity scale for the horizontal ve-
locities. The dimensionless momentum and continuity
equations for small-amplitude, barotropic, nondivergent
perturbations of the basic state are

Du :
TV Yy, (1)
Di
Dy
—+u(1+RoV.)=—n,, 2
Dt
(h“)w+ (hv), =0, . 3

where (u,0,) are the perturbation (x,y) velocity com-
ponents and sea level elevation, respectively; subscripts
denote partial differentiation, D(-)/Dt=(-),+RoV (-),;
and Ro=V,./fL is the mean flow Rossby number,
with Viax the maximum mean current speed. Eq. (3)
permits the introduction of a mass transport stream-
function ¥ such that hu=—y, and hv=y, We seek
wave solutions of the form

§=¥(x) expli(sot—y)], @
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Fi1c. 1. The depth and mean current profiles.

where ¢(x) is the cross-channel structure function
and sy and 6 are the dimensionless wave frequency
and wavenumber. Then the total time derivative is
D(-)/Dt=1s(-), where s(x)=s5,—Ro8V(x) is the in-
trinsic frequency. By definition so is the wave fre-
quency relative to the earth and s is the wave
frequency relative to the mean current. The potential
vorticity P of the basic state is P=(1+RoV.)/# and
the depth-weighted potential vorticity gradient, %P,
is hP,=RoV,,— (h,/h)(14+RoV,). Cross-differentia-
tion of (1) and (2) and substitution of (4) yields the
governing equation for y:

A )
wzz“;lpz—<62“”hpz)‘l/=0- (5)
h s

For the channel geometry of Fig. 1, the boundary
conditions are ¢y =0 at x=1, W.

Analytic solutions to (5) exist only for certain
simple choices of 4(x) and V(x), e.g., an exponential
dependence for % and V constant (Adams and Buch-
wald, 1969). We have used the numerical technique
described by Lindzen and Kuo (1969) to solve (5)
for general depth and mean current profiles. The
solutions are obtained by searching for resonant
responses driven by an arbitrarily introduced forcing
term on the right-hand side of (5); for detailed exam-
ples, see Brooks (1975). [The wavenumber of the
imposed forcing is prescribed to be real, and the
frequency has a small damping component to allow
integration of (5) over critical points. Thus, unstable
waves are excluded a priori.] We also compared
several dispersion curves obtained by the forced
method with those obtained by the “shooting method”
(Keller, 1969), with excellent agreement; the forced
method was found to be considerably less expensive
to execute, particularly in cases involving multiple
waveguide interactions.

3. Discriminant analysis

The discriminant of the governing equation is used
to identify the domain in which oscillatory solutions
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are confined. The analysis of the discriminant locates

the turning points and critical points of the governing

_equation and provides upper -and lower bounds on

the wave phase speed, co=s4/8, for oscillatory solutions.
In self-adjoint form, (5) becomes

'y’ hP\Y
G-tk o
I3 Y c/h
where ¢(x)=cp—RoV (x) is the intrinsic wave phase
speed and primes denote differentiation in ». Condi-
tions for turning points are discussed below. Critical
point singularities occur where c{x) vanishes.* The
substitution Y (x)=h%(x) reduces Eq. (6) to ¢
+A¢ =0, where the discriminant A is

kP! 37K\ 1B
)11
¢ 4\ } 2 h
For a given 6 and model geometry, the zeros of A
(turning points) provide x-dependent upper and lower
bounds on c¢(x) such that ¢ and ¢ are oscillatory for

that range of x where A>0. The necessary condition
for oscillatory behavior is

kP’
—>8—q, M
c

where q=(k"/2h)—3(h'/h)%. Of course, this condition
is not sufficient to assure that a given 6 allows com-
pliance with the boundary conditions, a point which
is settled when solutions to the corresponding eigen-
value problem are obtained.

Additional bounds on ¢(x) can be obtained directly
from (6), which can be written as two coupled, first-
order equations: Q'=A(x)¢ and ¢'=—hQ, where
Q(x)=—¢'/h and kA (x)=—0"+kP’/c. The functions
¢ and Q oscillate in segments of the ¥ domain where
A>0 and £>0 (Eckart, 1960). Since % is positive
definite, this condition is

LP'
> (8)
C

4 Critical surfaces (vertical planes parallel to the current axis
where ¢ vanishes) exist for waves propagating along and across
a mean barotropic current. In the depth-integrated form, the
system (1)-(3), the critical surfaces become critical lines parallel
to the current axis. For waves which only propagate along the
current, the critical lines become critical points. These waves
must satisfy two-point boundary conditions in x and are thus
normal modes or eigensolutions if they exist. For Rossby waves
in a barotropic atmosphere, Dickinson (1968) found that propa-
gating waves are absorbed at and near critical planes, which
eliminates the possibility for the existence of discrete, stable
normal modes when ¢, equals V(x) for some x. McKee (1977)
has recently demonstrated that a continuous spectrum for co
exists between the minimum and maximum values of V(x).
The corresponding solutions have discontinuous derivatives at
critical points.
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A comparison of (7) and (8) shows that for ¢<0,
a more restrictive bound on ¢ is given by (7). How-
ever, in regions of extreme bottom curvature, such
as near the shelf edge, ¢ may be positive; in such
regions, (8) provides the more restrictive bound.
There are four cases which depend upon the signs
of g and P’. The least upper and greatest lower bounds
on ¢ are given by

Case a. P'<0, ¢<0

hP’ hP'
——<¢<0 or —+RoV<<RoV
82—g ?—q
Case b. P'<0, ¢>0 -
hP’ hP'
—<¢<0 or —+RoV<¢<RoV
8 8
Case ¢. P'>0, ¢<0
hP' hP
0<c< or RoV << +RoV
8—q 8—q
Case d. P'>0, ¢>0
hP’ kP’
O<c<—2 or R0V<co<—2+RoV.
) b

As |8|— 0, ¢p is bounded from above and below by
RoV, i.e., very short waves advect with the mean
current. As |6]—0, ¢o is unbounded from below if
P'<0 and ¢20, and co is unbounded from above if
P'>0 and ¢>0. For -monotonically increasing depth,
% >0, Grimshaw (1976) proved that co< min(V (x))
and P must be negative somewhere for neutral modes
(CSW’s) to exist; the results of the next section are
perfectly consistent with these statements. Such strong
statements are not available for the non-monotonic
depth to be eventually treated here.

4, The exponential shelf with a sheared mean
current

An exponential shelf model is chosen to facilitate
the analysis of the effects of a nonuniformly sheared
mean current. The depth equation used for these
calculations is e 0%e<t '

e°%% X
=17 T ©)
1, 1<z<W

with the parameters k,=0.625, b=1.385 and W=2.5
suggested by the Florida Straits geometry; hence,
g=—b% An exponential model for the mean current
profile is also employed, RoV(x)=Roxe® ), which
has a maximum at x=1, an inflection point at x=2
and vanishes at =0 and as x— . Fig. 2 shows RoV,
h, P, P’ and kP’ for the exponential shelf and mean
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Fic. 2. Cross-channel distributions of 4, RoV, P, P, and hP.
for the exponential shelf-exponential mean current model shown
in the inset.

current model, with Ro=0.3. For x<2, P'<0; thus
Case a of the previous section applies, and the in-
trinsic phase speed is upstream. .

Fig. 3 shows two ‘“discriminant diagrams” for the
exponential shelf-exponential mean current model.
These diagrams illustrate the phase speed constraints
as a function of x. The mean current profile RoV
shown by the dashed line for the case Ro=0.3, pro-
vides the upper bound for the phase speed of waves
trapped over the shelf. The solid line in Fig. 3a shows
the lower phase speed bound for 6=—1. The region
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in which oscillatory solutions can exist for §=—1 is
shaded. Three distinct possibilities are shown in
panel A by the horizontal lines labeled A, B and C.
The circles indicate turning points, and the triangles
indicate critical points. Line A shows the case of a
southward wave with oscillatory behavior for 0K«
£1.0, and an evanescent behavior for x>1.0. Lines B
and C show cases in which northward waves have
one and two critical points, respectively.

Fig. 3b shows analogous results for several &’s. It
can be seen that all northward waves have critical
points, and that the oscillatory domain of southward
waves with wavelengths <65 km (|§]>2.9) is con-
fined to the shelf. In the short-wave limit, southward
waves become stationary (ce—0) and compressed into
a vanishingly small strip adjacent to the cyclonic
boundary.

From solutions to (5), four dispersion diagrams
have been constructed (Fig. 4) for the exponential
shelf model. Positive (negative) so corresponds to
southward (northward) phase propagation. The shear
of the mean flow increases from zero in Figs. 4a—4d.
In each case Ro has been adjusted to maintain a fixed
total transport. The two lowest order shelf modes are
shown. A uniform flow (Fig. 4a) transforms the zero-
flow dispersion diagram kinematically according to
8'=38, s¢’=s0—Ro|8|V, where primes denote the
transformed system (not simply a rotation of axes).
The uniform flow permits downstream propagation,

c C
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& c IS - = o~
i ~. ~--'.‘_-. Be-| ~~§‘:|.
% .’::3
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15 2:0 X . . ' X
+ ; } H -0 |'|,5 4‘20 -
g Ro=03 Ro=03
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Fic. 3. Discriminant diagrams for the exponential shelf-exponential mean current model: (A) 8= —1, shaded

area is oscillatory domain, circles (triangles) indicate turning (critical) points for selected co; (B) For selected 8,
the oscillatory domain is bounded by the dashed ¢urve and the corresponding solid curve.
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F1c. 4. Dispersion curves for modes 1 and 2 for the expo-
nential shelf model, showing the effect of gradually transforming
the uniform current profile of panel A into the damped ex-
ponential current profile of panel D. The total transport is
30105 m? s in all cases. The shaded areas show the zones
of singular points in the governing equation. The velocity profile
is given by RoV, where V=0.78+44 (xe1~*)—0.78). Parameter 4
(given in percent) is shown in parentheses.

provided ¢y< RoV. This bound is shown in Fig. 4a
by the line with slope equal to RoV. There are
no critical points,® so the dispersion curves extend
to indefinitely large wavenumbers. As the current
shear is increased, the boundary line so=RoéV in
Fig. 4a expands into a wedge in Figs. 4b—4d bounded
by the lines (s0)1=R06V nin and (s0)2=R08V 1.y, Where
Vmin and Vmax are the minimum and maximum
values of V. For all points inside the wedge, one or
two critical points occur somewhere in the channel.
The dispersion curves for stable, discrete modes lie
outside the wedge and terminate at the wedge bound-
ary. If the mean flow is zero anywhere in the channel,
then the wedge completely fills the northward half
of the dispersion diagram, as in Fig. 4d; and stable,
discrete downstream modes cannot exist.

5. A general case

We consider a simple model in which the topo-
graphic terms in the discriminant are x-dependent.
Our motivation is drawn from the Florida Straits—
Florida Current system, which has a channel-like

5 Actually, the line so=RosV is a channel-wide critical “point,”
analogous to so=0 in the zero mean flow case.
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geometry with an inshore Terrace and a steep offshore
slope. The Miami Terrace is part of a CSW wave-
guide that extends southward from at least Cape
Hatteras to at least the Florida Keys. The wave-
guide length is more than 50 times its width at the
Miami Terrace.

We employ a polynomial function fitted to the
depth profile off Miami, and we retain the exponential
current profile to represent the vertically averaged
Florida Current. With Ro=0.444, the total (dimen-
sional) volume transport is 30X10® m® s, a typical
value for the Miami-Bimini section (Niiler and
Richardson, 1973). Fig. 5 shows the corresponding
profiles for &, P and AP,

a. No mean current

For case Ro=0, the Miami Terrace has two wave-
guides for southward waves, and the Bimini shelf has
a single waveguide for northward waves (Fig. 6).
Modes 1 and 2 (Fig. 7a) are influenced by a ‘“‘resonance
interaction” (Eckart, 1962) between the lowest mode
computed individually for each Terrace waveguide
(Fig. 7b). (The individual waveguide dispersion curves
were computed for “upper slope” (0£x<0.56) and
“lower slope” (0.56<x<1.31) segments of the bot-
tom profile; the bottom was flat for other x values.)
As a consequence of the interaction, mode 1 has a
small group speed for a very broad band of wave-
numbers. The interaction is strongest at a dimensional
wavelength of about 40 km, i.e., the order of the shelf
width. For longer wavelengths, modes 1 and 2 span
both the upper and lower slopes; for shorter wave-
lengths, mode 1 is associated with the upper slope
and mode 2 with the lower slope.

b. Sheared mean current

For |5|23, the lower slope waveguide ceases to
exist for southward waves (Fig. 8). The upper slope
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F16. 5. Cross-channel distribution of %, P and #P. for the ter-
raced (polynomial) channel-exponential mean current model.
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F16. 6. Discriminant diagram for the terraced channel model,
Ro=0.

waveguide provides a southward potential for all
wavelengths, but the propagation zone is compressed
into a narrow band near the boundary for short
wavelengths.

Fig. 9 shows first and second mode dispersion
curves for sheared (solid lines) and uniform (dashed
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F16. 7. Dispersion diagrams for the terraced channel, Ro=0.
(A) The two lowest order modes for the full channel; (B) the
first modes for the upper slope and lower slope only channels.

F16. 8. Discriminant diagram for the terraced channel-exponential
mean current model, Ro=0.444.

lines) mean current cases. The total integrated trans-
port is 30X 108 m? s7! in both cases. The large phase
speed differences between the cases occur because the
uniform mean current model does not incorporate
the dynamic effects of nonuniform current shear. Our
dispersion curve for the gravest southward CSW mode
in the sheared current is similar for small wave-
numbers to that shown by Niiler and Mysak (1971)
for their model of the Gulf Stream in the Blake
Plateau region. However, we find no high-wavenumber
cutoff for the gravest southward mode, because high-

L o
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)
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F16. 9. Dispersion diagram for the terraced channel model:
(solid line) exponential mean flow, Ro=0.444; (dashed line)
uniform mean flow, Ro=0.369. The total transport is 30X10¢
m?3 s~ in both cases. Encircled points refer to cases in Fig. 10.
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Fic. 10. Cross-stream structure functions for the terraced
channel-exponential mean current model, Ro=0444. Cases
correspond to the encircled points on Fig. 9.
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wavenumber CSW’s are trapped very close to the
cyclonic boundary where the kinematic effect of the
mean current is relatively small. Second and higher
order southward modes do experience high-wave-
number cutoffs. Stable, discrete CSW modes were not
found for downstream propagation in the sheared
mean current.

The first mode cross-stream eigenfunctions at the
(so,0) points encircled in Fig. 9 confirm that for
|6|>3.0, the wave is trapped in a narrow zone near
the western boundary (Fig. 10c). The horizontal
arrows in Fig. 10 show the range of the oscillatory
domain of the eigenfunctions, determined indepen-
dently from the discriminant diagram (Fig. 8). The
waves are evanescent outside this domain. The eigen-
functions of Figs. 8a and 8b were computed for a
“long” (nearly nondispersive) wave and the zero
group speed wave, respectively. For all cases, the
wave is effectively trapped over the Miami Terrace.
For the zero group speed wave, the maximum along-
shore velocity component () occurs adjacent to the
western boundary, a node in the v component occurs
about 30 km offshore (~10 km seaward of the Terrace
edge), and the maximum cross-shelf velocity com-
ponent () occurs near the Terrace edge and is about
209, of the maximum z.

To estimate the sensitivity of the Miami Terrace
CSW characteristics to the Grand Bahama Bank, the
dispersion curves were computed with the Bimini slope
removed, i.e., the bottom was flat for #>1.3. The
exponential current profile was retained, with Ro
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=0.444 as before. The dispersion curves (not shown)
were virtually indistinguishable from those of Fig. 9,
within the resolution of the calculations (Asp=0.01),
and over the wavenumber range 0< |8] 5. We con-
clude that the Bahama Bank has a negligible effect
on the characteristics of southward shelf waves trapped
over the Miami Terrace.

6. Summary

Particularly in western boundary currents, the con-
tribution of the mean shear to the mean potential
vorticity can significantly influence the dispersion
characteristics of CSW’s. For CSW’s propagating cum
sole and in opposition to the mean current, the high-
frequency cutoff is lowered from the zero mean cur-
rent case, and a high-wavenumber cutoff can occur,
an effect which increases with mode number. The
subinertial frequency, southward propagating dis-
turbances observed along the east Florida coast and
the Florida Keys (Brooks and Mooers, 1977) ap-
parently occur because the cyclonic shear of the
Florida Current approaches the magnitude of the
Coriolis parameter, thereby providing a southward
CSW tendency sufficient to overcome northward ad-
vection by the mean Current. In a model with a
uniform mean current carrying the same transport
CSW’s are advected northward.

The barotropic model indicates that the gravest
mode CSW of the Florida Straits-Florida Current
system has low group speed at periods of 10-14 days
and wavelengths of 180-200 km. Thus a vigorous
response might be expected for southward propagating
atmospheric disturbances with these time and space
scales, such as atmospheric cold fronts, for example.
However, the limitations of the model may be severe;
in particular, the baroclinic structure of the Florida
Current may play a substantial role in determining
the topographically trapped wave characteristics (cf.
the Appendix).

APPENDIX

Applicability of the Barotropic Model to the Florida
Straits—Florida Current System

The model results indicate the sensitivity of CSW
characteristics to the nonuniform horizontal shear of
mean currents, such as western boundary currents.
Our model was suggested by the geometry of the
Florida Straits and Florida Current; we found it ex-
pedient to consider a barotropic analog of the baro-
clinic Florida Current.

The importance of vertical density stratification to
coastally trapped waves has been studied by Wang and
Mooers (1976) in a terraced model without a mean cur-
rent. They showed that barotropic CSW’s are a special
case of coastally trapped waves (CTW’s) occurring
in the limit of vanishing stratification parameter .S,
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defined as S=NwaxHr/fL, where Nmsx is the maxi-
mum Briint-Viisild frequency over the shelf, Hy the
maximum shelf depth, f the Coriolis parameter and L
the shelf width. For the Miami Terrace, Hr=~250 m,
L=30km, Nnax=10"2rad s7' and f=0.7X 10~ rad s7%;
thus S=1. Wang and Mooers’ Fig. 2 shows that, for
S=1 (an “intermediate” stratification case), the first
mode CTW phase speed is greater than the first mode
CSW phase speed. For wavelengths of the order of
200 km, the increase due to stratification is about
209,. The first mode CTW’s have a predominantly
barotropic alongshore velocity structure with wave-
lengths 2300 km, particularly inshore of the shelf
edge. Thus, for wavelengths much greater than the
shelf width (~30 km), the barotropic model quali-
tatively reproduces the major features of the vertically
stratified model. It is not clear how the addition of
a baroclinic mean current will affect this result.
A more complete treatment would also include the
alongshore variability of the bottom topography and
coastline, and address the mechanism for the setup
of CTW’s, taking into account critical surface phe-
nomena and unstable wave modes.

Discussion of Wind-Forced Barotropic CSW’s
in the Florida Current

From an analysis of atmospheric cold fronts passing
over the Straits in a 10-year period, the mean south-
ward speed of frontal advance was 10 m s, with a
standard deviation of 4 m s! (Brooks, 1975). The
mean interval between frontal passages over the
Straits was 7 days, but the distribution was almost
uniform between 4 and 12 days. The duration of the
frontal disturbance was typically 1 day. The fastest
(southward) first mode phase speed, which occurs in
the long wave limit, is about 50 c¢m s™. Thus, the
average cold front travels too fast to provide a ‘“‘phase-
locked” forcing of CSW’s in the Straits. From Fig. 9,
the dimensional southward phase speed of the zero
group speed first mode wave (point B) is 17 cm s,
corresponding to a wave period of 12 days and a wave-
length of 190 km.

Because of the quasi-periodic pulse nature of the
frontal disturbances, the frequency spectrum of atmo-
spheric forcing is broadbanded in the period range
of 2 days to 2 weeks. Similarly, it can be expected
that the north-south wavenumber spectrum of these
propagating disturbances is broadbanded in the wave-
length band of several hundred to several thousand
kilometers. Thus, the atmospheric forcing spectrum
probably has some energy near the (sq,8) for the zero
group speed CSW. Since energy transferred to the
system at the zero group speed frequency is only
advected with the mean current, the Florida Straits—
Florida Current system may accumulate energy at
frontal forcing time scales of 10-14 days and wave-
lengths of 180-200 km.
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Southward propagating sea level disturbances with
approximately the period of the zero group speed,
first mode CSW were found in the wintertime tide
gage records from the Florida east coast and Florida
Keys (Brooks and Mooers, 1977). The central wave-
length estimate inferred from phase difference calcu-
lations was 700 km, somewhat larger than that pre-
dicted here for the zero group speed wave.® The sea
level disturbances were coherent with both the along-
and cross-isobath Miami wind stress components.

From an array of current meters moored along the
300 m isobath in the Straits, Schott and Diiing (1976)
concluded that the dominant subinertial frequency
motion occurred at periods of 10-13 days and with
a wavelength of 170 km. The phase speed was south-
ward at 17 cm s, the current vector rotation was
anticyclonic, and the amplitude of the alongshore
current fluctuation was 14 cm st The 300 m isobath
corresponds to x=0.68 in our Fig. 10. Our calcula-
tions indicate that their current meters were located
7-8 km inshore of the node of the zero group speed
wave, in an anticyclonic rotation zone, near the % com-
ponent antinode, where the v-component magnitude
is about one-third of its maximum value.

In a forced wave calculation for the model discussed
here, Brooks (1975) used (frequency and wavenumber)
Fourier representations of the wind stress and wind
stress curl which corresponded to winter atmospheric
cold fronts. The frequency spectrum of forced CSW’s
had a dominant peak in the 10-12 day period range,
corresponding to the zero group speed, first mode CSW.
The wind stress curl was found to be important both
in determining the amplitude of the response, and the
shape of the horizontal kinetic energy spectrum.

The alongshore barotropic current obtained by
superimposing a 10-day period, first-mode barotropic
CSW on the exponential mean current profile is shown
in Fig. 11. The ordinate is distance offshore from
Miami (the total channel width is 75 km). The wave-
length corresponding to a 10-day period is about
180 km. Maximum alongshore CSW current fluctu-
ations, which occur adjacent to the western boundary,
are 14 and 28 cm s~! in Figs. 11a and 11b, respectively.
The amplitudes were determined from the forced
model with alongshore wind stress maxima of 3 and
6 dyn cm?, respectively, which are typical for winter
atmospheric cold fronts in the area. The cross-channel
CSW eigenfunction is essentially that shown in Fig. 10b.
We note the following features:

1) When perturbed by the CSW, the Current ex-
hibits a meander pattern, with the Current’s axis dis-
placed a maximum of about 5 km (Fig. 11a).

2) Transient Current reversals (i.e., southward flow)
occur near the western (Miami) boundary.

8 It is likely that the tide gage array overestimated the actual
along-isobath scale because the coastline is strongly curved
south of Miami.
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Fic. 11. Contours of the total downstream velocity (cm s™1)
for the terraced channel, exponential mean current model
(Fig. 9). The maximum velocity for the wave component is
(A) 14 cm st and (B) 28 cm s,

3) A node occurs in the alongshore Current fluc-
tuation approximately 30 km offshore, near the
steepest part of the Terrace topography.

4) The southward CSW has a relatively slight effect
on the Current over the Bimini shelf.
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