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ABSTRACT

The problem of a small-amplitude wave propagating over a flat porous bed is reanalyzed subject to the
bottom boundary condition
u
9z |o

where « represents the horizontal velocity in the fluid, %, represents the horizontal velocity within the bed as
predicted by Darcey’s law, K is the permeability and the subscript 0 denotes evaluation at the bottom
(z=0). The term « is a constant whose value depends on the porosity of the bed at the interface and must be
determined experimentally. The boundary condition is of the form of a “radiation-type” condition com-
monly encountered in heat conduction problems.

The important physical quantities (velocity, velocity potential, streamfunction, shear stress and energy
dissipation) have been derived and are presented, subject to natural conditions. The bottom boundary layer
is represented by the linearized Navier-Stokes equations under the usual boundary layer approximation.
It is found that the boundary layer velocity distribution and shear stress can be greatly altered from im-
permeable bed predictions. Theoretical results for energy dissipation and shear stress are compared to
existing data and are found to agree very well. The predictions of classical small-amplitude wave theory are
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not appreciably modified away from the boundary.

1. Introduction

As ocean waves propagate away from their genera-
tion areas, they eventually encounter the coastal zone
and, subsequently, sediments which constitute a loose
bottom boundary to the wave motion. Komar et al.
(1972) have photographed deep-water oscillatory
ripple marks off the Oregon coast at depths of 200 m.
It is therefore quite possible for a wave to have con-
siderable interplay with the bottom before reaching
the beach. This is especially true along wide conti-
nental shelves. From this point of view, wave-bottom
interaction becomes of great practical importance to
the activities of man. The design of coastal structures
and port facilities as well as the management of
navigable waterways are functions of predicted wave
parameters and sediment transport.

! Present affiliation: Remote Sensing Branch, Naval Research
Laboratory, Washington, D.C. 20375.

Over the years, many studies of wave propagation
over porous beds have been made. The first group
of significant works were those of Putnam (1949) and
Reid and Kajiura (1957). In those pioneer works the
problem of wave-induced motions in the bottom
sediment and the contribution to wave damping by
such motions were basically solved. However, the
inviscid model of the fluid motion used in both studies
left an undesirable discontinuity at the water sediment
interface, and also failed to account for all of the
dissipation of the wave energy.

Subsequently, Hunt (1959) introduced viscosity in
both the fluid and porous regions and applied a no-slip
condition at the interface boundary. This condition
upon the horizontal ‘velocity was proven to be in-
correct by Murray (1965) who invoked the arguments
of the kinematic conservation of mass and the dynamic
conservation of power. While the boundary conditions
used by Murray (1965) did represent a major im-
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provement over the previous works, they were not as
realistic as the model discussed by Beavers and Joseph
(1967). The condition implemented by them allows
for slippage of the tangential velocity component and
is stated as

u «
—=—(u—14,) at z=0, (1)
az Kbt

where K is the permeability, # the tangential velocity,
1, the porous bed flow as given by Darcy’s law and «
a constant whose value depends on the local porosity.
Slip-boundary conditions of similar form have been
used in slightly rarefied gas problems (Eckert and
Drake, 1959), but Beavers and Joseph have adapted
the concept for high density fluid flow over porous
boundaries with internal parallel flow. They performed
a series of experiments to determine some values of @
and to confirm the validity of the model. Recently,
additional papers by Taylor (1971) and Richardson
(1971) experimentally and theoretically confirmed the
applicability of the condition to such problems.

The condition stated in (1) is similar in form to
the “radiation-type” boundary condition found in
other physical problems such as heat conduction
(Luikov, 1968). In the present case, it is essentially
a statement concerning the interaction of the shear
stress distribution across the interface and the bound-
ary flow condition. Since the shear stress is a con-
trolling parameter in determining the incipient motion
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and the subsequent sediment transport as discussed
by Yang (1973), Francis (1973) and Komar and
Miller (1975), it is necessary to study the detailed
motion at the interface with the correct boundary con-

ditions. Since the condition used here deals specifically

with the stress distribution, the results can be used
to clarify unsettled problems regarding both the shear
stress and its relationship to sediment motion. For
example, Liu’s (1973) work assumed the shear stress
to be continuous across the interface while we allow
it to be discontinuous. This difference should have
important effects on any analytical derivation of
threshold conditions. t

Thus, the purpose of this paper is to utilize the
condition (1) in order to investigate the effect of the
porous bed on the propagation of linear waves and
to enhance our understanding of wave-bottom inter-
actions. In the analysis, a large number of assumptions
are made which may limit practical application to a
certain extent, but judicious deletion of particular
terms in the equations of motion allows analytic solu-
tion of the coupled problem and clarifies the influence
of the boundary condition.

2. Theoretical analysis
a. Equations of motion

The problem of wave propagation over a porous
bed involves flow in two distinct regions, i.e., the fluid
and the porous bed as shown in Fig. 1. The interior

9¢_2an
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2

F1G. 1. Equations of motion and boundary conditions.
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flow in the fluid regime is assumed to be irrotational.
Thus the motion is governed by Laplace’s equation

Vip=0, 2)

with ¢ as the velocity potential function. Viscous
effects have thus been assumed negligible in the
interior regime; the density is assumed to be constant
and gravity is the only body force considered. The
flow in the porous bed is governed by Darcy’s law

P aﬁs 1 . 1
__usz_V(Pﬂ-pgz)r (3)
i

ue 0f

where € is the porosity, K the specific permeability,
@i, the seepage velocity, u the dynamic viscosity,
p the density and p, the pressure, with the subscript s
indicating the quantities in the porous region.

Since the transition between the fluid and the
porous regions is rather drastic, the shear stress will
be strong locally and the viscous effect cannot be
neglected. Two boundary layers are introduced to
couple the flows in the two regions as shown in Fig. 1.
In boundary layer 1 on the fluid side, the boundary
layer equation used is

= —, @)

The momentum equation utilized in boundary
layer 2 is a result derived by Brinkman (1947) for
a field of closely packed spheres. This equation has
been discussed by Batchelor (1974) and is expressed as

us u, 1 0u, 1 190 ( ) )
- — U=~ —(Ps—pgZ), 5
9z2  9x? ve M K u ox pert (

in the horizontal. The vertical equation has a similar
form with the differentiation of the pressure term
being with respect to z rather than x.

b. Boundary conditions

Boundary conditions will now be proposed so that
the wave, porous bed problem can be addressed in
a completely well-posed sense.

At the free surface, the linearized kinematic and
dynamic boundary conditions are

dp dy

= (6)
dz Ot

el

—= &M (7)
at

where n represents the surface displacement measured
from the mean water level.
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At the bottom of the porous bed, the vertical
velocity is taken to be zero, i.e.,

@,=0. (8)

A few words of explanation are needed here. Strictly
speaking, at the bottom of the porous bed, there
should be another boundary layer similar to boundary
layer 2. However, the velocity will be extremely slow
at this boundary so its influence is considered negligible.
As a result, the only condition needed here is the
condition outside the boundary, i.e., the vanishing
of the vertical velocity component.

The most important set of boundary conditions is
at the fluid, porous bed interface, where the equations
of motion will be matched. The matching condi-
tions are

u=1u,, )
W=1W,, (10)
p=2ps, (11)
ou fo
2 - =l (1)
93 0 K3

Egs. (9)-(11) state the continuity of velocity and
pressure, while (12) states the new radiation-type
boundary condition.

¢. The solutions

As discussed in Section 1b and shown in Fig. 1,
the problem includes four regions each of which is
governed by differential equations. The route taken
in order to solve these four coupled equations is de-
termined by the radiation condition and the continuity
of horizontal velocity condition. To begin, the solu-
tion to Laplace’s equation in the fluid regime is found.
Next, we proceed to the porous bed and derive the
solution to Darcy’s equation. At this point, the terms
in the radiation condition are available and the flow
field in boundary layer 1 can be found subject to the
radiation condition. Finally, the flow in boundary
layer 2 is derived satisfying the continuity of hori-
zontal flow. This procedure results in five linear ex-
pressions in five unknowns. The system is solved and
used to determine the sixth integration constant.
These values are listed in Table 1.

Since the motion of interest consists of a train of
waves represented by

(13)

the solution sought is periodic and therefore ¢ is
assumed to be

¢= (4, coshkz+ B, sinhkz)ex,

n=ae",

(14)

where X=*kx—ot, x is the horizontal coordinate and
the wave is propagating in the positive x direction.
Substituting ¢ and » into (6) yields the following
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TasLE 1. Values of the constants of integration.

1. DetA=2k coshkh{[j—i-l- a —i)b—kz(ﬁ+%)]+cothkd[(l ;i)b—mj(k#‘?")}

- 2a01 1 1 [ o N :l}
. = 2 el N L (1—4)b
2. A1-Det A pr— {k [(l—i)b ! 0] Ve (1—1) coshkh

A« . .
] coshkh-{—;[\/—i—i- a ——z)b] smhkh}

: 2a0% vk a  (1—ip
» BiDet A_vsinhkd{(x_l_a >[\/E(1-—i)b )

w

Y

14

[j‘?L a -i)b:l cothkd sinhkh

T (1—=4)b/ Isinhkd

TJcoshki  2as% sinhk/‘z}
v sinhkd

, . B EB
4 A, -Det A=—2" (——ﬁ—i+—”) coshkh— A sinhkh]
vsinhkdL\8 ~ Y& oK @ o0
5 Ag-Detfi_BrDetfi_ —ao? o F(1—i)b k2 _If]
T e ysnbkdl g (1—db 8
’ - \ 2 2
6. Az-DetA={[‘—’—"”—2(5——‘3‘:)+(2k+2‘)(w(1—i)b ook
v /] \/K v
i*Kve 1 io\}
b=(¢/20)t A=—n¥€  o_ __._)
(@/2)%, (ve—iKo)’ o (K ve

relation between the integration constants:

’ —1a0
A 1+Bl COthkd= »
 ksinhkd

(15)

The condition at the bottom is that the horizontal
and vertical velocity components are continuous. The
conditions cannot be applied until the general solu-
tions for the bed flow and boundary layer motions
are obtained, since the flows are coupled. Expressions
for U and W can be obtained by differentiating ¢
with respect to x and z, respectively, i.e.,

U=1ik(A; coshkz+ B, sinhkz)ex (16)
W =Fk (A1 sinhkz+ By coshkz)eix. an

The pressure is related to ¢ using the linearized
Bernoulli equation ‘

9o
= —P‘(‘)‘;‘l‘l’g(z"‘d) (18)
or
p=1po (A1 coshkz+ By sinhkz)ex+p(z—d)g, (19)

where p is the fluid density and g the acceleration
of gravity.

Now we will attend to the porous bed flow. Darcy’s
law, as stated in (3), is solved as a potential flow
problem (Polubarinova-Kochina, 1962) using the
relations

1 O?Zs-l_l 1 6( ) (
- — g = —— — s pL2 =Us, 20
ve 8¢ K u 0x perg )

10w, 1 19
— == —(p—pg) =W, (1)
ve 0t K u 03

where » is the kinematic viscosity. Since continuity
must also apply to the bed, 8#,/9x+9®,/9z=0. It
follows that aU,/9x-+0W,/d2=0. From (20) and (21),
it is seen that U, and W, are expressed as the gradient
of a function. Therefore, let

0 s d¢s
and W,=—o1,
ox 0z

U= (22)

Substitution of (22) into the continuity equatign
implies V?%,=0. Substituting (22) into (20) and
integrating over x, we find

bo=—(1/n) (ps—pgz)+D:. (23)
If we let
¢o= (Ase*>+Boe™*2)ex4-G (3), (24)
then from Laplace’s equation, i
G(@)=C'z+D'. (25)

The condition at 2=0 to be satisfied by this flow is
continuity of pressure, so the potential pressure field
is assumed to be undiminished across the boundary
layer. To prove this point, the vertical momentum
equation must be considered since it contains the
8p/9z term. The usual approach (Schlichting, 1968)
is to nondimensionalize the momentum equations and
show that all the terms in the 2z equation which con-
tain w are small compared with the terms in the
x equation. If this is so, dp/dz equals the sum of a
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number of small terms and is therefore small itself.
In this case the situation is somewhat different since
percolation across the interface is allowed. However,
the seepage velocity is determined by the ratio, K/u,
which has a maximum value of 10— cm® s g~'. The
increase in w at the interface over the value of zero
for the impermeable case remains small compared
to Up and the standard boundary layer approximations
remain valid. (Note that the subscript O denotes
evaluation at z=0.) Thus

bol 0= (AotBs)eX+D'=p.| o, (26)
pol o= (—icA1/v)ex+ (gd/v)+Do. @27)
Relations (26) and (27) then give
Ayt-By= —igA1/, (28)
D'=(gd/»)+D:. (29)

In order to apply the boundary condition at z=—#%,
an expression for @, must be obtained. This is achieved
by solving (21), rewritten as

! 9¢.
17);;:[(7.03)1“‘}"1/6/ e"”’K(—~>dt]e‘””K. (30)
0 0z

If we assume that the motion is initially zero, (&)
can be dropped. Performing the integration results in
the following expression for @,:

kveK
Wy =~———(A ek~ B *5)ex+KC'.  (31)
(ve—ioK
The condition at z=—4% is-@,=0. Application of this
condition results in the two expressions

Ase*h— Baeth=0), (32)
C'=0. (33)

From (23)-(25) and (29), it is found that
ps=—pu(Ase¥+ Boe**)eix+pg(z—d), (34)

and from continuity, one finds that

thveK .

fg=————(Ao*>+ Boe#*)e'x, (35)
(ve—icK

At this point, we return to the fluid regime and solve
the boundary layer equations.

As discussed in the previous section, a linearized
laminar boundary layer is assumed for boundary
layer 1. The criteria for this assumption is strongly
dependent on the expansion parameter ¢ and will be
discussed further once the solutions are obtained. The
¥-momentum equation is

ou 3 1dp 9%

——y—— ———

ot 9z p ox oxdt

(36)
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Now if #=209¢/dx+u', then (36) becomes
ou' O
—y =0, 37
at 9z?

[The decomposition of # into a potential component
plus a viscous correction term #’ is discussed in
Phillips (1969).] As z increases away from the inter-
face, viscous effects decrease to an insignificant amount
implying that #' approaches zero so the solution
to (37) becomes

u'= A exp[ (i— 1)bz+ix],

b=+ (o/2v).

The condition at =0 is the radiation-type condition
described in (12). When the decomposition of u is
employed, then

(38)
where

'« oU
— =+ U—,) ——
oz Ki oz

at z=0. (39)

Substituting the expressions for #/, %, and U into (39)
and evaluating at z=0 yields the condition

tho
—-A,—1ik?B,
K4

a , A
+[——|—(1—i)b]/{1—-—(1‘12+32)=0, (40)
K} K}

where N\=1ikveK/(ve—isK). An expression for @',
iku'

W= , (41)

(1—5)b

can be obtained from continuity.

One of the implications involved with the radiation-
type boundary condition at z=0 is that viscous effects
diffuse at least a small distance into the bed. The
extent of this viscous penetration depends on the
permeability and porosity. Although this distance is
probably very small for the bed materials under con-
sideration, the effect on the shear stress may prove
to be significant. Since shear stress is related to the
horizontal velocity, an additional condition must be
imposed to make the problem well-posed. In the
present analysis, the continuity of horizontal velocity
is chosen instead of stress. Physically, a jump condi-
tion in velocity implies either nonconservation of mass
or infinite local shear stress. Neither choice sounds
reasonable. On the other hand, the choice of con-
tinuity of horizontal velocity can avoid all the above
difficulties. This choice does lead to a jump in the
shear stress across the interface, but physically this
discontinuity in shear stress is a statement of finite
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shear stress bearing capability of the sediment.
Furthermore, the matching of the horizontal velocity
at the interface is consistent with the idealized bed
flow. Introduction of this matching layer is also
necessary mathematically since both 4, and B; have
been utilized in (28) and (32). The matching layer
adds another integration constant which makes the
total number of constants equal to the number of
boundary conditions (not including the dynamic sur-
face condition). As in boundary layer 1, viscous effects
decrease away from the interface and approach zero
at some distance away from the bottom.

The equation used for boundary layer 2 is given

in (5) with 8%,/dx*> dropped for the same reasons

applied in boundary layer 1. If #, is decomposed in
the same manner as #, i.e., #,=,+u,, Eq. (5) becomes

s 1 ous 1
—— =0 (42)
322 ve ¢ K
The condition to be satisfied at z=0 is
w,= U+u'—1,. (43)

As with boundary layer 1, a solution can be obtained
in the form of

U= A pef=Hix, (44)
Upon making this substitution and solving for 6,
1 do\?
6= <————> . (45)
K e
From (43) it is found that
' As=ikA 1+ A\~ \(42+B,). (46)
Using the continuity equation
— ik
Ws= ’ (47)
[

which allows the last remaining condition, that of a con-
tinuous mass flux across the interface, to be satisfied.
This condition is expressed as either

W0+'w;)'—‘1‘(73 | o—w;l 0= 0 (48)

or

2 11y,
——-A1+k31+¢/e<-+ )Al
6 6 (1—i

k k
+i)\<1 —5>A 2 —‘i)\(l_!‘g)Bz =0. (49)

Conditions (15), (28), (32), (40) and (49) supply
the information needed to find the values of 4y, By,
As, By and A7, which are the only remaining constants
found in the expressions for the various velocity com-
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ponents. The values of these constants are listed in
Table 1 where 4 represents the augmented coefficient
matrix.

3. Discussion

Knowing the solutions and the integration con-
stants, it is now possible to derive expressions for the
physical quantities of interest. As seen in Table 1,
the integration constants are quite lengthy and con-
tain real and imaginary components. For natural -
conditions, quite a number of simplifications can be
made with the establishment of the appropriate criteria
based on the values of the physical parameters in-
volved. In the following derivations, the calculations
are usually long involving much algebra. It serves no
purpose to reproduce them here. The procedure in all
derivations is to find the quantity in terms of the
simplified forms of 4., By, 4}, 4, and B,, separate
the real from the imaginary components and finally
simplify that result. The values of a/K* used in the
sample calculations were selected to be of similar order
as those given in Joseph and Beavers’ experiments.
It is acknowledged that their beds were artificial
although the permeabilities were equivalent to those
of oceanic sand beds.

The velocity potential ¢ is found to be essentially
the same as given by Airy wave theory for natural
conditions, i.e.,

ao coshkz sinX
=—[——— (2412
EL ' sinhkd
oK?* sechkh )
X ————-—— sinhkz sin(X+ @*-Hﬁ)], (50)
av sinhkd
where :

I=—{(akv/2bK?%s) coshkh+ K[ (¢/K*)+b] sinhkd},
J=—[(ckv/2bK?%s) coshkh+Kb sinhkh],
g=[1+4(20K*/a)+2(b/a)’K T,
6*=tan—'[ b/ (a/ K+ 0)],

y=tan"(I/J)=a tan(|I|/[J[)+m.

Note that the sinhkz term is due to the porous bed
modification of ¢ and approaches the value zero as
z—0. The horizontal and vertical potential velocities
can be obtained by differentiating ¢ with respect to x
and 3, respectively. The ratio of the first term to the
second term of ¢ can be shown to be of the order
of b/k~L/5>>1. For this reason, and also the fact
that the second term of ¢ vanishes at z=0, the ex-
pression for U is approximately

ac coshkz
U=———cosX.
sinhkd

(1)
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Since the vertical velocity at z=0 is of interest the
minor term of ¢ will not be dropped from W, and

sinhkz
W= ao[ sinx_(]2+12)%
sinhkd

oK? sechkh '
X<———-—> coshkz sin(X+ ®*+‘P)]. (52)
avf sinhkd

To this approximation, the pressure distribution
remains unaffected by the porous bed since ¢ is vir-
tually the same as in the impermeable bed case. The
pressure is written as p=—p¢p,+pg(z—d) or

ao? coshkz
p=p——— cosX+pg(z—d). (53)
k sinhkd .
This result agrees with that of Putnam (1949), who
left the bed and fluid motions uncoupled and simply
used the pressure field of an Airy wave to drive the
bed flow.

Now that an expression for ¢ has been obtained,
the value of é=¢.2/¢,~ak. Therefore, this wave
theory is valid for ¢k<1 and under this circumstance
the dropping of the nonlinear terms in the surface
boundary conditions and the boundary layer equation
is justified.

The value of ¢, is the same as Putnam’s (1949),
notwithstanding an error which was corrected by Reid
and Kajiura (1957):

—ao? coshk(z+%) cosX gd
¢s= ) + . (54)
vk sinhkd coshkh v

n = SURFACE PROFILE

PIETRAFESA 829
Expressions for p,, #; and @, are, respectively,
pac? coshk(z+%) cosx (=) (
po= +pg(z—d), 55
k sinhkd coshkh e )
ao?K coshk(z+7%) sinx
U= - (56)
v sinhkd coshkk
—ac’K sinhk(z+4) cosX
W= - . (57
v sinhkd coshkl

(The reader should recall that z is negative in the bed.)
Inside boundary layer 1, the result for #/ is

acebe

' = ————— cos(X+bz+O%). (58)
£ sinhkd

Since a decrease in a/K* indicates less resistance to

the boundary layer flow as seen from the boundary

condition, it will affect a decrease in #'. Therefore

#=U+u" increases in magnitude as does the phase

advance ©* because U and «' have opposite signs.

Within this boundary layer

acke b2 ( 0% —a/a)
w=——— cos(X+bz+O*—7x/4).
V2£b sinhkd

(59)

Comparing »’ to #/, it is seen that «’ is greater by
a factor of approximately L/s.

Figs. 2 and 3 show the boundary layer profiles for
two different values of a/K*. There is an appreciable
difference between the two examples in the lower

F1c. 2. Boundary layer profiles of #/Uq, period=8 s for a/Kt=100 cm™l »=0.01 cm? 571
(Us=ao/sinhkd=maximum bottom velocity predicted by potential theory).
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section of the layer. Note the value of #,. To illustrate
another trend, Fig. 4 plots /U, over a wave period
(U¢=ao/sinhkd). Finally, Fig. 5 shows the dependence
of uy on the phase angle X. As a/K* decreases, there
is a steady phase advance which can be substantial
for small values of o/ K%,

The boundary layer thickness is a function of a
period [6« (2v/0)¥]. Fig. 6 shows that for short-
period waves §=0.5-1.0 cm, and for boundary layer 2,
do K¥< 1073 cm. It is very difficult to assess the
importance of the boundary layer other than that of
mathematical necessity. Physically, this layer is so
thin for ordinary porous beds that its thickness is
merely a fraction of the grain diameter. It has been

10
T e
.6 -
S
DO
gy
x
£
.3
X 50
2
100
1 =
1 1 L 1 1
0 2 8 16 32 64 128 25 512
T {sec)

F16. 4. Variation of #(max)/U, with wave period. Curves repre-
sent constant values of o/K* (cm™) for »=0.01 cm? s™1,
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57 3n In on - PHASE
q 2 g T = ANGLE

noted by several investigators (Murray, 1965) that
the bed can become substantially fluidized near the
interface before significant motion occurs, i.e., the bed
reaches a ‘“‘quick” state. If this is so, then the per-
meability will be greatly increased and the layer will
extend deeper into the bed, thereby encompassing at
least the first grain layer. There is another difficulty
related to the problem of determining the thickness of
the boundary, that of finding a definite value of effective
permeability under dynamic conditions. Established
procedures are by static tests. Therefore, the perme-
ability is a material property. If the quick state ob-
served is a rule, a new dynamic permeability should be
defined as a function of both material properties and
flow conditions. Such a development is clearly beyond
the scope of the present study. We are concentrating
here on the effect of the radiation condition.

One of the effects of the finite slip would be to
decrease the surface shear stress, but increase the
form drag of the interstitial flow on the particles. The
correction velocity in layer 2 is

u,=[ac exp(z/K?)/sinhkd][ cosX— £ cos(X+6%) ]

for 2<0. (60)

Unlike its counterpart #’, %, has no depth-dependent
phase. An example of the velocity profile across
boundary layer 2 is shown in Fig. 7. Note that the
negative scale is amplified in order to emphasize the
flow reversal within the bed.

In order to show the detailed flow pattern, the
stream-function is used which is defined by

u=—y, and w=y.. (61)
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Fic. 5. Curves of relative bottom velocity versus phase angle
for values of &/K* (cm™): T=8s, »=0.01 cm? 572,

v

The streamfunction in both the major flow regions is
modified near the interface by ¥’ which corresponds
to #’. The streamfunction can be found by utilizing

=
™
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(16) and (17), and integrating (61), to obtain

ac sinhkz
Y= [-— cosX+4-(J24-12)}
sinhkd
oK% sechkh
X (————) coshkz cos(X-+y+ 9*)]. (62)
kavt

The second term represents a modification to the
impermeable case. Its amplitude is small compared
to the first term, except near the bottom where
sinhkz—0 and coshkz—1. Under the approximations
applied, the value of the second term depends on 2,
the parameter arising from the boundary layer solu-
tion, and upon «/K3 the parameter given in the
boundary condition. It also has a phase advance of
~7/4 and derives its existence from the pumping
action in the bed. As can be seen in Fig. 8, the stream-
lines in the bed intersect the interface in advance of
the external flow.
The streamfunction for the porous bed flow is

_ —ao?K sinhk(z+4k) sinX
Vo= . ’ (63)
kv sinhkd coshkh

which is 90° in advance of the potential field
streamfunction.

The approximate corrections to the streamfunction
in the boundary layers are given by

—aoe~ % cos(X+bz+0*+m/4)
Y= - , (64)
2%£h sinhkd

—aoKk? exp(z/K%)r_

Ys= [cosx~ £t cos(X+6*)].
sinhkd

(65)

6= 460/ )
)

T (sec)

F16. 6. Boundary layer thickness versus wave period.
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Fi1c. 7. Profiles of u,/U, for different values of &/K* (cm™): T=8s, K=10"% cm?,
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The shear stress at the interface is the main cause
of sediment motion. Fig. 9 shows the nondimension-
alized shear stress with a representative number of
measurements from Teleki and Anderson (1970). The
quantity 7o max/pUy? is proportional to the friction

coefficient as stated in
cr=m7o/pUd, (66)

21

-7
AN MM

AN W\

F16. 8. Boundary layer streamlines: L=100 m, d=13 m, 2=7 m,
a=1m, K=10"% cm? o/K*=100/cm, »=0.01 cm?s™*.

where # is a constant which must be determined
experimentally. Unfortunately, all of Teleki and
Anderson’s data lie in what they considered to be
the transition region (35<U,(2»/0)}1<910). Also
shown is the result from Kajiura’s (1968) theory for
C; with #=0.5. Teleki and Anderson’s data were
collected using an impermeable sloping bottom (slope
=1:12.5). Nonetheless, the theoretical curve shows
a correct trend across the transition zone, and the
theoretical value is smaller as expected both because
of the presence of a porous bed, and because of the
assumption of a laminar flow condition in the cal-
culation. The bottom shear stress is given by

2%uacb cos(X+6* —m/4)

To=— (67)
£ sinhkd
1.0
c -1 Kajiura (1968), n = 0.5
s
N 10/cm
: P )
-2 28
) 500
2
<
g .0l
©
N
N\
A\
transition
.001 PO D O N 8 Y O TR - I B OO A Y R
1 10 100 1000

Re - Uy8/v

Fic. 9. Comparison of nondimensionalized bottom shear and
data from Teleki and Anderson (1970).
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Besides being useful in critical stress calculations,
Eq. (67) could be used for critical stream power
derivations as discussed by Bagnold (1963) and
Yang (1973).

Energy dissipation occurs in all the regions. The
values of d/L and % have the greatest effect on the rela-
tive importance of the energy loss in the three major
regimes. To calculate the rate of loss in the fluid
region, Rayleigh’s dissipation function is employed
(Rouse, 1961). Contributions will arise from the ex-
ternal flow and the boundary layer. Energy dissipation
is given by

L pd
D=2p./ / (2w, 245 (u.+w.)? [dzdx, (68)
0 0

where major contributors to fluid domain losses are
given by

L d
Di=4y / / (U2+W .2 \dzdx
0 0

L ©
+u / / (us)?dzdz.  (69)
o Jo

Here the subscripts denote differentiation. The first
term is due to the potential flow and the second is
from the boundary layer. The first term is evalu-
ated as

D;=4rua*s cothkd, (70)

an expression identical to Hough’s (1896) result. The
boundary layer loss is

Dbl=‘%#b[4(aa/£ sinhkd)Q. (71)

The porous bed rate of loss is calculated in the
same manner as in Putnam’s (1949) determination,
and is

m L 0
Dpp=— / / (24,2 dzdx
KJo Jo
ao’L

K z
=—~( —-) tanhks. (72)
mv \2 sinhkd

This is exactly the same result as obtained by Reid
and Kajiura (1957). Figs. 10 and 11 show the relative
contributions of Dj; and D, for a typical wavelength
In various depths of water and over beds of various
thicknesses. Figs. 12 and 13 compare theoretical rates
of energy loss to experimental values from Savage
(1953). All of Savage’s waves were intermediate waves,
ie., 1/20<d/L<1/2.

The attenuation coefficient v is defined as D/2E.
The energy E of a small amplitude wave is pgaL/2.
Since D=—F=—pgaa,L and a,=a;/C,, where C, is
the group velocity and equals the rate of energy

PIETRAFESA 833
1.
D1
D¢
1 1 1 1 | I I N U |
0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.0

d

L
Fic. 10. Fractional dissipation due to boundary layer as a
function of depth-to-wavelength ratio curves for various bed

thicknesses: L=100 m, K=10"% cm?, v=0.01 cm? s, «/K?}
=100 cm™,

transmission in the wave, we have
—2vE
pgaC,L  Cy

—ya

A=

Therefore,
a=q;e"7*Co=q,e 7, (73)
In evaluating the attenuation coefficient, the linear-
ized group velocity is used because the changes of
either group velocity or the phase velocity by the
porous bed are negligible. A more complete treatment
of the attenuation of the wave energy should follow
the approach used by Reid and Kajiura (1957).
In the present analysis, the emphasis is on the in-
fluence of the boundary conditions. Since the amplitude
has been assumed to be constant to simplify the algebra,
the results obtained in the analysis should be regarded

70~

:tca
o

Fic. 11. Ratio of porous bed dissipation to total energy loss
for various bed depths: L=100 m, K=107% cm?, ¢/K*=100 cm™,
»=0.01 cm? s7.
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Fic. 12. Comparison of theoretical and experimental attenu-
ation coefficients [data by Savage (1953)]: »=0.01 cm® s7,
a/K¥=100 cm™.

as local properties, i.e., the validity of the results is
limited to'a given neighborhood where the amplitude
shows no substantial change. Improvement will be
quite involved algebraically but relatively simple in
principle. :
The dispersion relationship can be derived from the
unused boundary condition (7). The result of sub-
stituting (13) and (50) into (7) is approximately

o*{ (K/v) tanhkk exp[1(¥Y'+6%)])

—o? ctnhkd+gk=0, (74)
where ¥’ =tan [ 14+a/(bK?*)]. Since oK/v=~1073, Eq.
(74) reduces to the result predicted by Airy theory.

4. Conclusions

It has been shown that porous bed effects can
produce significant adjustments in the structure of
the bottom boundary layer. The results expressed

Te
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here are subject to rather stringent restraints, i.e., the
bottom boundary layer is laminar and the bed is
stationary. Nonetheless, understanding of the laminar
case is valuable to the understanding of the transition
and turbulent flow regimes. Also, knowledge of the
shear stress is a prerequisite to prediction of the
threshold conditions. At present very little data exist
on the boundary layer structure and the shear stress
related to wave motion above a porous bed. Since
the layer is typically very thin, measurements are dif-
ficult and new techniques need to be developed.

As for the radiation condition, for successful applica-
tion to be accomplished, determination of « for natural
bed materials is required. The properties of the bed
at the interface may not be typical compared to the
gross properties when pressure gradients and flow
fields are present. If this is the case, the values of «, €
and K will be altered. The question of whether sedi-
ment motion is a sudden event or is preceded by
partial fluidization of the interface is a pertinent
question. Once bed motion begins, the boundary con-
dition becomes invalid and a new condition must be
applied. A great deal of experimentation will be
required to determine its form.

A direct extension of this paper is to determine
the mean lift and drag forces on individual particles.
Exact calculation of these forces is possible since the
flow pattern at the interface is known. Fig. 14 shows
a typical velocity profile and the lift and drag forces.
The drag force F, contributes to the vertical force
due to the moment about the contact point with the
adjacent particle. The drag force is approximately
equal to 7o(rD?*/4), where D is the sediment particle
diameter. The lift force F, is

pusL =~ pu, / / (us).04,

where T' is the circulation about the particle and 4
represents area. The lift and drag forces are opposed
by the submerged weight of the particle, i.e.,

Fy=—(p.—p)g(xD*/6).

- 0.8
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- 1.1
o o
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F16. 13. Comparison of theoretical to experimental attenuation coefficients as a
function of depth-to-wavelength ratio [data by Savage (1953)].
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F1c. 14. Forces acting on a sediment particle.

With these calculations, the threshold conditions can
be approximated analytically.
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