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ABSTRACT

Shear dispersion results from vertical shear of horizontal velocity and vertical mixing, features which
cannot be included explicitly in one-layer, vertically integrated models. The parametric description of
shear dispersion as effective horizontal diffusion in one-layer models is investigated by comparing analytic
solutions of two-layer dispersion equations to the corresponding solutions of a one-layer diffusion equation.
The diffusion description is found to be poor for times comparable with or shorter than the vertical mixing

time but excellent for longer times.

1. Introduction

This discussion of ‘““shear dispersion” stems from a
proposed study of the environmental effects of mining
for gravel in Massachusetts Bay. Such a study would
be directed toward estimating the extent of the dis-
persion of the silt introduced into the water by the
mining operation. It is helpful to think of dispersion
as being due to two distinct processes, advection and
diffusion. If a numerical model were used to assess
the extent of the dispersion, a numerical model of the
flow would be used to provide the advection, and the
diffusion would be eddy diffusion resulting from mo-
tion on length scales too small to be resolved on a
numerical grid. Although eddy diffusion is actually
advection on a scale too fine to resolve, it can be
treated as diffusion when dealing with effects on a
larger scale. In such a calculation, simplicity and
convenience might dictate the use of a one-layer or
vertically integrated model, in which case there is no
vertical resolution at all. Just as subgrid-scale effects
result in eddy diffusion, ignored variations in the
vertical are responsible for horizontal dispersion. The
combination of vertical shear and vertical diffusion
yields a net horizontal dispersion in addition to hori-
zontal eddy diffusion. The calculations presented here
are the result of an effort to understand in a simple
way the nature of this shear dispersion, and its rela-
tionship to diffusion.

Bowden (1965) suggested that this shear effect is
like an effective horizontal diffusion. He argued that,
for concentrations of contaminant which are steady
in time and which have the same horizontal varia-
tions at each vertical level, the horizontal transport
of the contaminant due to the shear effect could be
attributed to an effective diffusion process charac-
terized by a coefficient that is inversely proportional
to the coefficient of vertical eddy diffusion and directly

proportional to the square of the velocity shear.
Earlier studies by Elder (1959) of turbulent flow in
an open channel and by Taylor (1954) of turbulent
flow through a pipe led to similar conclusions.

These results suggest that one possibility for in-
corporating the shear effect into one-layer calculations
is by enhancing the horizontal diffusion coefficient
along the direction of the shear. This simple modifica-
tion requires, as additional inputs, the shear field and
its associated eddy viscosities as functions of time.
Perhaps, with a few observations and some simple
assumptions, they might be related to the mean flow.
Then the amount of enhancement might be estimated
from the flow conditions. But the question still re- °
mains to what extent shear dispersion acts like
diffusion. _

Okubo (1967) discusses the spreading of an initially
localized concentration of contaminant by a linear
velocity shear. For times large compared to the
vertical mixing time, he finds that the width of the
contaminated region increases as #, i.e., as the square
root of the elapsed time. This is the same time-depend-
ence as given by a diffusion process, and his diffusion
coefficient is exactly that which would be given by
Bowden’s argument. Okubo also considers the case of -
infinite depth, which corresponds to the short time
limit, before the pollutant has spread far enough
vertically to be affected by the presence of the surface
and bottom boundaries. In this case he finds that the
width of the contaminated region increases as #, or
slower than for a diffusion process.

A very simple argument by Okubo and Carter
(1966) in which the vertical diffusion and shear act
sequentially also supports diffusion-like dispersion for
long times, but assumes a linear time dependence for
the spreading for short times. Thus, it should be
expected that enhanced diffusion should give a good
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approximation to shear dispersion a long time after
the pollutant is introduced, but it is not clear that
the approximation is valid for the initial interval of
a few vertical diffusion times. For highly stratified
flows, the vertical diffusion time might be several
days. Even for this extreme case, enhanced diffusion
should be adequate for calculating the dispersion
after several weeks. But, before using such a calcula-
tion to obtain the dispersion after a few days, it would
be useful to know that the approximation is adequate
or, if it is not, to have some other approximation
that is better.

In order to get a better idea of the nature of shear
dispersion, I have chosen to study a simple two-layer
model similar to that used by Schénfeld (1960) to
study diffusion in tidal rivers. The model flow consists
of two equally thick layers of fluid moving relative
to each other, and the vertical exchange proceeds at
a rate proportional to the difference in the concentra-
tions of the layers. Because of the simplicity of this
model, it is possible to solve analytically for the
vertical mean of the contaminant distribution as a
function of time. The equation governing the dis-
persion is a damped-wave equation, not a diffusion
equation, but it approaches a diffusion equation for
relatively steady conditions. Solutions are obtained
for several different cases corresponding to different
choices for initial conditions and for sources of pollu-
tion. In each case the solution approaches the cor-
responding diffusion solution in the long time limit,
as expected. Comparisons between the two-layer model
solutions and the diffusion solutions reveal that they
are quite different after only one vertical diffusion
time measured from the first introduction of the con-
taminant but that they are quite similar after ten
vertical diffusion times.

In Section 3, the two-layer model is extended to
include the effects of horizontal eddy diffusion. Again
analytical solutions are obtained. After many vertical
diffusion times, these solutions also approach diffusion
solutions with a coeflicient that is the sum of the
horizontal eddy diffusion coefficient and the shear
diffusion coefficient which would be used if there were
no horizontal eddy diffusion. This is in agreement
with Okubo’s (1967) results that the second moment
of the contaminant distribution is the sum of a term
representing eddy diffusion and another representing
the shear effect.

2. The two-layer model

The two equations

aCy  aCy
~—+u—=—a(C1~C2)+51
ot ox @
aC: 9C,
——t—=—a(C2~C1)+S:
ot dx
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contain the essence of the shear effect, vertical shear
and vertical mixing. The shear flow is idealized as
two equally thick layers flowing in opposite directions
with velocities +#. Contaminant is mixed vertically
at a rate proportional to the difference in the con-
centrations C; and C, of contaminant in each layer.
The coefficient a governs the rate of vertical exchange.
Continuous sources of contaminant are represented by
Sy and S,.

These equations have the virtue that they are
simple enough to be solved analytically. It is clear
that no real flow is quite so two-layered. The two
layers should be thought of as giving the minimal
amount of vertical resolution necessary to discuss
vertical shear and vertical mixing. Additional sim-
plicity stems from the fact that it is possible to ignore
variations in the horizontal direction perpendicular to
the direction of the shear, because the shear effect
does not contribute to mixing in that direction.
Another simplification is the result of ignoring a mean
flow % in addition to the shear flow. This complica-
tion is not difficult to handle and is incorporated when
discussing continuous sources of contaminant. The
more difficult complication due to incorporating hori-
zontal diffusion is discussed in Section 3. If the co-
efficients # and « are allowed to vary with x and ¢,
Egs. (1) would be much more difficult to solve than
if they were constrained to be constant. Thus, # and «
are constant both in space and time. _

It is the vertical mean concentration C=2(C14Cy)
that should be simulated in a one-layer model. Egs. (1)
can be added and subtracted, giving two equivalent
equations in C and AC=%(C1—C5):

where §=3(S514S2) and AS=%(5:—S5). These equa-
tions can be solved for C (x,f) resulting from arbitrary
initial distributions, Ci(x,¢=0) and Ci(x,!=0), and
from arbitrary distributions of contaminant sources,
S1(x,t) and Sa(x,t). Several different cases, correspond-
ing to different choices for initial conditions and sources
are discussed below and comparisons are made to
corresponding solutions of a one-layer effective dif-
fusion equation [see Eq. (4) and Figs. 1-8].

By eliminating AC from (2), a higher order equa-
tion for € can be obtained:

#2C o6 C o8 . 8AS
— 20— — o =208~ s, 3)
ar a9 o ox

This is a damped-wave equation, not a diffusion
equation. If there is no vertical mixing, =0, and
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(3) becomes the usual wave equation. In that case,
the solutions which are functions of x4-uf correspond
to differential advection by the two layers. If the
concentration C is sufficiently steady, so that 8°C/os
&2(3C/3¢), then (3) becomes a diffusion equation

aC #C
——Ky*—=8
ot Ox?
2 : @
U
K }1* =
2

with the same coefficient of effective diffusion, Kg*,
as given by Bowden’s (1965) method of analysis.
Two initial conditions are needed to solve Eq. (3)
{C(x,t=0) and C (x,6=0)/3t=—u[IAC (x,t=0)/0x]},
but only one [C(x,t=0)] for (4). Since (4) cannot
resolve any vertical variations, it cannot use the
additional information about initial vertical asymetry.
Likewise, for sufficiently steady conditions, no in-
formation concerning the wvertical distribution of
sources AS enters Eq. (4).

This two-layer model can be con51dered as an
extrapolation back from asymptotically large times to
intermediate times. It cannot describe the dispersion
in its initial stage, before the contaminant has become
relatively uniform throughout the water column. For
this, greater vertical resolution is needed. By including
more layers, a generalization to (3) can be constructed
which contains higher time derivatives and more
information about shorter times. The one-layer model
should agree for asymptotically large times, but dis-
agree for intermediate times since it contains less
information about the initial stages of dispersion.
Thus, by comparing solutions of (3), or equivalently
(2), to solutions of (4), the two-layer model can be
used to determine the limits of validity of the effective
horizontal diffusion approximation.

It is convenient to introduce the matrix notation

) d
- —+2a —u—
¢ 8 at I

C=( ) S=< ) G- G, )
AC, AS 3 d
—y— -
ox ot

so that the solutions to (2) can be expressed compactly
in terms of a Green’s function G for arbitrary initial
conditions and sources as

-+ t
C(x,t)=/ dx'/ d'G(x—x', t—1)S (' t")
—c0 0

+00
+/ de'G(x—o' 1)C(2',0). (6)

The first term expresses the cumulated effects of thé
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sources and the second, the effect of the initial distribu-
tion of contaminant. Both depend upon the matrix
Green’s function G, which, in turn, depends upon the
scalar Green’s function G which is the solution to

92 i} 92
<....+2a—-——-u2——)G (x,8) =5 (x)8(8), (7
o2 at dx?

satisfying the casuality condition G=0 for ¢<0.
The scalar Green’s function G can be found using
Fourier and Laplace transform techniques. By writing

+o gk o g ’
Gxp)= ] / —-g(kw)e“"”"”‘) ®)

and using an integral representation for the Dirac
delta functions,

+o gf g
5(x)5(t) = f —eien, )

Eq. (7) can be transformed into
g(k:w) = —[(w-l—’ia—ﬂ) (w-l-'ia-f—ﬂ)]—l} . (10)
’Q = (u2k2_a2)} .

For ¢t>0, the w contour can be closed in the lower
half-plane and « integration can be evaluated by
residues, giving

it dk sin
G(x f)= / etkzg—at,

With the aid of a table of Fourier transforms (Selby,
1971), the % integration can be evaluated in terms of
the zeroth-order modified Bessel function, yielding

(€39

1
G(x,t) =—e T o{t[1— (/ut)*]?}
2u

X [0(x+ut)—0(x—ut)160(t) ;. (12)

1, >0

0(y)=
’ 0, y<0

The unit step function 8 serves to indicate that there
is no contamination outside of the region |x| <uf or
before =0 and allows G to be evaluated from (5)
with the aid of the identity d8/dy=24(y).

Having the expressions (12) for G(x,?) and (§) for
G(x,t), C(x,t) can be calculated for arbitrary initial
conditions and source terms according to (6) Although
it is quite straightforward to derive (6), it is somewhat
lengthy so the details are omitted here. A general
discussion of the procedure to express the solution of
partial differential equatlons in terms of a Green’s
function is glven in Morse and Feshbach (1953).
Using expression (6) along with (12) and (§), several
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Fic. 1. Case 1. One-layer effective diffusion (dashed line) poorly approximates
two-layer shear dispersion (solid line) after only one vertical exchange time. These
distributions result from horizontally localized, vertically uniform initial distribu-
tions. The two-layer distribution is confined to the region [ax/#]< 1.0, with spikes
representing the delta function terms. The Gaussian diffusion distribution lacks

these sharp features.

cases will be considered, each corresponding to a dif-
ferent choice for initial conditions and sources. Each
will be compared to the corresponding solution of the
diffusion equation (4) describing shear dispersion as
effective diffusion. The solutions obtained from (6)
will be referred to as the two-layer model solutions
and those from (4) as the effective diffusion solutions.

a. Case 1

We first consider the case of an initially localized
distribution with equal quantities of contaminant in
each layer and no continuous sources of contaminant.
There are two equivalent ways of describing this
situation using Eq. (6): with initial conditions
C(x,t=0)=Co(x) and AC(x,t=0)=0 and no sources
[S=AS=0], or with instantaneous sources S
=Cod(x)8(f) and AS=0 and initially clean water
[C(xt=0)=AC(x,t=0)=0]. Both ways yield the

same answer, as they must. Using either choice for
C, AC, S and AS in (6), along with (5) and (12),
the vertically averaged distribution of contaminant is
given by

Clxt)= Co(a—+2a)G (x,)
ot

=Coe“°‘[%|:fo(z)+a—:ll(z):|

X[o@+u)—0@—u)] [+ 1Y)

+%ta<x+m)+a<x—m>]]o<t>

few-(5)] |

0151 EFFECTIVE at=10.0
" DIFFUSION
0.101
"<
Co
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F1G. 2. Case 1. After ten exchange times, the one-layer diffusion distribution
agrees quite well with the two-layer shear dispersion distribution. The spikes and
fronts are negligible. Compare with Fig. 1.
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For small ¢, this distribution reduces to C(x,)
=3Co[8(x+ut)+8(x—ut)], which corresponds to the
contaminant remaining localized in each layer, but
moving to the right in one and to the left in the
other. No significant amount of contaminant is mixed
between the two layers for at<1.

As these localized quantities of contaminant move,
they decay exponentially in time by transferring some
of the contamination into the other layer where it is
fed back toward the origin. This process can be
visualized by imagining two thin strings of dye, one in
each layer, being advected away from each other,
dissolving as they go and leaving a trail in the other
layer. The trails leave trails of their own, with the
result that between the two decaying dye strings there
is a diffuse dye distribution. This diffuse distribution
is given by the term involving the modified Bessel
functions Ip and I, in (13). The factor formed from
the difference of the step functions limits the diffuse
region to x| <ut.

The corresponding solution to the dlffusmn equa-
tion (4),

o — ] aw
®,t) =——————— exp| —————

" e (w2 20) p[ 4(u2/ 200ty

does not have sharp fronts nor localized quantities of
contaminant. Nevertheless, for large ¢, the two-layer
model distribution (13) does approach this effective
horizontal diffusion solution. [ For limits of I and I,
see Abramowitz and Stegun (1970).] Figs. 1 and 2
present a comparison between the two-layer model
distribution (13) and the one-layer effective diffusion
distribution (14) for at=1 and at=10. Although dif-
fusion poorly approximates the two-layer shear dis-
persion after only one vertical exchange time (see
Fig. 1), the approximation is quite good after ten
exchange times (Fig. 2). For af=10, the amount of
contaminant that is still localized, the discontinuity
across the fronts, and the Gaussian tails are all
negligible.

By comparing (3) and (4), it can be seen that the
corresponding solutions (13) and (14) should agree if
the second time derivative in (3) is unimportant. In
other words, (14) is a non-stationary time average
of (13) with frequencies higher than O(e) filtered out.
Equivalently, (14) should be obtainable from (13)
by a corresponding spatial average. The connection
between the two methods of averaging can be found
in the relationship between diffusion length and time
scales. The spatial average filters out spatial varia-
tions on length scales smaller than O(L), where [?
=2Kg*a1=u?/a?. Thus, the lack of sharp fronts in
(14) can be thought of as resulting from a spatial
averaging of (13) which smooths over these sharp
features.

b. Case 2

We now consider an initially localized distribution
with all of the contaminant in one layer and, as before,
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no continuous sources. Again, this could be described
either with an instantaneous source addlng contami-
nant into initially clean water at /=0 using S(x,)
=AS(x,) =Co¢d(x)é(¥) and C(xt—O) AC(x,t=0)=0,
or with the initial contamination in the initial cond1~
tions using C(x,t=0)=AC(x,t=0)=Cod(x) and S(x,1)
=AS(x,/)=0. For definiteness, suppose that the con-
taminant is initially in the upper layer and the upper
layer is moving to the right. If it were in the lower,
left-moving layer, the sign of AC or AS would change.
For this case, the vertically averaged distribution
given by (6) using (5) and (12) is

- a i)
Cxt)=C o(———I—Za —u—)G (z,0)
at ox.

14 (cux/u)

_.:_ull (Z):I

X[0(x—+ut) —6(x—ut) J+6 (x—ut) }o(t)

ax\* 7
~er-(7)]
u J
Since the contaminant was initially in only one layer,
the solution is no longer symmetric about £=0. There
is only one delta function term corresponding to the
localized residue of the initial distribution moving to
the right in the upper layer. The diffuse distribution
is also not symmetric due to the initial motion to the
right, but, as in case 1, it is limited to the region,
| x| <ut.

The diffusion equation (4) cannot incorporate the
vertical structure contained in the initial conditions
for this case. Thus, the corresponding solution to (4)
for this case should be the same as that corresponding
to case 1, ie., that given by Eq. (14). The limit of
the expression given in (15) for a>>1 is exactly that
given in (14), just as expected. Comparisons between
the two-layer distribution and the one-layer effective
diffusion distribution for this case are shown, for
at=1 and at=10, in Figs. 3 and 4. As for case 1, the
agreement is not good for at=1. For at=10, the
agreement is better, but not as good as for case 1,
since the centers of the two distributions are not in
the same place. The position of the center of the
two-layer distribution is given by the first moment,
= (u/a)e >t sinh af. Thus, the center of the distribu-
tion moves ultimately as far as u/(2e), which is
essentially the location of the center for af=10 in
Fig. 4.

b, (15)

¢c. Case 3

Here we consider the case of a steady continuous
source discharging the quantity C, of contaminant in
one vertical mixing time into previously clean
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Fic. 3. Case 2. An initial distribution with all of the contaminant in the upper,
right-moving layer leads to short time horizontal asymmetry. The one-layer diffu-
sion approximation is the same as in Fig. 1, since the vertical structure must be

ignored.

water, i.e., S(xf)=aCod(x)0(t), AS(x,t)=C(xt=0)
=AC(x,=0)=0. As in case 1, the contaminant is
added equally to both layers, so the resulting dis-
tribution should be symmetric about 2=0. From (6),
this distribution can be expressed as the superposition
of distributions from a sequence of instantaneous
sources, each discharging the quantity aCodt’ of con-
taminant in a time interval dt’. Thus, the solution
for this case can be constructed from the solution
for case 1, i.e.,

2
(j'(x,t)=/ aCr(x' )dl', (16)
0
where Cr is given by the right-hand side of (13).
With continuous sources it is necessary to be careful
if there is a mean flow # relative to the source. For
this reason the integrand of (16) depends upon x’
=z—ut and not upon x. For this case, however, let
#=0, and consider #70 in case 4.
The delta function parts of (13) contribute spatially
decaying exponentials to (16) which dominate for
short times. There are no localized parts to the dis-

0.151

tribution unless #=-%, in which case one of the
layers is not moving and contaminant can accumulate
at =0 in the layer. However, there are sharp fronts
as in cases 1 and 2 with the contaminant restricted
to the region min[0, (@—wu)!]<x<max[0, (@+u=)t] as
expected.

If Crin (16) is given by (14), then (16) represents
the corresponding solution of the diffusion equation
with a continuous source. Again, the two-layer dis-
tribution and the one-layer diffusion distribution have
the same limit for a#>>1. These two distributions are
obtained numerically from (16) using the right-hand
sides of (13) and (14) for C;. They are compared for
af=1 and =10 in Figs. § and 6. For at=1, the
sharp fronts are evident, as are the spatially decaying
exponentials. For az=10, the fronts are insignificant,

“and the agreement is quite good, being worst near

the source at x=0.

d. Case 4

This case is exactly the same as case 3 except that
#=3u rather than #=0. Again the contaminant is
added equally to both layers, but in this case that

at = 10.0
EFFECTVE 7"\ __ TWOLAYER
o0l DIFFUSION
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F16. 4. Case 2. After ten vertical exchange times, the horizontal asymmetry is small
and the diffusion approximation is good. Compare with Fig. 3 and with Fig. 2.
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Fi1G. 5. Case 3. For horizontally localized, vertically uniform sources discharging
contaminant uniformly for one exchange time, the agreement is poor. Compare
with Fig. 1. The two-layer distribution (solid line) is again limited, [ax/#]<1.0.

In this case there are no spikes, but exponential decay away from the origin.

does not insure a symmetrical distribution about x=0.
The mean flow washes the contaminant downstream
to the right. Since in this case #>w%, none of the con-
taminant can enter the region to the left of the origin.
The one-layer diffusion equation does allow upstream
diffusion. As in the three previous cases, this dif-
ference between the two-layer distribution and the
diffusion distribution becomes negligible for a>>1.

Figs. 7 and 8 compare the two-layer distribution to
the diffusion distribution for this case for at=1 and
af=10. For at=1, the fronts and spatially decaying
exponentials are again evident. For at=10, the agree-
ment is again good except near the source. Again,
it is easy to see that the diffusion distribution can be
considered to be a spatial average of the two-layer
distribution which filters out variations smaller than
O(u/a).

In a similar manner, it is possible to use (6) to
calculate many more cases. However, these four cases
should be sufficient to illustrate the type of results
to be expected from the two-layer model and how
they should compare with the one-layer effective dif-
fusion results. At this point it is interesting to note
that several of the features of shear dispersion illus-
trated in these examples were anticipated qualitatively
by Stommel (1950). :

3. Two-layer model with horizontal eddy diffusion

The two-layer model presented in Section 2 de-
scribes horizontal dispersion due only to the combined
effects of shear and vertical diffusion and ignores the
possibility of horizontal eddy diffusion in each layer.
This eddy diffusion is a parameterization of the dis-
persion due to variations in the flow not specifically
resolved by the two-layer model. One possible mecha-
nism contributing to this eddy diffusion process is
the combination of shear and vertical diffusion within
each layer. Another is the turbulent mixing due to
seemingly random fluctuations which occur on smaller
spatial and temporal scales than the two-layer model
can describe. For the purpose of this study, both can
be lumped into one, called horizontal eddy diffusion,
and characterized by one parameter Kg. This pa-
rameter is not to be confused with the parameter
Kp*=u4?*/2a of Eq. (4) which represents the dis-
persion due to the shear effect; Kn represents the
dispersion which would occur in the absence of shear
between the two layers.

It is not difficult to modify the two-layer model of
Section 2 to incorporate horizontal eddy diffusion.
This is done simply by replacing the operator d/d¢

3.0r at= 10.0
EFFECTIVE  TWO-LAYER i=0
DIFFUSION MODEL
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Fic. 6. Case 3. After ten exchange times the one-layer diffusion distribution for
continuous sources is a good approximation to the two-layer distribution.
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Fic. 7. Case 4. When there is a mean flow relative to the source, a horizontal
asymmetry results. Compare with Fig. 5. Again, after one exchange time, the
agreement is poor. Since %= 1.5 #>u, two-layer shear dispersion can have no con-
taminant spreading upstream, whereas upstream diffusion is possible.

with 9/0t— K g (92/9x2%). Then Eqs. (1) become

3 9? aC,

(-—KH—)C1+’M—= —a(Cl'—Cz) +S1
d¢ 9x? ox

. @an

i} 92 aC,
(——-KH—)Cz—u-——= —a{Ce—C1)+S:
ot d9x? ox

The procedure for solution is the same as before.
In this case, there is a new Green’s function, &,
which satisfies

d 9%\? 0 02 02
[(— -K H———) + 2a<— -K H—-—) - uz—:lG' (x,8)
ot Ox? ot Ox? Ox?

=3(x)8(), (18)

which can be obtained by Fourier and Laplace trans-
form techniques. If

to dk rt°dw
G ()= / = / B (h)estan,  (19)
e 2w S 2w
then
g (kw)=~[(0+iKnk*+ia—Q)

The integrand can be recognized as a product of the
Fourier transform of G(x,f), the Green’s function given
in (11) and (12), and the transform of

Grp(wt)= exp[ —a*/(4Kr))10(1), (22)

(41I'K Ht) 3

the Green’s function for horizontal diffusion alone;
thus G’ must be the convolution of the Green’s func-
tions for the separate processes,

+00
G (x0)= / dx'Gry(x—a, )G (' 1). (23)

With the substitution of 3/3f— K #(3%/0x*) for 8/dt
in the matrix Green’s function of Eq. (5), the matrix
Green’s function with diffusion can be reduced to a
convolution of the matrix Green’s function without
diffusion and the Green’s function for diffusion alone:

“+w
GKH=f dx’GKH(x—x,’ t)G(x,’t)' (24)

—0

X (w+iKpk*+ia—20) T, (20)  This follows directly from Eq. (23). From this follows
where, as before, Q= (12k2—a?)i. Thus, for £>0, the simple expression
= dk sinQt - +e - ,
G (zt)= 2— exp(—k2K nt) ethrg—at, (21) C(x,) =/ dx'Gry(x—x', NCryaola' )  (25)
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FI1G. 8. Case 4. After ten exchange times, the agreement is excellent, except close
to the source. Again, upstream diffusion is possible, but upstream shear dispersion
is forbidden. Compare with Fig. 7 and with Fig. 6.
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10.0

F16. 9. Distributions after one exchange time are shown for
horizontal eddy diffusion within the layers characterized by a
coefficient Kg. For small values, Ky=10"* 42/2a or Kg=1072
u?/2e, the effect of this diffusion is to spread out the spikes and
fronts. Compare with Fig. 1, noting that a logarithmic scale is
used here. If Kp=u?/2a=Kp*, there is no indication of the
spikes or fronts since the diffusion within the layers is equal in
strength to the dispersion due to shear and exchange between
the layers.

relating the solutions Q_' (%,t) to Egs. (17) to the cor-
responding solutions Cky—o, to Egs. (2) which are
given by (6). Thus, the solutions to the two-layer
model with horizontal eddy diffusion are simply a
convolution of the eddy diffusion Green’s function
given in (22) with the corresponding solutions without
eddy diffusion.

It would not be hard to evaluate the integral in (25)
for each of the cases discussed in Section 2, each for
several values of Ky, and to compare the dispersion
due to the shear effect alone with that due to the
combination of the shear effect and horizontal dif-
fusion. However, a less detailed discussion is sufficient
to show how the two mechanisms work together.
From Section 2, we know that Cgy,—o is essentially
Gaussian for a#3>1. The Green’s function Ggj is also
a Gaussian distribution. Using the fact that the con-
volution of two Gaussian distributions is another
Gaussian distribution with a width which is the sum
of the two component widths, it must follow that C
of (25) must approach a solution of a diffusion equa-
tion with a coefficient of effective diffusion given by
Kyg* =Kp+4*/2a. To combine the two mechanisms,
we simply add their diffusion coefficients, but, as
before, this approximation holds only after many
vertical exchange times.

For short times, when the localized parts of the
distribution and the fronts would be important if
Ky =0, the horizontal eddy diffusion serves to spread
out these sharp features. This is illustrated in Fig. 9
which shows a numerical integration of (25) for the
same situation as case 1 in Section 2, a localized initial
distribution of contaminant uniformly distributed in
the vertical, for af=1. In order to show the height
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of the spikes conveniently, the vertical axis is loga-
rithmic. Three values of Ky are considered in Fig. 9,
and a fourth, Kx=0, in Fig. 1. In Fig. 1 the spikes
corresponding to a localized distribution are perfectly
localized with zero width and infinite height. For
Ky=10"*4?/2a the spikes shown in Fig. 9 are still
quite pronounced, as are the fronts. For Ky=10-2
/20 these sharp features are still evident but less
pronounced, and for Ky=u*/2a the sharp features
disappear altogether. For Ky=u2/2a the shear effect
and horizontal diffusion can be considered to be equal
in strength. If K;/>u?/2a, the shear effect becomes
negligible and horizontal diffusion dominates. These
curves are for a¢=1, for which a one-layer description
of the dispersion is not very good because the vertical
mixing is not complete. The corresponding curves for
af=10 were not calculated because their features can
be anticipated as discussed in the preceding paragraph.

4. Conclusions

The objective of this study has been to determine
under what conditions shear dispersion can be pa-
rameterized as diffusion in one-layer circulation
models. The conclusion is that, if the contaminant is
well mixed through the water column, then this pa-
rameterization is appropriate.

The converse is also true. If the contaminant is
poorly mixed vertically, then shear dispersion is like
differential advection and not like diffusion. This
situation is expected to arise near the edge of a patch
of contaminant or near a continuous source of con-
taminant. The extent of these regions is of the order
of the shear velocity multiplied by the vertical mixing
time. If the time scale of the circulation calculation
is much greater than the vertical mixing time and the
horizontal scale much larger than this coherence
length, then the deviation from diffusion-like behavior
should be insignificant. '

Because of the feedback provided by the shear and
cross-shear mixing, the contaminant tends in time to
become well mixed through the water column. This
feedback is like an averaging process. It is useful to
think of the one-layer model with the shear effect
parameterized as diffusion as being the result of
averaging the vertical average of the contaminant
distribution over time and space, filtering out varia-
tions shorter than the vertical mixing time and the
horizontal coherence length. The diffusion parameter-
ization holds so long as these small-scale variations,
which reflect the vertical inhomogeneity of the con-
taminant distribution, are unimportant.

Because this model is so idealized, it is important
to understand its relationship to more sophisticated
models capable of a more realistic description of the
vertical profiles of contaminant, shear and mixing.
The next most simple model would have three layers
to describe these vertical variations. Such a model
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would have an equation for the vertical mean of the
contaminate concentration involving a third time
derivative. This term would dominate for short times,
corresponding to differential advection within each
layer. After a sufficient time for the contaminant to
be well mixed through the water column, the diffusion
parameterization should be appropriate. For inter-
mediate times, some but not all of the vertical struc-
ture will be mixed out and the result should compare
with the two-layer model. More layers give higher
time derivatives and thus better short-time resolution
due to better vertical resolution, but the diffusion
parameterization should still be appropriate when the
mixing is complete throughout all of the layers. Thus,
the two-layer model is sufficient to determine the
domain of validity of the diffusion parameterization,
but a more sophisticated description of vertical varia-
tion should yield a better estimate of the diffusivity.

To parameterize shear dispersion as diffusion, the
size of the diffusivity in the direction of the shear
should be enhanced. This enchancement is additive in
the sense that a term dependent only upon the shear
and vertical mixing should be added to the horizontal
diffusivity which is appropriate when there is no shear.
This two-layer model was chosen for simplicity of
analysis and does not give the best possible pre-
scription for this term. Bowden’s (1965) method for
evaluating this term is more sophisticated. In any
case, in order to evaluate this enhancement, statistical
information describing the vertical shear and the
vertical mixing must be used. In practice, especially
for situations where one-layer circulation models are
used, these data are poor or unavailable, so the ex-
pression #2/2a from the two-layer model discussed
here is good enough.

It is possible to push this two-layer model further.
In most situations the vertical shear and the vertical
mixing change with time. This can be studied by
allowing # and a to vary with time. It can be shown
that, if they do not vary too fast, then the magnitude
of the enhancement can be evaluated using instan-
taneous values of the shear and mixing rate. A similar
result should also be obtainable for spatial variations,
where # and « depend upon x, but that analysis has
not been carried out. Also, it is not difficult to extend
the model to layers of unequal thickness or to in-
corporate mixing rates that are different in the two
layers. The result is intuitive that, if the contaminant
spends more time in one layer than the other, then
it is transported in one direction more often than in

W. C. THACKER 75

the other. This can be accounted for through an
effective mean flow. These results are not difficult to
work out, but their inclusion would make this paper
unreasonably long.

These results suggest that the shear effect can be
properly included in numerical studies of pollution
dispersion by simply enhancing the diffusion coeffi-
cient in the direction of the shear. However, if results
are needed showing spatial variations of smaller scale
than the horizontal coherence length or temporal
variations that take less than the vertical mixing time,
then more vertical resolution is needed. The problem
of estimating the shear and vertical exchange rate in
order to obtain the effective diffusion coefficient Kz*
is essentially the same problem as that of estimating
eddy diffusion coefficients for turbulent mixing. It re-
quires some understanding of the nature of the flows
which must come from observational data, not from
this model.
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