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ABSTRACT

Covariance functions and spectra of components of fluid particle velocity are obtained, taking into con-
sideration the effects of free surface fluctuations, for a Gaussian, stationary and homogeneous random
gravitly wave field in deep water, using infinitesimal wave solutions. Approximate representations of the
covariance functions and spectra are also derived. It is shown that the covariance functions and spectra
presented in this paper differ from those when the effects of free surface fluctuations are ignored, especially

at, around and above the equilibrium surface.

1. Introduction

The determination of fluid motion in a random
wave field has been the subject of interest in recent
years. In their attempts to understand wave dynamics
and to interpret field measurements, oceanographers
have addressed themselves to the statistical proper-
ties of random wave field associated with both surface
waves (Shonting, 1967, 1968; Kenyon, 1970; Thornton
and Krapohl, 1974) and internal waves (Phillips, 1971;
Reid, 1971; Garrett and Munk, 1971). The subject is
also of importance to engineers who are responsible
for the design of ocean installations since fluid motion
is a primary source of forcing function for which the
structures must be designed to resist.

In considering the statistical properties of a wave
field induced by surface waves, the influence of free
surface fluctuations has invariably been ignored in
the past. That is, due to fluctuations of the free sur-
face, any point fixed in space, in the vicinity of the
equilibrium surface, may rise above or fall below the
free surface. At instants when the point under con-
sideration is not submerged, there is no fluid motion.
It was shown (Tung, 1975) that by considering the
free-surface-fluctuations phenomenon, statistical prop-
erties such as probability function of the wave field
deviate drastically from those when the phenomenon
is ignored especially near or above the equilibrium
surface. The statistical properties of an undulating
layered medium are similarly affected by the fluctua-
tions of the interfaces as was observed by Phillips
(1971), Reid (1971), and Garrett and Munk (1971).

In this paper, taking into account the free-surface-
fluctuations phenomenon, expressions of the covariance

functions and spectra of the velocity components in
a random wave field are derived. For easy reference,
a brief account of the description of random sea, the
materials of which are contained in Tung (1975), is
first given below.

2. Specification of random sea

Consider a rectangular coordinate system with the
2z axis vertically upward and origin at the equilibrium
surface. The free surface displacement, specified by
z={(x,f), and assumed to be Gaussian, stationary in
time and homogeneous in horizontal plane, may be
represented by (Phillips, 1969)

tx) = f f dB(km) explilk-x—n)], (2.1)

where x is the horizontal position vector, ¢ is time,
and dB(k,z) is a zero mean, complex random func-
tion of wavenumber vector k and frequency #.

Under the assumptions of inviscid, incompressible
fluid and irrotational motion, the associated velocity
potential ¢(x,2,8), in deep water, to the first order of
approximation, is given by

Blxad) = —i / f —_ 1B (kyn) exp(|Kls)
Xexp[”(k x_”t)]y
with the frequency
n=(g|k|)},

where g is gravitational acceleration.
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Denoting the unit vector of the z axis by es, the
velocity vector is

u(x,z,t) = Ve (x,3,)

——i /k [ (ik— lkles)%dB(k,n) exp([k]2)

Xexp[i(k-x—nt)]. (2.2)

It is noted that (2.2) holds everywhere below the
free surface. However, due to fluctuations of the free
surface, any point in the vicinity of the equilibrium
surface may at certain times not be submerged in
which case there is no fluid motion at the point.
Stated explicitly, the velocity vector is

18 (x,z,i) =u (X)Z:t)Htg' (X,t)— Z],

where H( ) is the Heaviside unit function.

It is immediately clear that while u(x,2,f) is Gaus-
sian, @(x,2,t), being a nonlinear function of Gaussian
processes u(x,z,f) and ¢ (x,?), is non-Gaussian.

(2.3)

3. Covariance functions and spectra

To determine the covariance functions and spectra
of components 7:(x,3,t), %2(x,5,t) and #3(x,z,0) of ve-
locity vector @(x,2,t), it suffices to consider the random
process _

Y(_X,Z,l) = Y(x,z,t)HB‘ (X,l)— Z]) (31)

in which ¥(x,3,) is a stationary and homogeneous
zero mean random process jointly Gaussian with
£, )

The covariance function of Y (x,2,f), in general, is
the expected value of the product of ¥(x,f) and
Y (x+r, 5473, t-+7) in which r is the horizental posi-
tion separation vector, 73 the vertical position separa-
tion variable, and 7 the time lag. In this study, to
demonstrate the idea underlying the derivation of the
convariance function, for convenience, 73 is set equal
to zero.

The covariance function of ¥(x,2,), thus defined,
and in anticipation that ¥(x,3) is covariance sta-
tionary in time and homogeneous in the horizontal
plane, is denoted by Rpp(r,7) and is given by

Ryee(r,7)=E[{ Y(x,z,t)— EE?(X,Z,!)]}

X{I-’(x,r, 2, 5+T)—E[?(X+l', 2, t+7'):|} 1 (3.2)
where E[] is the expected value of the quantity
enclosed in the bracket.

In (3.2), the quantity E[Y(x,2)] was obtained
previously (Tung 1975) and is

E[?(X,Z,t)] = 77!‘(0:0)°'YZ (b): (33)

where
Z(§)=(2r) "t exp(—3£),
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a,=[ /k / X(k,n)dkdn]*

is the standard deviation of {(x,f) as can be obtained
from (2.1); X(kmn) is the wavenumber-frequency
spectrum of ¢ (x,f) (Phillips, 1969).

The quantity oy in (3.3) is the standard deviation
of Y(x,2,8). If Y(x,2,t) is identified with the jth com-
ponent #%;(X,z), j=1,2,3, of u(xz%), it may be
verified, from (2.2), that
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and

kj? ¥
ay=¢7u,~=[/ f ‘k\zan(k,n) exp(?.lklz)dkdn] ,
kJn

j=1) 27

where k; is the jth component of k and

3
0'y=0u3=|:/ / n2X (k,n) exp(2|k|z)dkdn:| .

The correlation function 7y (r,7) is
rye(r,7) = E[Y (x,3,0)¢ (x-+1, t+7)]/0vo;.
For the case Y (x,3,t) =u;(X,3,), from (2.1) and (2.2),

rye (1) =ru; (1,7)

={/k L%X(k,n) exp([k2)

Xexp[i(k-r—n'r)]dkdn}/(«ru,-,a;),

=12, (34)

rye (6,7) =71y (1,7)

=¢{fk fnnxa{,n) exp(|k|2)

Xexp[i (k-r—n-r)]dkdn} / (ougor). (3.5)

It is seen that while the expected value of #3(x,2,t)
vanishes, those of %;(x,2,f), j=1, 2, remain non-zero.
Also, o;, oy and 7y¢(r,7) are independent of x and ¢
and hence so is E[Y(x,5,t)]. Eq. (3.2) may then be
rewritten as

Rep(r,r)=E[Y (x,5,) ¥ (x+1, 3, t4+7) ]
—E[Y(x30)] (3.6)
For convenience in subsequent development, the
subscripts 1 and 2 will be used to correspond to
quantities evaluated at (x,3) and (x-+r,3, t+7) re-
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spectively. Thus, from (3.1)
Yi=Y.H (1 —2) }
Vo=VYH (3—2))
and the first term on the right hand side of (3.6) is
BLY:¥: )= E[V:VoH (61— D) H (o 0)] -
=E{H(1—2)H (2~ ) E[Y1V:| 0821} (3.7)

(Papoulis, 1965), where E[V1V:|{1f2] is the condi-
tional expected value of ¥,V given the values of {;
and ¢{s. Since Vi, Vo, {1 and {3 are individually zero
mean and jointly Gaussian random quantities (Pa-
poulis, 1965),

EEY1Y2l§1§2] =My 6 5MYal ?2+CY1Y2| f1te) (38)

where my, ¢, is the conditional expected value of ¥
given {; and ¢, and is given by (Papoulis, 1965)

My 56, = 01810l
a linear function of ¢ and {3, where
a1=0oyo?[ry;(0,0)—7: (t,7)ry; (r,7)]/A
aa=0ayo[rye(t,7)— 7 (0,7)ry: (0,0))/A 7,
A= [1—r} (r,7)]
where, from (2.1),

7 (r,7) = E[F (x,0)¢ (x+1, i+7)1/0?

{ /k / X (k) exp[i(k-x-—nr)]dkdn} / o,

3.9)
Similarly,

My,ie6,= 251+l s

The conditional covariance function Cy v, ¢, is
(Papoulis, 1965)

Crivynn=0r{rvy(t,r)— o[ 2ry (0,0)ryi (r,7)
' 7T (l',T') (7’%,-;— (0:0) +72Y§' (l‘,T))]/A},

where
ryr(t,7)=E[V(x,2,)) Y (x+1, 3, t+7)] /0¥,

and depending on whether ¥ (x,2,f) corresponds to
u;(x,2,6), 7=1,2,3, it may be obtained from (2.2).
That is, . '

. ka
ru,‘uj (r,T) = {[ / __nzx (k)n) eXP (2 Ik [ Z)
k Ja k|2 ‘

Xexp[i(k‘t—nr)]dkdn} / o,

.7=1’ 27
Tugus (T,7) = i / / n2X (k) exp(2|k|z)

(3.10)

Xexp[i(km—nr)]dkdn]/crﬁ,. (3.11)
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It is noted that Cy,v,)t,¢, is not a function of ¢; and ¢».
. Insertlng My 151t MYty MY and CY1Y2|!’1§2
into (3.8), and (3.8) into (3.7), gives
E[V\¥:]=Crvyr,t, ELH (1= 2)H (52— 2)]
+20.10:E[¢ 2H ($1— 2)H ({—2) ]
(a2 +aD) E[{1§oH (§1— 2)H ($2—2) ]
Since {; and {, are jointly Gaussian, the expected

values on the right-hand side of the above equation
can all be determined, giving

E[Yll_’2]=ay2{ryy(r,T)L[b,b,rr:(r,T)]

b1 —7 (Y,T):]]
(1 =g (r,7)

427y (0,0)ry (x,7)0Z (b)Q[

1
"l -0 T

X [7’%’;‘(0,0) —'—1’%;{ (I',T) - 27Y§' (0,0)1’“- (l',T)?’Y( (r7T)J
2%

xz[m:” (3.12)

A
Qm=/2@@

where

and (Abramowitz and Segun, 1968)
b—r t (l', T ))\
Do,
(1—rg@n ]

Eq. (3.12), together with (3.3), determines the
covariance function Rpy(r,7). That Rpy(r,7) is indeed
independent of x and ¢ is clearly seen, indicating that
Y (x,2,t) is covariance stationary in time and homo-
geneous in horizontal space. It can be verified that
when the point under consideration is far below the
equilibrium surface where the influence of free surface
fluctuations is small

LLb 15 (671 / 2000

lim Rpp(r,7)=cviryy(r,7)=Ryy(r,1),
ry;(r,‘r)—vo
where Ryy(r,7)=E[Y (x,2,))Y (x+7, 2, t4+7)] is the
covariance function of the zero mean random process
Y (x,3,t). Far above the equilibrium surface, it may
similarly be verified that

lim Ryp(r,7)=0
whereas Ryy(r,7) grows indefinitely.
The spectrum of ¥(x,z,), denoted Xyp(k,n), may

be obtained by taking the Fourier transform of
Rye(r,r). That is

.
X??(k,n)=ar—);/:/1RW(r,‘r)

Xexp[ —i(k-r—n7)] drdr. (3.13)
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The above integrals, however, cannot be carried out
in closed form and must be performed numerically.

4, Approximate representation

To facilitate computation of Ryg(r,7) and especially
Xypp(k,m), it is desirable to simplify the expression
of Regy(r,r) so that the Fourier transform may be
carried out more easily. It is noted that the absolute
values of 7;¢(r,7), rv;(r,7) and ryy(r,r) are all smaller
than unity. This suggests that Rpg(r,7), considered as
a function of ¢ (r,7), rye(r,7) and ryy(r,7), may be
expanded by Taylor’s series around the point ¢ (r,7)
=ryy(l‘,1') =fyg-(l‘,‘r) =0.

Without presenting the detailed operations involved,
the approximate representation of Rypy(r,7) is, by
retaining only terms up to the first power of 7¢¢(r,7),
fyy(l',‘r) and ry;(r,'r):

Rep(r,7) =0 p*[r%.(0,0)62Z%(b)r s (x,7)
+2ry;(0,006Z(0)Q(0)ry ¢ (xr,7)+Q*B)ryy(r,7)]  (4.1)

The corresponding approximate spectrum X ¢y (k,n)
is the Fourier transform of (4.1). The Fourier trans-
forms of the quantities r;;(r,7), ry;(r,7) and ryy(x,7)
on the right-hand side of (4.1) are given by (3.9),
(3.4), (3.5) and (3.10), (3.11).

It is of interest to note that according to the ap-
proximate representation of Rgg(r,7) [given by (4.1)7],
at the equilibrium surface z=0 we have

Rep(r,7) =i'RYY(l‘,T):

indicating that by considering the free surface fluc-
tuations, the covariance function is only one-fourth
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of that when the phenomenon is ignored. The same
observation may be made of the spectra by virtue
of (3.13).
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