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ABSTRACT

Previous studies of forced, long continental shelf waves on an f-plane have considered motion on the
shelf and slope which is driven by an alongshore component of the wind stress, essentially through the
suction of fluid into the surface layer at the coast. These studies have utilized a boundary condition, which
arises consistently in the long-wave nondispersive limit for free shelf waves, that at the slope-interior junc-
tion the alongshore velocity component =0, This is an extremely useful condition for problems concerning
forced motion on the shelf and slope, because it completely uncouples the motion in this region from that in
the interior and it allows the shelf-slope problem to be solved independently of the interior problem. It is
shown here, however, that this condition is not correct in general for wind-stress-forced f-plane motion.
A proper formulation of the f-plane, forced shelf wave problem in the long wave limit is presented. The
motion on the shelf and slope, in general, is coupled with and forced by the flow in the interior.

1. Introduction

The generation of motion on the continental shelf
and slope by barotropic continental shelf waves which
are forced by an alongshore component of the wind
stress has been studied by Adams and Buchwald (1969)
and by Gill and Schumann (1974). In these studies, an
f-plane model with an idealized, exponential shelf and
slope bottom topography (Buchwald and Adams, 1968),
which is independent of the alongshore coordinate, is
utilized. In addition it is assumed that the spatial scale
of the wind stress is much larger than that of the shelf-
slope width so that the forced shelf waves may be
treated in the long-wave, nondispersive limit. The
motion is forced by an alongshore component of the
wind stress through the suction of fluid into the surface
layer at the coast.

The geometry of these models is basically the follow-
ing. An exponential shelf and slope topography adjoins
a flat bottom ocean interior on an f-plane. A Cartesian
coordinate system, with velocity components #,v,w in
the (x,y,2) directions, is used with the z axis aligned
in the vertical direction, the y axis in the alongshore
direction and the x axis offshore. The origin x=0 is at
the coast and the slope-interior junction is at x=a.
The topography does not vary in the y direction. The
alongshore scale of the motion is assumed to be greater
than the shelf-slope width, i.e.,

3,8, (1.1)

and the time scale is assumed to be larger than an
intertial period, i.e.,
8>, (1.2)

where fis the Coriolis parameter.

In both of the previously mentioned studies an ap-
proximate boundary condition at the slope-interior
junction,

v=0 at x=3, (1.3)

is utilized. This is a consistent approximation in the
long-wave limit (1.1) for free continental shelf waves
on an f-plane as shown mathematically and explained
physically by Buchwald and Adams (1968). The phys-
ical reasoning is basically the following. From the
continuity equation the order-of-magnitude estimate
u/v=5,/8, may be obtained. Over the continental shelf
and slope, 8.~8 and it follows from (1.1) that »/v<K1.
For the ocean interior it may be expected that the y
scale will be similar to the y scale for the slope region
and that the x and y scales will be comparable. Con-
sequently, in the interior #;=~vz;, where interior vari-
ables are designated here by a subscript I. At the slope-
interior junction the balance of the normal mass flux
requires #~u»r and the continuity of the pressure re-
quires v~ vy, or, essentially, v=v;. For consistency with
the other order-of-magnitude estimates, this implies
that v(x=06)<<v(0<x <) or that v(x=248)=0 and, hence,
gives boundary condition (1.3). This argument was
appealed to for the forced problem by Adams and
Buchwald (1969) through a reference to Buchwald and
Adams (1968) and a similar line of reasoning was given
by Gill and Schumann (1974).

We point out, as will be shown in detail in Section 2,
that with (1.2), condition (1.3) is equivalent to the
assumption that at the slope-interior junction the on-
shore-ofishore flow below the surface frictional layer,
of the magnitude of that forced on the shelf and slope
by the alongshore component of the wind stress, is
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geostrophically balanced, i.e., that

pofum —p,

where p is the pressure and po the density.

Mathematically and conceptually, the approxima-
tion (1.3) is a very significant boundary condition for
problems concerning the forced motion on the shelf and
slope, because it completely uncouples the problem in
this region from that in the interior. Although (1.3) has
been used in the above-mentioned forced problems!
the mathematical and physical basis for it has really
only been established for free shelf wave motion. In
fact, for forced f-plane problems boundary condition
(1.3) is not correct in general. It is the purpose of this
paper to clarify this point and to present a proper
formulation of the f-plane, forced shelf wave problem
in the limit (1.1).

The major difference between free and forced prob-
lems in this regard is that for forced f-plane problems
the forced interior motion, in general, will be such that
the geostrophic balance (1.4) does not hold (to suffi-
ciently high order). As a result, the motion on the slope
is not uncoupled from the motion in the interior solely
by condition (1.1). This becomes obvious after a little
thought? and after the following analysis, and condition
(1.3) would definitely be in error for many possible
f-plane laboratory experiments.

The original analyses of Adams and Buchwald (1969)
and Gill and Schemann (1974) were meant, of course,
to apply to shelf and slope regions adjacent to oceanic
interiors in which additional constraints, such as the
B-effect, might be important. For simplicity, we limit
our consideration here only to the case of a flat bottom,
f-plane interior region. The relationship of the results
of this case with more general problems is discussed
briefly in Section 4.

at x=3, (1.4)

2. Analysis

We consider a model where a homogeneous fluid is
situated on an f-plane which effectively rotates with
uniform angular velocity =37k, where k is a con-
stant unit vector in the z (vertical) direction in a
Cartesian coordinate system. We assume that the
motion is governed by the following set of linear equa-
tions in dimensionless variables:

Uzt vy +w.=0 (2.1a)
U —v= — pyt 7 (2.1b)
vetu=—p,+r? (2.1¢)
0=p.. (2.1d)

Here 7 and 7@ are, respectively, horizontal shear

1 Condition (1.3) has also been used by the present author in
Allen (1976) and as a co-author in Kundu ef al. (1975).

2 Consider, for example, a conceptual problem similar to that in
the example of Section 3b.
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stresses in the x and y directions and the subscripts
denote partial differentiation. The variables (%,v,w,p,7)
and (x,9,%,f) have been made dimensionless by
(Uo,Ug,HoL_l Uo,poUofLo,T()) and (L(),Lo,Ho,f_l), respec-
tively, where Lo is a characteristic horizontal scale, H,
a characteristic depth, 7o a characteristic value of the
surface wind stress and Uo=r1,/(pofHo) a characteristic
horizontal velocity.

The fluid is contained in a basin with a rigid upper
surface at 2=0 and a variable depth bottom surface
at z=—H(x,y). Egs. (2.1a, b) are integrated over the
depth A. It is sufficient, for the points to be established
here, to assume 7 and 7 are negligible at the
bottom surface. With the boundary conditions

{ 0 , 2=0, (2.23)
w=
—uH,—"UIIy, Z=_E(x7y)) (22b)
and the definitions
0 0
U= / uds, V= / vdz, (2.3a,b)
—H —H
the resulting equations are
U,+V,=0, (2.4a)
U, —V=—Hp,+7%, (2.4b)
VitU=—Hp,+7W, (240)
where
P =10 (z=0). (2.5)
By defining a transport streamfunction such that
U=y, V=—¥,, (2.6a,b)

the following single equation for ¥ may be derived
from (2.4b, ¢):

[‘pzx—i_‘pyy_ (Hx/H)‘l’z_ (Hy/HN’y]t
+(H/H) Wy —70)— (H,/H) Y~ 7%)

— (;y(z)_;z(y))'

2.7)

For simplicity in presentation, we assume initially
that the fluid is contained in a rectangular basin with
boundaries at x=0, 1 and y=0, L. We also assume that
there is an exponential shelf-slope region along the
boundary y=0, from =0 to x=4§, and that the re-
mainder of the basin is at constant depth, i.e., that

I exp[[(x—8)/850], 0Lx<3, (2.8a)
- 1 , 5<x<1,  (2.8b)

where H is independent of ¥ and 8z is an O(1) constant.
The results may be easily generalized to more general
basin geometries and onshore-offshore shelf-slope
topography. '

We will refer to the flat bottom region (§<x<1,
0< y< L) as the interior and the line x=5 as the slope-



428

interior junction. We consider the case where
81, (2.9)

i.e., where the scale for the width of the shelf-slope
region is small compared with the O(1) x and v scales
of the interior. The surface stress components 7 ¥ are
assumed to vary on x and y scales which are O(1). The
problem will be treated by perturbation methods for
the limit

5— 0. L (2.10)

An initial-value problem is examined where a surface
wind stress is imposed at =0 to a fluid at rest. After
the initial imposition, the wind stress may vary with
time, but we restrict our attention to cases where this
variation is on a time scale long compared with f~!. We
therefore assume that

FeN =@ (gyf), >0, (2.11)

where we avoid introducing an additional small param-
eter by assuming that 7(=.#) varies on the time scale

t=1. (2.12)
Since the fluid is at rest initially,  satisfies
=0 at =0, (2.13)
The boundary conditions for y are
¢=0 at x=0,1, »=0,L. (2.14a,b)

The perturbation problem (2.10) requires different
treatment in the interior and shelf-slope regions and the
solution will have different expansions in these regions.
The discontinuity in bottom slope at x= 4§ requires con-
ditions on the continuity of the normal velocity and
the pressure along this line. If ¥ and  represent the
solution ¥ in the interior and in the shelf-slope region,
respectively, then the continuity conditions in terms of
the streamfunction are

\/7,,=¢/,, at 6
R x=40.
‘;zt=1//xt

For the interior we assume that y has the expansion

¢=6—1[1];0(x7y1i)+6¢1+ te ']’ (2'17)

where the O(67!) magnitude of the lowest order term is
dictated by (2.7) and the time scale (2.12). Substituting
(2.17) and (2.8b) in (2.7) we obtain the governing
equation for ¥y:

BozatPu)i= (77 — 7).

For the shelf-slope region we assume that y has the
expansion

(2.15)
(2.16)

(2.18)

v=Yu(Eyd+: -, (2.19)
where £ is a scaled variable defined by
E=x/5. (2.20)

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 6
The resulting equation for ¥ is
(Ga¥ore— o) i+P0,= 78, (2.21)
where
FR=7(x=0,y, i) (2.22)

It isA evident from (2.21) that { is a natural time scale
for ¢. From (2.14), ¥, satisfies
Po=0 at ¢=0. (2.23)

Substituting the expansions (2.17) and (2.19) in the
conditions (2.15) and (2.16) and utilizing for the in-
terior variable the Taylor series expansion

Jr=08)=P(x=0)+8),(x=0)+---, (2.24)
we obtain :

Yo, (x=0)=0, (2.252)

Poot(x=0) =z (£=1), (2.25b)

U1, (x=0) o, (x=0) =y, (=1).  (2.25¢)

It follows from (2.25a) that the lowest order motion
in the interior is uncoupled from that on the shelf and
slope. As a result, (2.18) may be solved for ¥, with
boundary conditions

Jo=0 at x=0,1, y=0, L. (2.26)

This will determine Yo,;(x=0) which may be used in
(2.25b) as a boundary condiAtion for ¥o.
To solve the problem for y it is convenient to define

Po=P0— oo, (2.27a)

Yooy =¥0{x=0, v, ), (2.27b)

and to solve for ¥o. In terms of ¥;, Eq. (2.21) and
boundary conditions (2.23) and (2.25b) become

Gslpee—Vo) i+P0, = 7Y+ Foaicr — Hoyzwy),  (2.282)
Jo=0 at £=0, (2.28b)
Yo=0 at &=1. (2.28¢)

The problem for ¥/, is now similar in form to that
solved by Adams and Buchwald (1969) and Gill and
Schumann (1974) in the sense that the boundary con-
ditions at £=0, 1 are the same and the forcing function
on the right-hand side contains 7. Here, however,
there are additional forcing terms in (2.28a) which are
due to the interior motion ¢y, forced by the curl of the
wind stress (77 —7%®). We can see that the interior
solution drives motion on the shelf and slope through
the onshore velocity &0,z and through the time rate
of change of the alongshore velocity yozz(0. Both of
these provide a forcing effect of the same magnitude
as the direct forcing of the wind stress at coast 7). It
is evident from (2.28) that the lowest order motion on
the shelf and slope is not in general uncoupled from
that in the interior.

where
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Since the problem is linear, the solution to (2.28a)
for ¥, may be divided into two parts, the first forced by
7%, and the second forced by the interior motion
(Yozicoy — Eoy2ny)- The solutions presented by Adams
and Buchwald (1969) and Gill and Schumann (1974)
correspond to the first part of {;, which is forced by the
wind stress at the coast.

The solution to (2.28) is most easily obtained by the
method of Gill and Schumann (1974). This will provide
@oy(£= 1) which may be used in (2.25¢) as a boundary
condition for ¥;, whose governing equation is

l;lzz_l‘\zlyy:()-

The finite extent of the shelf and slope in the y
direction in the present rectangular basin will cause a
breakdown of the formulation at y=0 (for />0) where
incident long shelf waves will be reflected and motion
with small y scales will be generated. That part of the
problem, however, is not treated here. We point out
that if a cylindrical basin is considered, with a uniform
shelf-slope region along the perimeter of the basin and
if & R¢, where § is the width of the shelf-slope region
and R¢ is the radius of curvature of the basin boundary,
the present analysis may be easily generalized and an
equation similar to (2.28a) governing the motion on
the shelf and slope derived. In that case, the coordi-
nates (£,y) here correspond to orthogonal curvilinear
coordinates (£,1), where ¢ varies in the direction of the
inward pointing unit normal vector to the boundary
fi and 9 varies along the unit tangential vector t,
oriented so that AiXt=k. As before, the boundary is
located at £=0 and the slope-interior junction at £=1.
The forcing terms on the right-hand side are replaced
by the appropriate generalizations and (2.28) becomes

(58‘%&““%5) 5+$(’m
=% t+[0- Vfo— &t V(@ Vo) o),

(2.29)

(2.30a)

where o
Yo=vo—£(0- Vo) (o), (2.30b)

and where the subscript (0) denotes evaluation at the
boundary. The boundary conditions (2.28b, ¢) remain
unchanged. The interior solution ¥, is obtained, as
before, from (2.18) with a boundary condition, analog-
ous to (2.26), of o=0 on the boundary. In this problem,
there is no breakdown of the formulation such as there
is at the corners of the rectangular basin.

The procedure utilized by Adams and Buchwald
(1969) and by Gill and Schumann (1974) amounts to
solving (2.21) with boundary condition (2.23) and with

Joi=0 at £=1. (2.31)

It has been shown that this is incorrect in general, but
it is useful to examine the situation for which (2.31) is a
proper boundary condition. It turns out, as mentioned
in Section 1, that this is the case if the O(1) onshore-
offshore flow, i.e., the onshore-offshore flow of the same
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magnitude as that directly forced on the shelf and slope
by the alongshore component of the wind stress, is
geostrophically balanced at x=é. This follows from
(2.4c). With expansion (2.17) and with

p=06"1(Potop1+- - ), (2.32)
(2.4¢) gives, to O(57),
Yo, = —Hpoy, (2.33)
and, to O(1),
—JositPy,=—Hpr,+7¥. (2.34)
In terms of the shelf-slope variables, (2.4c) is
~Juit+do,= —Hpo,+78, (2.35)

where expansion (2.19) has been used and where
p=hot- . (2:36)

We can see from (2.34), (2.35) and (2.25b) that (2.31)
is equivalent to the assumption of geostrophic balance
of ¥o, and ¢, at x=35, i.e., to the balances

Yo, = —Hpo,+7%
Y1, =—Hpy,+7W

at £=1, (2.37a)

at x=46. (2.37b)

3. Examples

It is useful to consider some simple illustrative ex-
amples which result in different behavior on the shelf
and slope.

a. Rectangular basin (0< y< L)
1) 7@ = T¢(constant), ¥ =0

In this problem there is a constant surface stress in
the y direction. The solution of (2.18) with boundary
condition (2.26) is

Jo=0. (3.1)
Therefore, we have $o=1y, and the problem for Jo is
given by (2.28) with yo=0 and with 7§ =T, The
solution for ¥y, away from an expanding region about
the boundary y=0, will be similar to that described in
Allen (1976) (for values of y there where 7§ #0).

In this special situation, a boundary condition given
by the a priori assumption of (2.31) would actually
result in a correct formulation. The reason is that in
this case the O(1) motion in the interior, below the
surface Ekman layer, is geostrophically balanced and
(2.37b) holds. This is not true, however, whenever
7@ —7® 0, for then Jy><0 and the balance in (2.34)
is ageostrophic, with all the terms entering. In that
case, assumption (2.37) does not hold and the con-
tribution from o has to be taken into account in (2.28)
as is illustrated in the next example.
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2) #W =Ty sin(ry/L), 7 =0
In this case, the solution of (2.18) is

Ty cosha(x—3%)7 .
Jo=0 — l:l ————————] sinay, (3.2a)
o? coshja
where
a=/L. (3.2b)
The forcing terms in (2.28a) are
i . 7® =0, (3.3a)
Yozico) — Eboyzco)
=—T, tanh(3a)[o" sinay— & cosay]. (3.3b)

The alongshore component of the wind stress is equal
to zero at the coast and therefore does not enter (2.28a)
as a forcing function. The term from the interior
variables is nonzero, however, and will directly force
shelf wave motion in (2.28a). This component of the
flow on the shelf would have been completely over-
looked, of course, if boundary condition (2.31) had
been used.

b. Infinite channel (—» <y< ®)
7@ =T, (constant), 7 =0

In this problem the surface stress remains the same
as in subsection 3al, but the geometry is changed by
removing the boundaries at y=0, L so that the fluid
is contained in an infinite channel. With 7% equal to
a constant and with no variation of the geometry in
the y direction, there will be no gradients in y of the
velocity or pressure. This channel flow represents a
problem that might well correspond to a laboratory
experiment, i.e., to the axisymmetric motion in a
rigidly bounded, narrow-gap annulus.

Since the geometry results in a mathematical problem
similar to that in a doubly-connected region, the formal
solution of (2.18) for ¥y requires something analogous
to a circulation condition and a change in (2.14b). We
do not have to pursue that in detail here, however,
since the interior solution may be easily found directly
from (2.4) and it is

‘ZO:: = TOi) 1;Oy = 0) 501! = 0‘ (3.4&, b)

In this case, the forcing terms in (2.28) vanish identi-
cally, which implies )

vo=0, 3.5)
and, therefore, from (2.27)

Po=Eox(or- (3.6)

The expression in (3.6) is just the first term of the

Taylor series expansion about x=0 of {, and, in fact,

the total solution in both regions is given by (3.4). In

this case, of course, the a priori application of boundary
condition (2.31) is very obviously incorrect.

4. Discussion

It has been shown that for f-plane problems, such as
those that might correspond to laboratory experiments,
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the motion in the shelf-slope region in general is coupled
with that in the interior and the use of boundary con-
dition (2.31), for the flow over the shelf-slope region,
is not justified solely by condition (2.9). If (2.31) is
viewed in terms of the equivalent assumption (2.37)
of the geostrophic balance of the onshore-offshore flow
at x=25, we can see that (2.37) breaks down in some
f-plane problems because the lowest order forced in-
terior motion causes the O(1) balance at x=§ to be
ageostrophic. Thus, the physical reasoning employed
in the order-of-magnitude argument in Section 1 is in-
correct and must be altered in this case. This is basically
because in the forced problem v,=v, at x=5. With
this condition, rather than #=uy, the order-of-magni-
tude estimate requires for consistency that #;(x=8)=0,
which applies to the lowest order interior # and is the
result expressed in (2.23a).

For oceanic problems, the interior motion will be
subject to additional constraints, such as that from the
B-effect or that from the bottom slope of the continental
rise. If we consider a problem where a continental
shelf-slope region adjoins an interior governed by 8-
plane dynamics, we find that an analysis similar to that
given above for the flat bottom f-plane case may be
carried through and that an equation similar to (2.28a)
governing the motion on the shelf and slope may be
derived. The scaling of variables is different in the
B-plane case and the problem is more complicated be-
cause the interior solution, which enters (2.28a) as a
forcing function, has strongly differing behavior on
different boundaries. The effects of the coupling with
the interior motion will, therefore, vary considerably
depending on the boundary location. An investigation
of the implications for shelf-slope motion of interior
coupling in the B-plane case is in progress and will be
reported on separately.

1t should be emphasized that, because of the above
factors, an assessment of the consistency of the applica-
tion of boundary condition (2.31) in the oceanic case
should not be attempted from the present analysis
with a flat bottom f-plane interior, but should await
the results from the B-plane case. In addition, regard-
less of the consistency or inconsistency of the use of
(2.31) in idealized models, observations may show that
it provides an acceptable “‘working” approximation for
forced shelf motion.

We conclude by noting that the present analysis
provides a consistent starting point for the investiga-
tion of the important general question of how interior
flow may interact with, and force, motion on the con-
tinental shelf and slope.
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