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ABSTRACT

The finite-amplitude dynamics of baroclinic disturbances in currents whose cross-stream structure varies

in the downstream direction is investigated.

It is first shown under what circumstances downstream variations of the current properties influence the
local stability of the current. For flows near the neutral curve only the potential vorticity in one of the fluid

layers is significant in determining the local stability.

Tor currents which are locally stable at some downstream locations and unstable at others, it is shown
that the disturbance amplitude depends on the entire upstream structure of the current. In particular,
simple examples illustrate the lack of a local relationship between “local” stability characteristics and the

disturbance intensity.

The linear initial value problem for uniform (in the downstream direction) currents is also discussed to
elucidate the relation between the temporal and spatial stability problems.

1. Introduction

One possible source of eddy motions in the ocean is
the instability of swift currents in the ocean with
respect to baroclinic disturbances. For currents which
can be idealized as homogeneous in their properties in
the direction down the current axis, stability criteria
can be developed (e.g., Pedlosky, 1964) which depend
solely on the cross-sectional distributions of velocity,
temperature and potential vorticity. Yet most real cur-
rents vary significantly in their properties in the down-
stream direction. Such currents present the investigator
with a continuous series of cross sections, each possess-
ing (were they each the cross section of a downstream
homogeneous flow) different stability characteristics.
It is natural to attempt to associate with each cross
section a “local” stability measure. Indeed, it is tempt-
ing to suppose that where the “local” cross-sectional
profiles are “unstable,” the current will locally produce
disturbances and, where the current is locally ‘“stable,”
disturbances should be absent or at least significantly
less intense. In some hydrodynamic situations dis-
turbances exist only by extracting energy from the mean
to compensate for dissipation. In such cases such
locality of relationship between local stability and
fluctuation intensity may be expected. On the other
hand, in many meteorological and oceanographic situa-
tions the advective time scale of the current is much
less than the dissipation time. In such cases the distur-
bance may propagate into stable regions while still
possessing, structurally, a certain memory of its
history in a locally unstable region.

The purpose of this paper is to initiate a study of the
nature of the downstream dependence of fluctuation
amplitude in cases where the mean current varies
sufficiently in the downstream direction so as to be
locally stable at some downstream positions and un-
stable at others. In particular, attention is focused on
the non-dissipative, finite-amplitude behavior of the
disturbance field. Finite-amplitude effects are important
to consider since sufficient time must be allowed the
disturbance to transit substantial distances to observe
variations of local stability while maintaining bounded
amplitude.

Two results of interest are found in the following
work. First, that only variations of some combination
of local variables in the downstream direction are of
significance and, second, that disturbances can extract
energy from the mean and reach substantial amplitudes
in stable regions if they have been formed initially in
unstable regions.

2. The model and mathematical formulation

For the purposes of this study I consider a two-layer
baroclinic model as in Pedlosky (1972). Two layers of
fluid each with different constant density lie on a plane
rotating with angular velocity Q. The lighter fluid lies
above the heavier fluid, The fluid is bounded above by
a rigid horizontal plane. The lower boundary is nearly
flat and its mean distance from the upper boundary is
D. The deviation of the lower boundary from perfect
flatness is given by the equation for the bottom

2= d’”"(x:y)) (21)
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where d is an amplitude measure of the bottom variation
and 7z yields the shape of the bottom. The interface
between the two fluids is taken, in the absence of
motion, to lie a distance D; from the upper boundary.
The system is confined laterally to a channel infinite in
length whose width is L. To include the effects of the
earth’s sphericity § is assumed to vary linearly in the
northward (y,) direction, e.g.,

20= fot By (22)

If scales [L, D, L/U, U, (D/L) U] are chosen for
the horizontal coordinates, the vertical coordinate, time
and the horizontal and vertical velocities, respectively,
the governing non-dimensional equations of motion for
small Rossby number (U/ foL) are the quasi-geostrophic
potential vorticity equations

3 19 0
<—+—“ = “)[VZ'PH—FI (2—~y1)+8y]
ot dx dy 0Jy ox

=T1(x,v,), (2.3a)
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9t dx dy Jy 9«

+§B<x,y)]= Ty(xy,t), (2.3b)

and associated boundary conditions

W 0 0.1
—=Y, y=u,1,
dx

where x and y are the longitude and latitude coordinates,
and ¢; and ¢, are the non-dimensional geostrophic
streamfunctions. The function

oL d 24)
éB (qc,y) =f—— —n8(x,y), (
U D

2

where Dy;=D—D,, so that it is tacitly assumed that
8= (d/Ds)/ (Rossby number) is O(1) or less. The other
dimensionless parameters that appear are

By L?
U
f 2L2
Fl'f_ ’
(p2—~p1) i
gD1 , (25)
P1
f 2L2
F2= ’
(p2—p1)
gDs
p1 J

and the operator V2= 92/9a2+ 62/3y2.
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The functions Tk (x,y,!) are some, as yet, unspecified
sources of potential vorticity for each layer which will
be responsible for altering the mean potential vorticity
of the current along its path. They will be specified
later. The plan of development is as follows, I consider
the state of flow consisting of a mean shear, U;—U,,
which is independent of x, y and ¢ and which is just
marginally stable in the presence of the B-effect, but in
the absence of bottom topography. I then consider the
stability of the new mean state given by

Vo= —UyH AV, (X,9,T), AL, n=1,2, (2.6)

where AY, represents a small alteration of the mean
flow in the x direction by an amount O(A). The vari-
ables X, T represent new slow space and time scales, i.e.,

X=upx, T=ot, ukl, o<1, (2.7)

so that (2.6) represents a nearly zonal shear flow whose
intensity varies slowly in space and time by the small
amount A. However, since the basic uniform flow is
marginally stable this additional mean flow is sufficient
to make the mean flow “locally” stable for some down-
stream positions, and “locally”” unstable for others in
the sense of the remarks in the Introduction. In addi-
tion, I choose

8=0(8)

) (2.8)

B=B(X )
so that the topography consists of a small slope in the
cross-stream direction, which also changes slowly in
the downstream direction and, hence, also can affect
the local stability properties differently at different
downstream locations. The key question is then
formulated as follows.

In view of the the downstream variation of the mean
shear and the cross-stream topographic slope, how is
the amplitude of a baroclinic disturbance affected by
these variations?

Earlier analysis of the spatial dependence of baro-
clinic disturbances in a homogeneous flow (Pedlosky,
1972) showed that the intrinsic time and space scales
for the packet were A—*L/U and A~%L, respectively.
The most natural choice for y and ¢ is therefore

p=o=A} (2.9)

where A is a measure of the supercriticality of the
vertical shear, which, in the present problem, varies
with X and T. Similarly, that earlier analysis suggests
that the appropriate amplitude scaling for the dis-
turbance streamfunction is A%. Thus the total stream-
field is taken to be

¢n= - Uny+ A%¢ﬂ(x)y7t7X)T)+ A\I’n(X7y}T)7

where the disturbance field ¢, has the asymptotic
expansion

(2.10)

Pam ¢+ AP+ AGO+ . (21D)



May 1976

If (2.10) is inserted into (2.3) a sequence of linear
problems emerges. First, however, I specify that
T.=0(A}) so that the secular change of the mean
potential vorticity is O(A!). The details of the sub-
sequent calculation are lengthy, straightforward, and
similar to the derivation in Pedlosky (1972), so I will
only quote the results.

For a current wherein U;—U,>0!, the minimum
critical shear is G/F.. At that value of the shear a
marginally stable disturbance

6P (@,9,6,X,T) = A0 (X, T)e* =<0 sinmry+*  (2.12)

is possible according to the O(A!) problem implied
by (2.11) and (2.3) where

02 = k2‘i“"l/2‘7l'2 = [F2 (F1+F2)]’*

=t (2.13)
2.13
A2 02_F2
-
4, F,

It is also easy to demonstrate that although the two
linear, marginal modes on the neutral curve have
coalescing phase speeds equal to U., the modes have
separated group speeds in the downstream direction,
ie.

’ 468
Fy(a®+F1+Fs) ¢

61=U2+

(2.14)
Ca= U2

Both ¢; and ¢, will reappear as crucial physical
parameters in the following work.

The order A problem yields a correction to the wave
field’s vertical phase and also a wave-induced correction
to the O(A) mean flow; that is

=3 (X,5,7), (2.152)
(F1+F,) F
887 =8P (X,3,T) =i —
kB8 F,
94, - 2Bk 04,
X <l +[U2+ ]m}
T Fg(F1+F2) ax
X glik(z—ct)] Sinmﬁy—f—*. (2.15b)

The functions & (X,y,T) represent the as yet un-
known alterations to the mean flow by the nonlinear
self-advection of potential vorticity in the baroclinic
wave field. The phase shift between ¢; and ¢, given by
the second term in (2.15b) is produced by both slow
temporal and spatial changes in the wave amplitude.

The order A? problem is the crucial one. At this order
the problem becomes cognizant of the alteration of the

1 The case U;—U:<0 follows trivially with the interchange of
subscripts 1 and 2 in the following results.
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mean flow by ®® and ¥,. It is also at this order that
the wave-induced mean flow ¢ and the externally
driven flow ¥, are determined. As in Pedlosky (1972),
they are determined by a condition in the O(aA%)
problem which ensures the suppression of secular terms
at that order. Thus one condition for the problem to
remain uniformly valid in time is

a d rdzS, 0
[————}— U2_—][ —F2(52—51)+—B(ny):l
aT AX AL dy? A

Fo(F1+Fs) (a2+F2):”:6 ] A, | 2
BF, oT

814,
-+cy
0.4

= —ymw sin2m1ry[

]+n<X,y,T>, (2.16)

where
T2 == T2 X ; ,T A%
s } (2.17)
S"=q)7(‘2) (y)X7T)+\I,"(y:X,T)

Eq. (2.16) has a simple interpretation. The minimum
critical shear for U;— U,> 0 is determined by the condi-
tion that the potential vorticity gradient in the lower
layer just vanish, i.e., Uy— Us=g/F,. The variations
of the lower layer’s potential vorticity about this
marginal state then becomes crucial. Eq. (2.16) states
that the rate of change of the total potential vorticity
of the lower layer, as seen by a fluid column moving
with the O(1) downstream speed of that layer, consists
of two parts. The first is the production of lower layer
potential vorticity by the nonlinearities associated
with the temporal and spatial growth of the disturbance.
This is given by the first term on the right-hand side
of (2.16). The second part is that part driven directly
by the external source of potential vorticity for the
lower layer.

On the other hand, removal of secular terms of the
form exp[[¢k (x—~ct)] sinmmy yields the second and final
condition:

¢} i) 9 J
< + 1"“)( —lrcz——)A 1
oT axX/\oT X

1 dxS, 8
X/ dy sin2m1ry|:———F2(Sg—Sl)-i——B], (2.18)
0 dy* A

2mmkiyBF14.
Fo(a?+Fs)(F1+F»)

where ¢, and ¢, are the two group speeds given by
(2.14). It follows that the evolution of the amplitude
field A depends only on the potential vorticity distri-
bution of the lower? layer and, in fact, the projection
of its cross-stream gradients on the square of the basic
waves cross-stream eigenfunction. Furthermore, it is
only the total potential vorticity of the lower layer that

2If U/;— U2<0, it would be the upper layer’s potential vor-
ticity that would be determining.
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affects the wave growth—both externally determined
and self-induced.
Let

1 d%Ss o
H=/ Sinzmryl:—;‘-Fz(SQ—Sl)"" B(ny):ldy
0

dy X

= —pll4-+qls, (2.19)
where
_ (02+F2) (F1+F2)F2
2m7rk2'yﬁF1

. (2.20)

F, (Fl +Fs) (02+F2)

2ymuk?(a*+F,)

It then follows that the amplitude of the baroclinic
disturbance in this downstream varying current is
governed by the system of equations

a J a d ]
(——+C1——"><—+62——)A =4 Ho —AHA
oT aX/\aT X

d 3 d a
(—-—**—O;—-—)HA:(—'*"C}—‘—)!A |2 (s (2.21a,b,c)
aT ax/ oT X
0 9
(——+ cz———>Hg =¢(X,T)
oT 0X J
where
1 ! TZ(X;)’,T)
6’(X,T)=—/ ———————sin2mmydy, (2.22a)
gJo A
A=mnvk4,(X,T). (2.22b)

Note that the evolution of 4, the amplitude of the
disturbance, is altered as it propagates by its interaction
with the externally imposed alteration of the potential
vorticity of the lower layer (Il) as well as its interaction
with its own self-induced alteration of the potential
vorticity represented by I14.

3. Steady forcing

The system (2.21) is rather general and can describe
a variety of interesting situations in which the wave
interacts with both temporally and spatially. varying
ambient potential vorticity. For the remainder of this
paper I will consider only the case where T is a function
of X and y but not of T. Since that implies that 6 is
then a function of X alone, a particular solution to

(2.21¢) is
X g(x’
Ha(X)=/ oo
0 (2

dX'+11,(0), 3.1)

as long as c;= U, is not identically zero. To the solution
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given by (3.1) any solution of the form
Ho= Ho(X—C2T)

may be added to satisfy initial conditions. After this
transient has passed through the system, IIs will be
given by (3.1). Henceforth, I assume that the externally
imposed potential vorticity is steady, and given by (3.1).
It therefore follows that (2.21a) may be rewritten in
this case as

d a a (7] :
(——+Cl—_><—+62—)A =¢2(X)A—AIl4, (3.2a)
aT ax/\arT 0.4

where
X 9(X")
-dX'.

o*(X) =T15(0)+ f (3.2b)

C2

The quantity o(X) is the local growth rate, i.e., the
growth rate deduced solely from consideration of the
properties of the mean flow at each cross section inde-
pendently. It depends only on the potential vorticity in
the lower layer of the externally imposed flow. If the
potential vorticity source §(X) vanishes, the problem
for A4 is homogeneous in X due to the conservation of
potential vorticity for the mean flow itself, even though
V¥, and B (the mean flow and the topography) are
functions of X. In that case, (3.2a) would reduce to the
problem examined in Pedlosky (1972) which is homoge-
neous in X. Thus, only the downstream variation of
potential vorticity and not its component elements enlers
the stability problem and sources of potential vorticity are
required to produce a varying o.

4, Linear initial value problem

It is useful, before examining the nonlinear, in-
homogeneous [¢?>=0%(X)] problem, to consider the
linear initial value problem in the homogeneous case.
This corresponds to setting =0 and neglecting the II4
term in (3.2a). The linear problem which results is

J a d d
(———i—cl—)(—-{'—ce—»)A =g2(0)4. 4.1)
at aX/\at 0X

Consider the following initial and boundary value
problem for 4 (X,T). At X=0

A(0,T) =4,
04 , (4.2a,b)
-——(0,T)=0
0X
while at 7'=0
A(X,0)=0
a4 : (4.3a,b)
"_(X’O):'O
oT
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__eo(c,) T

Steady Solution ézT Quiet Region

Unsteody y
Solution e

(C; + Cz) T
2
F1G. 1. A schematic diagram illustrating the various regions of
response for the linear problem discussed in Section 4. The figure
shows the region of the spatial growth of the steady solution
0S X< C.T, of the unsteady solution (which assumes a packet-
pulse form) ¢.T' < Xe¢iT, and the quiet region ¢;7<X.

for the region X >0, T20. This corresponds to intro-
ducing a perturbation at X=0 whose amplitude?® is
constant in time, while at the initial instant the region
X>0 is free of any disturbance. The condition (4.2b)
is chosen for symmetry.

It is important to recall that ¢;>¢.(85%0). For
definiteness I will assume that the product cice>0. It
then follows that the solution to the problem posed

above, which may be found by Laplace transform
methods, is

A
—=[H(X)~H(X —¢:T)] coshuX+[H (X —c;.T)

0

1 e X coshes(ki— E)IT
__.H.(X~62T):]{—- / dgcosg coshes(—£9

™ (2=t
Ecnfcs  m\ 1 [*
X( —2——)—{-—/ d¢ singX sinkcg
E4+u? s/ 2mJ
£
X (k=T —— )}, (44)
Etp?
where
c1tco
Cn= k2=02(0)/cs?
, (4.5)
Cc1—C2
cs= . u2=0*(0)/c1c2
and H () is the Heaviside function, viz:
H@r)=1, r>0
. (4.6)
H(r)=0, r<0

The solution naturally separates into three regions
(see Fig. 1). For X >¢:T there is no disturbance. This is

¢ Although the amplitude is constant this corresponds to a
fluctuating disturbance at X =x=0 with a frequency kc.
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natural since ¢; is the faster group speed. For
62T<X<61T

only the second term in (4.4) remains. This is the region
of the traveling, time-dependent pulse. For X <¢,T
only the first term in (4.4) remains, the steady solution

A a'oX
—=coshuX = coshl: ]
Ao (c1e2)?

4.7)

which satisfies the boundary but not the initial condi-
tions. Thus there will be a region of steady amplitude
envelope only if ¢;6,>0. If ¢1¢:<0, the boundary be-
tween steady and unsteady regions will occur for X <0
and the steady solution has no relevance for the region
X > 0..This resolves an apparent conundrum associated
with (4.1). Apparently, (4.1) implies that if ¢1c.<0,
temporal instability (¢?>0) corresponds to spatial
stability (¢2/c1c2<0) for A a function of X alone. The
present calculation shows that the steady solutions
alone have relevance only when spatial and temporal
instability coincide, i.e., when ¢ic,>0. I will make use
of this in the discussion of the nonlinear problem.

It is interesting to examine the nature of the solution
in the region of the transient pulse. This, of course,
requires approximate calculation since the integrals in
(4.4) are quite difficult. The method of steepest descent,
valid for large X and T, and

—csT<X —cnT<csT,
yields for the transientvpulse
A (X"'CMT)z
—~al(X,T) eXp{xcsT[1——————]}, 4.8)
0 cst

where a is the algebraic function

2% 2¢,T*

a(X,T)=
47('%[652T2— (X—L’mT)ﬂ* T(C,gx)é

k(X —cuT) Tk

Cm
;ﬂcs%T( l X—cmTI——+csT>

cs

Note that the amplitude exponentially grows as it
propagates. The maximum growth, and hence the peak
of the disturbance, will occur at X=3(c;+¢c2)T. The
exponential factor there is exp(ooT), i.e., the growth
factor corresponding to purely temporal growth. Note
that the maximum amplitude of the steady solution is
obtained at X=c,T where its exponential factor is
exp[ao(cs/c1)¥T]. Since ¢2/c1<1 it follows, according to’
linear theory, that the maximum amplitude occurs at
the traveling pulse, although a significant and exponen-
tially growing steady spatial disturbance is left behind.
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Naturally, when the solution in either the transient
or steady region becomes large, nonlinear effects will
become significant. Further, in situations where o is a
function of X, the disturbance amplitude will begin to
sense the loss of downstream homogeneity. The addition
of these two important features returns us to the
problem posed by (3.2a,b). It is almost hopeless in the
more general situation to extract useful analytical
information from the general initial value problem.
Henceforth, guided by the results of the linear problem,
I will limit myself to examining those situations where
c1c2>0. This usually implies that the deep flow be in
the same direction as the surface flow for"the O(1)
component. In these cases the steady problem would
appear to be physically relevant and illuminating. Note,
however, that this will restrict only the envelope 4 to
be steady. The wave disturbances will still thread
through the envelope with the speed ¢=U,=¢, as
implied by (2.13).

5. Steady solutions

I consider in this section what I believe to be the
prototypical situation of interest. Imagine a current
whose local properties are such that in the region
0< XK the mean flow appears unstable, i.e.,

a?>0, 0<X<],
‘while further downstream, X >, the flow is stable, i.e.,
<0, I<LX.

To simplify the nonlinear analysis, I consider the
case where
a? w>0, 0<Lx<!
—= . (5.1)
ac: | —1¥<0, I<x

This idealization corresponds to a change from
uniform local instability to uniform stability on spatial
scales short compared to the envelope scale, but still
long compared to the wavelength of the carrier wave;
that is, in the transition zone about x=1, for purposes
of analytic simplicity, ¢2(X) is considered as the limit of

W ()
2
as e— 0. Since X= A%, this is consistent with the

slowly varying hypothesis of ¢? as long as

ARLeK1,

o(X)= tanh(X/e)

so that the discontinuity of ¢ occurs as a limit of rapid
change on the long spatial scale. For purposes of
comparison I take the same boundary conditions as in
the linear problem of Section 4, namely

A=0, at X=0
dA ' ‘

aX

(5.2)
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The problem for 4 is then
d?4
6162_=02(X)A ‘—AHA
dXz
(5.3a,b)
dHA C1 dlA |2
iX ¢ dX
The solution to (5.3b) is
1
I, =-—|A4|*+constant. (5.4)

Co

The constant in (5.4) is determined by the condition
at X=0 that the potential vorticity distribution in the
current corresponds to that of the mean flow, i.e.,
My=0at X=0, so that

Ma=214]2= 14 0) 9. (5.5)

Cy

Furthermore, the boundary conditions (5.2) imply that
if Agis real, 4 will be real so that in the region 0 X <1,
the equation for 4 is

&4 A
=2 A —— (42— Ag).
axe o

(5.6)

The solution of (5.6) is easily obtained in terms of
elliptic functions. The solution is

A AmeX \T
(5]
Ao \/fCQ

and corresponds to a spatial oscillation between the

minimum amplitude A,=4(0) and the maximum
amplitude

(5.7)

"zlmax= (2622”2+A02)%'
The modulus of the elliptic function « is given by

S ol (5.9)
Q= . .
(A o+2c 22”2)

The spatial period of the oscillation is given by

(5.8)

¥ V2¢:2K (o) 20K (a)

P ?
A max I

2 dg
K(@)= / S
o (1—a?sin?)?

Note that for strongly unstable situations where
A max>Ay, 1.e., where c?u?>>A 2, a tends to unity and

2 Ind (1+20%:/c1)*

P ]

o/ (c162)*

(3.10)

(5.11)
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so that the period of oscillation decreases as the degree
of instability increases and is related to but not identical
to the e-folding scale of the linear problem. The ampli-

fication factor
A max 2622,“2 5
Ag Al

increases strongly with the degree of local instability.
Fig. 2a shows the amplitude as a function of down-
stream position in the unstable region for the case where
Anax/Ap 1s 5.759. Note the strong departure of the
linear solution from the nonlinear solution within half
a period of the latter. By the time the disturbance has
moved a distance pX=3.1 from the origin, the energy
has increased by a factor (A4 max/4q)?=33.166. This is
a considerable amplification but is important to note
that this is the maximum enhancement of the distur-
bance and is substantially less than that predicted by
linear theory (93.586).

In the stable region x>, the amplitude equation is

(5.12)

a4 A2(0)7 4°
-——+A[v2— —:|+—=0, (5.13)
dXZ (2} 622
the first integral of which is
d4\? A2(0)7 A
(——) +A2|:v2-—- ~]+~=E. (5.14)
ax c? 2¢?

To evaluate the constant E it is necessary to examine
the jump condition for the equation for A at a dis-
continuity in ¢% As long as ¢? is finite, even though
discontinuous, it is a simple matter to show that at
x=1] both 4 and d4/dX must be continuous. Since in
the region <!/

dA\® 1
(5) ~—ceo-+esa

aX 622
A0 A4

LA+ 26T+ —=0,

622 2622

(5.15)

it follows that for x>1

E=A02[(v2+u2)[A;(i)—1]+(u2—ff)}. (5.16)

0 2¢s?

In principle, E can be positive or negative. Unless / is
chosen to be exactly an integral multiple of periods
downstream from the origin, the sign of E will be deter-
mined by the first term in (5.16) and hence positive.
Even in that special case E will still be positive if
> A0%/2¢?, i.e., if the local stability is sufficiently
large. I therefore restrict my attention to the more
typical case where E>0. In that case the solution for
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x>1, which is continuous with the solution for x<!, is

I .
A =amaxcnl:v0(X —l)—m—‘(;(—), ), rJ, (5.17)

where
() A0 )
1= 14 )
v? ngsz Ao2
. (5.18ab)

1 (1 —A 02/622112)
,2=-[1_—_—_]

2 62

while the maximum amplitude of the oscillation in the
locally stable region is

O max 2 622V2 622112 (V2+ﬂv2)
—-> =1——i {1+2
Ao Ao2 A 02 V2

X[M]} %. (5.19)

4 22112

The maximum amplitude achieved in the stable
region is a function of the amplitude of the disturbance
in the unstable region at the transition point X =1, and
this information is remembered in the further down-
stream oscillation. There are some limiting cases of
interest. If A ()= A,, then an.x=4,, so that the sub-
sequent oscillation remains bounded by the small
initial amplitude A4,. On the other hand, if 4 () is A max,
then @masx, the meximum amplitude in the locally stable
region, is as large as the amplitude that can be achieved in
the locally unstable region. 1t is easy to prove though that

(5.20)

so that the amplitude in the stable region is never
greater than the maximum possible amplitude in the
stable region. For regions of very high local stability,

2
Xmax A max)

I L
6_
5
A
Ao 4
3_
2_
|
o 3 1 | i 1 1 L PR | J
0 | 20 30 40 50 pX

Fi6. 2a. The amplitude behavior in the locally unstable region.
The linear solution (L) is also shown to emphasize the limited
region in X of its validity. The 4 symbol at uX =4.5 marks the
spot where the current becomes locally stable. Beyond this point
the amplitude is given in Fig. 2b.
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F16. 2b. The amplitude behavior in the locally stable region
downstream of an unstable region. Note the similarity in ampli-
tude intensity with Fig. 2a and the zero crossings of A. The am-
plitude will continue this oscillation downstream.

i.e., where
622V2<<A 02

6—1 R (5.21)

r—0

the amplitude can then be approximated by the linear
solution
A~A(1) cosv(X—1), X>I. (5.22)

It is also important to note that although the ampli-
tude of the disturbance in the locally stable region is
typically commensurate with that of the locally un-
stable region, the downstream structure of the dis-
turbance differs. For 0< X <1, 4 is always positive, i.e.,
the amplitude envelope never diminishes to zero. For
X 21, the disturbance given by (5.17) oscillates around
zero. Fig 2b shows the amplitude in the region X >/
for the case y?=pu2, [=4.5 u~!. The period of the oscil-

A

<«—stoble—

<«— unstable —= |

F16. 3. A schematic rendering of the entire solution joining a
stable to an upstream unstable flow. The carrier wave threading
through the envelope is also shown.
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lation in the stable region is given by X,=5.62 u~!
which is less than that of the unstable region where for
this case X ,=6.21 u 1,

Fig. 3 is a schematic representation of the total steady
solution. It is clear from this diagram and from the
analysis above, that once the disturbance has grown in
an unstable region lo ils maximum allowable amplitude
the stabilization of the current downsiream will not sub-
stantially reduce the amplitude of the disturbance (unless
of course strong dissipative mechanisms are added).
Thus, for very weakly dissipative systems, there does
not seem to be a local connection between local linear
stability and the amplitude of the disturbance, at least
in the steady state.

6. The reverse problem

For completeness I consider the opposite situation,
namely, where the current is stable in the region
0< X <! and becomes unstable for X >1. That is

-2, 0<X<!
o%/cicy=
I-‘27 XZ /
Then, with the same boundary conditions at X=0,
it follows that the solution for A4 in the stable region is
A=Awn[vX,a]
Ao

_\/2621/

6.1)

[2

if 42<&2¢,?% In this case the disturbance undergoes a
simple spatial oscillation whose maximum amplitude is
its starting amplitude 4,, i.e., no amplification takes
place. For X>/, the amplitude equation has a first
integral which can be -written

dA\? A¢ A4
(—) —(p2+-——)A2+—=E.
dX 622 2622
If use is again made of the continuity of 4 and

dA/dX at X=1, it follows that
E=v[A¢—A2()]—u2A2(0).

(6.2)

(6.3)

Hence if
[4¢2—42()]

”2> y2
A*()

i.e., if the downstream region is sufficiently unstable

“and 4 () is not near zero, the downstream oscillation

will be of the form given by (5.7). The maximum
amplitude of the oscillation is given by

A2 = A ple+ (it 2 (it ) e[Ad— A2 () T}
(6.4)

This amplitude is somewhat larger than that given by
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A

stable unstable

Fi1c. 4. A schematic rendering of the solution of the situation
where an unstable region follows a stable region.

(5.7) if d4/dx(l) is not zero due to the added “kick”
given to the oscillation at X =1 by the non-zero slope
at the joining point. A schematic picture of the ampli-
tude behavior is shown in Fig. 4. After entering the
unstable region the amplitude of the disturbance in-
creases dramatically. Thus local stability acts to
preserve the initial amplitude and regions of local
instability to increase the disturbance amplitude. But
regions of stability are not generally capable of sup-
pressing the intensity of the disturbance already formed
in a region of local instability. It therefore follows that
the intensity of the disturbance depends, in a non-
dissipative (or nearly so) fluid, on the entire structure
of the current upstream of the station of interest and
not merely on the local stability properties.

7. Energy

If Egs. (2.3a,b) are multiplied by ¢; and ¥, respec-
tively, the equation for the total energy of the flow can
be obtained in the form (if ¢, is the perturbation
streamfunction)

4 (Vén)?  (¢1—2)?
-z +
atl'= 2F, 2

9 (v¢n)2 Un a ( "'¢ 2
+5 [Un— 12 o ]}+v‘s
n dx 2 2 9x 2

= (Ul—' U2) (¢1+¢’2):(¢1—¢?)+Z T, (713')

where

n at dx

$n_(Obn  3bu\ 62 ¢f dB 9B
S=2 29( S0 i o (i)
" F 2 2\ 38y o«

+2 a1 (kxVg,), (7.1b)
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and .
I1, = V2%, — F1(¢p1—2)

I, =V2¢,—Fa(go—¢))

The divergence term S represents the mechanical flux
of energy in the system. The baroclinic source term is
the first term on the right-hand side of (7.1). It is merely
the cross-stream advection of temperature (thickness,
Y1—¥,) by the mean eddy velocity (¥1+v2). in the
presence of the basic temperature (or thickness)
gradient (Uy— Us). In the cases studied in this paper the
energy balances are in a steady state and the down-
stream divergence of energy, given by the second and
third terms in (7.1), is balanced by the baroclinic
production term,

W= (Ur—Us)(p1+¢2) 21— ).

It is easy to show that

a
W~—1|4]2 (7.2)
ax
aside from a constant, positive, multiplication factor.
Thus there is baroclinic extraction of energy into the
disturbance field whenever |42 is increasing. It is
important to recall that this happens, in the solutions
presented earlier, in both the locally stable and unstable
regions of flow. Furthermore, it follows from (2.15b)
that the phase shift of the wave between the two layers
will be proportional to (1/4)dA/dX. The phase shift of
the wave with height will have all the characteristics of
baroclinically unstable wave (upper wave lagging lower
wave) whenever (1/4)d4/dX >0, and this will be
observed in both locally unstable and stable regions of
flow. Thus, even in terms of energy transformations it
is not possible to restrict the usual characterizations of
unstable waves to regions of flow which are unstable by

a local analysis.

8. Conclusions

The examples presented here illustrate that distur-
bance energy will dramatically increase as the wave
enters a locally unstable region of the current but will
not be substantially diminished thereafter if the current
subsequently becomes locally stable downstream. In-
deed, it would be difficult to judge whether the current is
locally unstable by examining only the local energy
intensity of the disturbance. The amplitude and energy
of the disturbance are bounded from above by non-
linear effects in the unstable region and are bounded
from below in the stable region by the restoring mecha-
nisms of both the linear and nonlinear dynamics. This
feature would seem to hold whenever the dissipative
time characteristic of the fluid is long compared to the
advective time scale of the current.
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It is interesting to note that the downstream varia-
tions in the envelope of the disturbance 4 (X) are, in
this model, determined primarily by the finite-amplitude
dynamics and not by variations of stability, although
both features do affect 4(X). Hence, the variations of
eddy intensity downstream in a current are intrinsic to
the dynamics and do not necessarily reflect variations in
the local stability or the potential for energy exchange
with the mean,
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