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ABSTRACT

Two forms of a two-dimensional streamfunction solution for symmetric periodic water waves on a fluid
with a vertical distribution of vorticity are presented. The magnitude of the vorticity varies linearly with
the magnitude of the streamfunction, while remaining constant on a particular streamline. The analysis
utilizes a numerical perturbation technique, which converges rapidly to a wave of given height and period
in water of a specified depth with a given vorticity distribution. Computed results show the influence of the
vorticity on the wavelength and crest elevation of the wave.

1. Introduction

Due to the ubiquity of wind over bodies of water
and the fact that the wind which creates the waves
also creates a wind-driven current, waves rarely
propagate on a quiescent fluid. Waves which have
traveled from their generation region will still en-
counter wind, tidal or gravity-induced flows. There-
fore, it is inadequate to describe waves mathematically
without including the effects of quasi-steady currents,
with their spatial inhomogeneity. For a general de-
scription of the state of knowledge with respect to
waves on currents, the reader is referred to a survey
by Peregrine (1976).

The theoretical study of two-dimensional waves on
a vertical shear current has proceeded by the solution
of the water wave problem on progressively more
complicated current profiles (over the depth). The
easiest choice was a velocity profile which was con-
stant over depth. This current profile, for small am-
plitude waves, can be accommodated by the Airy
(1845) and Stokes (1847) theories. For more non-
linear waves, the techniques of Chappelear (1961) for
velocity potential and Dean (1965) for the stream-
function are amenable to constant currents. Thompson
(1949), Biesel (1950) and Tsao (1959) have investi-
gated waves on mean currents which varied linearly
in magnitude over the depth. For this case of con-
stant fluid vorticity, Dalrymple (1974a) has extended
Dean’s (1965) streamfunction approach for nonlinear
waves, both with symmetric and irregular free surface
profiles. A more complicated current velocity profile
may be modeled by dividing the fluid into two regions
of differing vorticity leading to the bilinear shear
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current. Dalrymple (1974b) investigated both the
small-amplitude and finite-amplitude waves for this
case.

A more realistic current profile can be obtained by
allowing the fluid vorticity to change continually with
depth in the fluid. Small-amplitude wave theories
for waves on exponential or sinusoidally varying cur-
rent profiles have been developed by Abdullah (1949),
Wehausen (1965) and Eliasson and Engelund (1972).
The dispersion relation for these cases, which assigns
the appropriate wavenumber to the given wave period
T has also been determined by Dalrymple (1973)
using a WKB approach, and more generally by Yih
(1972) and Fenton (1973). Finite-amplitude wave
models for these currents are developed herein. The
symmetric wave models are developed for currents
flowing in the direction of the wave and opposed to
the wave. Both models are developed for any order
theory and will converge directly on wave height.

2. Theoretical development

The governing equation for the wave motion and
its solution follows after a number of assumptions.
First, the waves are assumed to be long crested,
thereby allowing a two-dimensional treatment, using
a coordinate axis which is in the.plane of the water
motion. Second, the fluid is taken to be frictionless,
which implies that the given vorticity distribution
was imparted by external means and it remains con-
stant. This assumption, as well as fixing the bottom
to be horizontal and impermeable, indicates that the
wave will propagate without change in form. Further,
by translating the coordinate axis at the celerity C of
the wave, the wave motion becomes steady (see Fig. 1).
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F1c. 1. Schematic of symmetric wave of height # in water
of depth % By translating the coordinate system with speed C
(the wave celerity), the wave becomes stationary.

For a two-dimensional incompressible fluid, the fol-
lowing equation expresses the conservation of mass:

d(U~+u—C) o
——t—=
ox dy

0, 1)

where U is the mean (relative to the wave period)
x-directed current, (u,v) are the wave-induced water
motions in the (x,y) directions, and the wave celerity C
appears as negative due to the translation of the
coordinate axis. A streamfunction y¥(x,y) may be
introduced with the following definitions, which sat-
isfy (1) exactly:

a
(U+u—C)= _¥
9y
. (2)
oy
V=—
ox

Substituting the streamfunction into the equation
for the fluid vorticity ylelds (Lamb, 1945)

o d(U+u—C)
———=Y=f{), ©))

ox dy

where V?(=9%/9x2+09%2/9y?) is the two-dimensional
Laplacian operator and f(¥) the vorticity. This equa-
tion states that the vorticity V% is a constant for a
streamline and changes between streamlines according
to f(¥). For the case of f(¥)=0, a nonlinear high-order
solution has been obtained by Dean (1965); for f(y)
equal to a constant, Dalrymple (1974a) developed a
similar high-order solution. Here it will be taken that
J@)=~+%, which will permit currents that vary as
trigonometric and hyperbolic sine and cosine functions
of the depth. The parameter v governs the strength
of the vorticity.
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The boundary conditions to be satisfied by any
solution to the above governing equations are located
at the bottom, the water surface, and in the lateral
direction. At the bottom, as mentioned previously,
a no-flow condition is required in the vertical direction:

oy
——=0 on y=-—bh “)
dx .

Laterally, a periodic boundary condition is imposed
in order to obtain a wave-like solution

¥(x,y)=¥(x+Lyy), ®)

where L is the length of the wave. On the free surface
y=n(x), the pressure is assumed to be a constant
and, without loss of generality for free waves, is taken
as zero. The Bernoulli equation, which is valid along
a streamline such as the free surface, can be written as

HEHN
nt——————=Q on y=n(x), (6)

2

where g is the acceleration of gravity and @ the free-
surface streamline Bernoulli constant. This is referred
to as the dynamic free surface boundary condition.

For wave problems expressed in terms of the ve-
locity potential, it is also necessary to prescribe a
further boundary condition at the free surface, which
states that the free surface is a streamline. For this
case, with the coordinate axis moving with the speed
of the wave, this is true by definition, since the sur-
face is one of constant y. However, in order that the
free surface streamline yield a free surface displace-
ment which has a zero mean about the mean water
level, the further constraint

Li2
Ezs% / n(&)dx=0 )

is needed on the solution. Since the wave form is
taken to be symmetric, the above integral need only
be taken over half the wave.

The boundary value problem for the waves is now
fully prescribed and solutions may now be proposed.
Two cases will be investigated: the first is for an
aiding current, that is, one which flows in the direction
of the waves. The mean current is assumed to have
the following velocity profile U(y) relative to a sta-
tionary observer:

U(y)—C= —(C—Us) cosy(hty), (®)

where Up is the mean bottom current. The governing
equation for a wave on this current profile is

V= —v%. )
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An assumed solution, which satisfies this governing
equation, the bottom boundary condition (4), and the
periodicity requirement (5) is

(C—Us) N
Y(x,y) =——siny(h+y)+3 X(n)
Y n=1
Xsinh[ (kn2—y?)}(h+y)] cosknr, (10)
where
kn=2wn/L. (11)

For an opposing current, a velocity profile may be
taken as

U(y)—C= —(C—Up) coshy(h+y).

(12)
The governing equation now takes the form
Vy=9%. (13)
The assumed solution is now taken as
(C—-Up) N
¥(x,y) - sinhy (A+y)+ El X (n)
Xsinh[ (£,.24v)¥(h+y)] cosk.x. (14)

In both assumed solutions a series of periodic terms
is included, each of which incorporates unknown
coefficients X (), which will be different for each
term and for each case. The only remaining boundary
condition to be satisfied is the dynamic free surface
boundary condition (6), subject to the mean sea level
constraint (7). Therefore, the X (#) must be chosen
so as to satisfy these requirements on the free surface.

It first becomes necessary to evaluate the free sur-
face function #(x). This is accomplished by substi-
tuting y=7(x) into the definitions of ¥(x,y), namely,
(10) and (14), and solving the resulting transcendental
equation for n(x) for each x. An accurate solution
technique, which was used in this study, was developed
by Traub (1960). This solution for 5, however, re-
quires a prior knowledge of the value of the free
surface streamline ¥(x,5), which is unknown. There-
fore, Y(x,m) is defined as another unknown, X (V4 2),
and will be allowed to vary in the now iterative solu-
tion technique so as to best satisfy the free surface
conditions.

The nonlinear dynamic free surface boundary con-
dition is expressed in a least squares form E;, which
should equal zero for an exact solution:

9 Li2 )
B / [0()—QTdx, (15)

where

_ 2 L2
0= / Q@dx on y=n()  (16)
LJe

and Q(x) is the Bernoulli constant at different posi-
tions along the free surface.
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3. Solution technique

The mean-squared dynamic free surface boundary
condition is to be made small subject to the afore-
mentioned free surface constraint and also to a wave
height constraint Es:

Es=9(0)—n(L/2)—H. 17

If E; is equal to zero, then the solution will result
in a wave of height H. The problem then becomes,
using a Lagrange multiplier technique (e.g., Hilde-
brand, 1965), a minimization of the function F de-
fined as

(18)

For an exact solution F will be zero. The solution
technique involves minimizing F with respect to the
unknowns, the X(») and A; and \;. There are N+2
unknown X (») consisting of the series coefficients
[X(m), n=1, N], but also X(N+1) and X(N+2),
which are the unknown wavelength and the value of
the free surface streamline, respectively. Due to the
nonlinearity of F, a quasi-linearization as developed
by Dean (1965) is used along with an iterative tech-
nique in order that a matrix solution can be used.
Therefore, for iteration j41 it is assumed that F#
can be expressed as a first-order Taylor’s series in
the Xi(n):

F= E1+ )\1E2+ )\2E3.

N+2  QF7
FHi=Fit Y
n=1 8X (n)

X'(n), (19)

where the X’(n) are assumed to be small correc-
tions to the X(»)’, and F/ ' is now linear in the
X'(n). Minimizing F#! with respect to the X'(x),
At and Ay, retaining only first derivatives, will yield
a set of equations for the X’(#) which may be solved
by usual matrix methods. The X'(xn) are then added
to the X7(n) as a correction:

X(m)*=X(m)HaX'(n), (20)

where o is a stability parameter ranging from 0.3 for
steep waves to 1.0 for small waves (see Chappelear,
1961; Dean, 1965). This procedure is then repeated
until F7* is acceptably small; this usually takes about
15-20 iterations to achieve values of ¥/H~0.00002.

In order to start the solution procedure, trial
values of the X(u)'(j=1) are necessary. These
can be chosen simply on the basis of small-amplitude
theory in the absence of current. The wavelength
L[=X'(N+1)] and C'(=L'/T) can be found using
the small-amplitude Airy wave theory dispersion
relationship

g 2w
L'=—T? tanh(—l}—h) (21)

2

The X(N4+2)[=¢(x)] can be approximated as



850

150

140

h+y/h

40

50

005

o3

h+y/h

05=h

(b)

F16. 2. Dimensionless horizontal velocity profiles (solid lines)
for the (a) crest and (b) trough positions for selected values of
vk for the deep water wave example, as seen by a stationary
observer. The current is flowing in the same direction as the wave
and is denoted by dashed lines in (a).

¥(x,0) using (10) or (14) neglecting the series term
and the X'(1) from first order Stokes theory:

HC
X)=——.

2r
2 sinh(——h)
.\

The remaining coefficients [X'(n), 2<n< N ] are set
equal to zero.

(22)
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4. Results

The presence of a mean current affects the wave-
length, the free surface profile and, of course, the
water particle kinematics within the wave. Note that
a wave propagating from a quiescent fluid onto a cur-
rent will undergo wave height changes, as first ex-
plored by Unna (1942) and in detail by Longuet-
Higgins and Stewart (1961) among others, but in the
present case the wave height is fixed on the current
and the wave height transformation not considered.
Two example waves have been chosen to illustrate
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F16. 3. Asin Fig. 2 except for the shallow water wave example.
Note change in scale of abscissa for (b).
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F16. 4. As in Fig. 2 except for the deep-water wave example with the steady current (dashed lines)
flowing in the direction opposite to the wave.

the effects of the currents. These are a deep-water
wave with a height of 15.2 m in 30.5 m of water and
a shallow-water wave with a height of 1.92m in
3.05 m of water; both waves have a period of 10 s
and seven terms were included in the series solution.

In Figs. 2 and 3 the horizontal velocity profile,
consisting of U+, is shown for the crest and trough
portions for both the deep- and shallow-water waves
for aiding currents of different vorticities. For in-
creasing values of the vorticity parameter v, the
effects of the current become more pronounced. In all
of these cases Up was taken as zero; therefore, the
mean current is expressed as

U(y)=C[1—cosy (ht+y)]. (23)

For very small values of v, U(y) is nearly zero; that
is, the solution and solution technique reduce to the
streamfunction theory of Dean (1965). As vy increases,
so does the current and, therefore, the surface current

,U(O) is

U(0)=C(1—cosyk). (24)

It is unfortunate that U(0) is dependent on C as
the wave celerity is a priori unknown, and, therefore,
only after the solution is obtained is the exact current
profile known.

For the opposing current, Fig. 4 shows the hori-
zontal velocity profile obtained under the wave crest
for the deep-water wave. For the case of v2=1.0,
there is a very strong opposing current with dimen-
sionless magnitude of U(0)/C= (1—coshyk)= —0.54.
The effect of this strong flow is nearly to cancel out
the crest velocities in the direction of the wave near
the surface, while near the bottom, where the current
is smaller in magnitude, the wave-induced motion
is greater.

In addition to the change in horizontal velocity
profiles, total accelerations within the fluid are changed

TABLE 1. Wavelengths and crest elevations for example waves.

Aiding current

Opposing current

vh L/H ne/H U)/c L/H ne/H u)/c
Deep-water wave 0.010 10.05 0.66 5% 1078 10.08 0.66 5X1078
0.050 10.09 0.67 0.001 10.07 0.66 —0.001
0.010 10.12 0.67 0.005 10.04 0.66 —0.005
0.030 10.44 0.68 0.045 9.77 0.65 —0.045
0.050 11.11 0.71 0.122 9.35 0.64 —0.128
Shallow-water wave 0.001 32.73 0.8626 5X1077 32.73 0.8626 —5X1077
0.010 32.73 0.8626 5X 1078 32.73 0.8626 —5X107%
0.075 32.77 0.8630 0.003 32.68 0.8622 —0.003
0.100 32.80 0.8633 0.005 32.66 0.8617 —0.005
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by the current, as well as the wavelength, the crest
elevation and all other wave parameters not pre-
scribed as given. Table 1 illustrates the changes in
wavelength and crest elevation for both aiding and
opposing currents for the example waves. The wave
crest elevation 5¢ is defined as

ne=1(0)

and is of importance in the design of freeboard. Note
that only for small-amplitude waves is n¢=H/2. For
the deep-water wave, over the range of y4=0.010 to
0.50 for the aiding current, there is just a 7%, change
in n¢, while there is a 109, increase in wavelength.

Although not illustrated in this paper, the governing
vorticity equation for the fluid is valid even if there
is a uniform transverse flow (in the direction of the
wave crest) as noted by Benny (1966).- Therefore,
with suitable modification of the dynamic free surface
boundary condition (see Dalrymple, 1973) a cross flow
can be accommodated for these wave models. The
resulting horizontal velocity profiles, for any trans-
verse flow, will show a changing direction as well as
magnitude over the water depth.

5. Conclusions

The water wave models, including opposing and
aiding currents, are analytically valid, satisfying all
boundary conditions exactly with the exception of
the dynamic free surface boundary condition, which
is satisfied in a least-squares sense. The root-mean-
square error in satisfying this remaining boundary
condition is typically of the order of 0.0001 H for
these examples. :

The effects of the mean current is to change all
the properties of the waves, except wave height and
period which are fixed. Aiding currents have been
shown to increase the horizontal velocities under the
wave crest and to increase wavelength and the crest
elevation, while an opposing current has the opposite
effect.

The importance of these changes occurs in the
design of offshore structures where small percentage
changes in horizontal velocities result in twice as
large changes in drag forces on structures. Further,
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the deck elevation of structures is dependent on
knowledge of crest elevation. '
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