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ESTIMATING THE NUMBER OF COMPONENTS OF
THE FUNDAMENTAL FREQUENCY MODEL

Debasis Kundu* and Swagata Nandi**

We propose a simple estimation procedure of the number of components of the
fundamental frequency model when all the adjacent harmonics are present. The
proposed method is based on the penalty function approach like other Information
Theoretic Criteria. The new method is shown to be consistent. We compute the
probability of wrong estimates of a particular penalty function and propose a re-
sampling technique to estimate the probability of wrong estimates. It is observed
that the probability of wrong estimates can be used to choose the best possible
penalty function from a particular class of penalty functions. The effectiveness of
the proposed method is verified using computer simulations. Two speech data are
analyzed using our proposed technique and the performances are quite satisfactory.
Finally, we extend our results when all the adjacent harmonics may not be present
in the model.

Key words and phrases: Consistent estimator, fundamental frequency, information
theoretic criterion, penalty function.

1. Introduction

In this paper we consider the estimation of the number of components of the
following fundamental frequency model:

y(n) =
p0∑
j=1

ρ0
j cos(njλ0 − φ0

j ) + X(n); n = 1, . . . , N,(1.1)

where all the ρ0
j > 0. Here, 0 < λ0 < π

p0 is the fundamental frequency and

jλ0 are its harmonics for j > 1. The phase components φ0
j ’s are unknown and

−π < φ0
j < π. X(n)’s are additive stationary linear processes with mean 0, finite

variance σ2 and satisfy the following assumption.

Assumption 1. X(n) has the following representation:

X(n) =
∞∑

k=−∞
a(k)e(n− k),(1.2)
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where e(k)’s are independent and identically distributed (i.i.d.) random variables
with mean zero and finite variance τ2. Moreover,

∞∑
k=−∞

|a(k)| < ∞.(1.3)

There are mainly two problems, one is the estimation of p0 and the other
one is the estimation of the ρ0

j ’s, φ0
j ’s and λ0. In this paper we mainly consider

the estimation of p0.
Estimating the parameters of a fundamental frequency model is an important

problem in Speech Signal Processing. An additional mean term µ0 can always be
added to the model (1.1) and an efficient estimator of µ0 can be easily obtained
as ȳ = 1

N

∑N
n=1 y(n). Therefore, in practice it is recommended to work with the

transformed data namely, y(n) − ȳ and apply the necessary results. Since the
main concern of this paper is to estimate p0 efficiently, we consider the model
(1.1) for brevity. Note that many authors considered the estimation and testing
for the related discrete time model;

y(n) = µ0 +
p0∑
j=1

ρ0
j cos(nλ0

j − φ0
j ) + X(n),(1.4)

where λ0
j denotes unknown frequencies (0 < λ0

1 · · · < λ0
p0 < π) and ρ0

j and φ0
j

are same as defined before. See for example the work of Fisher (1929), Whittle
(1959), Walker (1971), Hannan (1973), Kay and Marple (1981) and Stoica (1993)
for an extensive list of references of this problem.

Estimation of p0 of the model (1.4) has been considered by several authors
in the Signal Processing and Time Series literature for the past twenty years.
For example, Fuchs (1988), Wang and Kaveh (1986), Kaveh et al. (1987), Sakai
(1990, 1993) and Kundu (1998) considered the problem when the errors are inde-
pendent and identically distributed. Quinn (1989) considered the model (1.4) in
presence of stationary errors but the frequencies can be only the Fourier frequen-
cies, namely of the form 2πn

N . Wang (1993) considered the general case, i.e when
the errors are stationary and the frequencies need not be Fourier frequencies only.
But the criterion used by Wang (1993) involves a constant whose determination
needs the knowledge of the noise spectrum.

Here, we consider a particular case where the unknown frequencies λ0
j are

harmonics of a fundamental frequency λ0. Interestingly, although the model
(1.4) is a very well studied model, not much work has been done on the fun-
damental frequency model (1.1). There are many signals like speech, where the
data indicate the presence of harmonics with respect to a fundamental frequency.
We provide the plot of two speech data. The Figure 1 represents ‘uuu’ sound
and Figure 2 represents ‘ahh’ sound. The periodogram function of both data
are plotted in Figures 3 and 4 respectively. From Figures 3 and 4, it is clear
that the harmonics of a particular frequency are present in both cases. In these
situations, it is better to use the model (1.1) than (1.4) as the model (1.1) has
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Figure 1. Plot of the mean corrected “uuu” vowel sound.
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Figure 2. Plot of the mean corrected “ahh” sound.

lesser number of non-linear parameters than (1.4) for fixed p0 > 1. The problem
was first proposed by Fisher (1929) and later on Quinn and Thomson (1991) and
Nandi and Kundu (2003) proposed different estimation procedures of ρ0

j , φ0
j and

λ0 for a fixed p0. But no where the estimation of p0 has been considered by any
author.

In this paper, we consider the estimation of p0 of the model (1.1). We mainly
use the penalty function approach like AIC, BIC or MDL, but instead of using
any fixed penalty function, a class of penalty functions satisfying some special
properties has been used. It is observed that any penalty function from that par-
ticular class will provide consistent estimates of the unknown parameters. We
perform some simulation experiments to observe the behavior of the proposed
estimates for small samples. We compute the probability of correct estimates
(PCE’s) of a particular penalty function. Based on the re-sampling technique as
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Figure 3. Plot of the periodogram function of the “uuu” sound.
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Figure 4. Plot of the periodogram function of the “ahh” sound.

used in Kundu and Mitra (2001), we compute an estimate of the PCE for each
penalty function. Once we obtain an estimate of PCE, we use that penalty func-
tion for which the estimated PCE is maximum. It is observed as expected that a
particular penalty function may not work well for all possible error variances or
for all possible parameter values, but our method tries to choose the best possi-
ble penalty function from the given class of penalty functions. Simulation results
suggest that our method performs quite well. Two speech data are analyzed
using our proposed method and the performances are quite satisfactory.

The rest of the paper is organized as follows. In Section 2, we propose the es-
timation procedure and its implementation in practice. In Section 3, we provide
the consistency results of the proposed estimates. The practical implementation
procedure of the proposed technique is provided in Section 4. Some experimen-
tal results are provided in Section 5 and two speech data are analyzed using
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our proposed method in Section 6. In Section 7, we generalize our results to
those models where some of the adjacent harmonics might be absent. Finally we
conclude the paper in Section 8.

2. Estimation procedure

It is assumed that the number of components can be at most K, a fixed num-
ber. Suppose, L denotes the possible ranges of p0, therefore, L ∈ {0, 1, . . . ,K}.
If M0,M1, . . . ,MK denote the different models of order 0, 1, . . . ,K respectively,
then the problem is a model selection problem from a class of models. Define

R(L) = min
λ,ρj ,φj

1

N

N∑
n=1


y(n) −

L∑
j=1

ρj cos(njλ− φj)




2

.(2.1)

Let us denote, λ̂, ρ̂j and φ̂j as the least squares estimators of λ, ρj and φj

respectively if the model order is L. Note that in this case λ̂, ρ̂j and φ̂j depend
on L, but we do not make it explicit for brevity. Consider

IC(L) = N logR(L) + 2LCN ,(2.2)

here CN is a penalty function of N and it satisfies the following conditions;

(1) lim
N→∞

CN

N
= 0 and (2) lim

N→∞
CN

logN
> 1.(2.3)

The number of harmonics p0 is estimated by the smallest value p̂ such that;

IC(p̂ + 1) > IC(p̂).(2.4)

Note that this criterion is like other Information Theoretic criteria used in model
selection. But unlike AIC, BIC or MDL, here we do not have any fixed penalty
function. Here the penalty function can be anything provided it satisfies con-
ditions (2.3). Note that for fixed N , N logR(L) is a decreasing function of L.
Therefore, as the model order increases N logR(L) gradually decreases, whereas
the factor 2LCN gradually increases and discourages to add more and more terms
in the model. The factor, 2LCN acts as a penalty function and the proposed cri-
terion (2.4) determines the order of the model.

We can state the main result as follows;

Theorem 1. Let CN be any function of N satisfying (2.3) and p̂ is the
smallest value such that IC(p̂ + 1) > IC(p̂), where IC(j) is same as defined in
(2.2). If X(n) satisfies Assumption 1, then p̂ is a strongly consistent estimator
of p0.

Before proving Theorem 1, first we provide how to obtain R(L). Consider

µL
n =

L∑
j=1

ρj cos(jλn− φj) =
L∑

j=1

[ρj cos(φj) cos(jλn) + ρj sin(φj) sin(jλn)].
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Therefore,


µL
1
...

µL
N


 =




cos(λ) sin(λ) . . . cos(Lλ) sin(Lλ)
...

...
...

...
...

cos(Nλ) sin(Nλ) . . . cos(NLλ) sin(NLλ)


(2.5)

×




ρ1 cos(φ1)
ρ1 sin(φ1)

...
ρL cos(φL)
ρL sin(φL)




= AL(λ)bL (say).

Now,

N∑
n=1


y(n) −

L∑
j=1

ρj cos(jλn− φj)




2

(2.6)

= (Y −AL(λ)bL)T (Y −AL(λ)bL),

where Y = (y(1), . . . , y(N))T . Using the separable regression technique of
Richards (1961), it is observed that for fixed λ, minimization of [Y −AL(λ)bL]T×
[Y −AL(λ)bL] is obtained when b̂L = [AL(λ)TAL(λ)]−1AL(λ)TY . Now putting
b̂L back in (2.6), we obtain

(Y −AL(λ)b̂L)T (Y −AL(λ)b̂L)(2.7)

= Y T (I − PAL(λ))Y = Q(λ) (say),

where PAL(λ) = AL(λ)(AL(λ)TAL(λ))−1AL(λ)T is the projection operator on
the column space spanned by the columns of AL(λ). Therefore, the least squares
estimator of λ can be obtained by minimizing Q(λ) with respect to λ. Let us
look at 1

NY T (PAL(λ))Y for large N .

1

N
Y T (PAL(λ))Y =

(
1

N
Y TAL(λ)

)(
1

N
AL(λ)TAL(λ)

)−1 ( 1

N
AL(λ)TY

)
.

Note that

lim
N→∞

1

N
AL(λ)TAL(λ) =

1

2
I2L,(2.8)

here I2L denotes the identity matrix of order 2L. It implies that for large N ,

1

N
Y T (PAL(λ))Y

≈ 2
L∑

j=1


( 1

N

N∑
n=1

y(n) cos(jλn)

)2

+

(
1

N

N∑
n=1

y(n) sin(jλn)

)2



= 2
L∑

j=1

∣∣∣∣∣ 1

N

N∑
n=1

y(n)eijnλ
∣∣∣∣∣
2

,
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where i =
√
−1. Therefore, for large N , the least squares estimator of λ, say λ̂,

can be obtained by maximizing

IY (λ) =
L∑

j=1

∣∣∣∣∣ 1

N

N∑
n=1

y(n)eijnλ
∣∣∣∣∣
2

,

with respect to λ and therefore R(L) can be written as

R(L) =
1

N
Y T (I − P

AL(λ̂))Y .

It is interesting to observe that to compute R(L) it is not needed to calculate
ρ̂j and φ̂j explicitly. Moreover, the minimization of 1

NY T (I − PAL(λ))Y and

maximization of 1
N IY (λ) are both one dimensional processes and they can be

performed easily.

3. Proof of the consistency result

In this section, we provide the proof of Theorem 1.

Proof of Theorem 1. Observe that, we need to show

IC(0) > IC(1) > · · · > IC(p0 − 1) > IC(p0) < IC(p0 + 1).

Consider two cases separately.

Case I. L < p0

lim
N→∞

R(L) = lim
N→∞

1

N

N∑
n=1


y(n) −

L∑
j=1

ρ̂j cos(jλ̂n− φ̂j)




2

= lim
N→∞


 1

N
Y TY − 2

L∑
j=1

∣∣∣∣∣ 1

N

N∑
n=1

y(n)eijnλ̂
∣∣∣∣∣
2



= σ2 +
p0∑

j=L+1

ρ02

j a.s.

Therefore, for 0 ≤ L < p0 − 1,

lim
N→∞

1

N
[IC(L) − IC(L + 1)](3.1)

= lim
N→∞


log


σ2 +

p0∑
j=L+1

ρ02

j




− log


σ2 +

p0∑
j=L+2

ρ02

j


− 2CN

N


 a.s.
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and for L = p0 − 1,

lim
N→∞

1

N
[IC(p0 − 1) − IC(p0)](3.2)

= lim
N→∞

[
log(σ2 + ρ02

p0) − log σ2 − 2CN

N

]
a.s.

Since CN
N → 0, therefore as N → ∞ for 0 ≤ L ≤ p0 − 1,

lim
N→∞

1

N
[IC(L) − IC(L + 1)] > 0.

It implies that for large N , IC(L) > IC(L + 1), when 0 ≤ L ≤ p0 − 1.

Case II. L = p0 + 1.
To prove this part we need the following lemmas.

Lemma 1. (An et al. (1983)) Let us define,

IX(λ) =

∣∣∣∣∣ 1

N

N∑
n=1

X(n)einλ
∣∣∣∣∣
2

.

If X(n) satisfies Assumption 1, then

lim sup
N→∞

max
λ

NIX(λ)

σ2 logN
≤ 1 a.s.(3.3)

Lemma 2. (Kundu (1997)) If X(n) satisfies Assumption 1, then

lim
N→∞

sup
λ

1

N

∣∣∣∣∣
N∑

n=1

X(n)eiλn
∣∣∣∣∣ = 0 a.s.

Now consider

R(p0 + 1) =
1

N
Y TY − 2

p0∑
j=1

∣∣∣∣∣ 1

N

N∑
n=1

y(n)eiλ̂jn
∣∣∣∣∣
2

(3.4)

− 2

∣∣∣∣∣ 1

N

N∑
n=1

y(n)eiλ̂(p0+1)n

∣∣∣∣∣
2

.

Note that λ̂ → λ0 a.s. as N → ∞ (Nandi (2002)). Therefore, for large N

IC(p0 + 1) − IC(p0)

= N(logR(p0 + 1) − logR(p0)) + 2CN = N

[
log

R(p0 + 1)

R(p0)

]
+ 2CN
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≈ N

[
log

(
1 − 2| 1

N

∑N
n=1 y(n)eiλ

0(p0+1)n|2
σ2

)]
+ 2CN (using Lemma 2)

≈ 2 logN


 CN

logN
−

N
∣∣∣ 1
N

∑N
n=1 X(n)eiλ

0(p0+1)n
∣∣∣2

σ2 logN




= 2 logN

[
CN

logN
− NIX(λ0(p0 + 1))

σ2 logN

]
> 0 a.s.

Note that the last inequality follows because of the property of CN and due to
Lemma 1.

4. Practical implementation

In this section, we present how to apply our proposed method in practice.
Consider the following data y(1), . . . , y(N) from the model (1.1). It is known that
p0 ≤ K some fixed integer, although p0 is not known. Compute λ̂ by maximizing

IY (λ) =
K∑
j=1

∣∣∣∣∣ 1

N

N∑
n=1

y(n)eijnλ
∣∣∣∣∣
2

with respect to λ and obtain an estimate of σ2 by

σ̂2 =
1

N
Y T (I − P

AK(λ̂))Y .

For each data set, we calculated the sample variance and normalize the data,
so that the error variance becomes 0.5. From now on we mainly talk about
the normalized data unless otherwise mentioned. For brevity, we denote the
normalized data also as y(1), . . . , y(N) only. For a given choice of the penalty
function CN , we compute IC(L), for different values of L = 1, . . .K and choose
p̂ an estimate of p as suggested in Section 2. Note that we have a wide choice of
CN , but we would like to choose that CN for which P [p̂ 
= p0] is minimum. Now
consider

P [p̂ 
= p0] = P [p̂ < p0] + P [p̂ > p0] =
p0−1∑
q=0

P [p̂ = q] +
K∑

q=p0+1

P [p̂ = q].

Case I. q < p0

P (p̂ = q) = P [IC(0) > IC(1) > · · · > IC(q) < IC(q + 1)]

≤ P

[
log

R(q)

R(q + 1)
< 2

CN

N

]
.

Note that there exists a δ > 0 such that for large N ,

log
R(q)

R(q + 1)
> δ a.s.



50 DEBASIS KUNDU AND SWAGATA NANDI

It implies that for large N ,

log
R(q)

R(q + 1)
> 2

CN

N
a.s.

Therefore, when N is large, for q < p0,

P [p̂ = q] = 0.(4.1)

Case II. q > p0

P (p̂ = q) = P [IC(0) > IC(1) > · · · > IC(q) < IC(q + 1)].

Note that for large N ,

P (p̂ = q) = P [IC(p0) > · · · > IC(q) < IC(q + 1)],

as for large N
P [IC(0) > · · · > IC(p0)] = 1.

Therefore,

P [p̂ = q] = P

[
log

R(q + 1)

R(q)
+ 2

CN

N
> 0,(4.2)

log
R(j)

R(j − 1)
+ 2

CN

N
< 0, j = p0 + 1, . . . , q

]
.

From (4.1) it is immediate that for large N , the probability of under estima-
tion is zero and to compute (4.2) we need to compute the joint distribution of
R(p0), . . . , R(K), which is not easy to obtain and it depends on the unknown
parameters. Without knowing the actual parameter values, it is not possible to
estimate the probability of over estimates or the probability of wrong detection.
We use re-sampling or bootstrap technique similarly as Kundu and Mitra (2001)
to estimate the probability of wrong detection and it will be used to estimate
the number of components of the model (1.1). The idea is as follows. From a
given realization of the data, first using the penalty function CN , we estimate
the order of the model as M(CN ), using the method proposed in Section 2. Now
we normalize the data (for brevity we denote them as y(1), . . . , y(N) only) as
described at the beginning of this section, so that the error variance of the data
becomes 1

2 . We generate N independent identically distributed Gaussian random
variables with mean zero and variance 1

2 , say ε(1), . . . , ε(N). We now obtain the
bootstrap sample as

y(t)B = y(t) + ε(t); for t = 1, . . . , N.

Assuming M(CN ) is the correct order model, we check for q < M(CN ), whether

log
R(q)

R(q + 1)
< 2

CN

N
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and for q > M(CN ), check whether

log
R(q + 1)

R(q)
+ 2

CN

N
> 0, log

R(j)

R(j − 1)
+ 2

CN

N
< 0, j = p0 + 1, . . . q.

Repeating the process, say B times, we estimate P (p̂ 
= p0). Finally, we choose
that CN for which the estimated P (p̂ 
= p0) is minimum.

Some justifications regarding the proposed bootstrap estimates of P (p̂ 
= p0)
can be given. Note that the realization of y(t)B can be thought of coming from
a model equivalent to model (1.1). The proposed method works quite well with
the simulated data and it can be observed in the next section.

5. Numerical results

In this section we perform some numerical experiments to present both the
effectiveness of our method and usefulness of the analysis. We consider the
following two models;

Model 1:

y(n) =
3∑

j=1

ρ0
j cos(njλ0 − φ0

j ) + X(n); n = 1, . . . , 50.

Here ρ0
1 = 2.0, ρ0

2 = 2.5, ρ0
3 = 2.5, λ0 = 0.8796, φ0

1 = 1.2, φ0
2 = 0.95 and

φ0
3 = 0.75. X(n) = 0.5e(n− 1) + e(n). Similarly

Model 2:

y(n) =
4∑

j=1

ρ0
j cos(njλ0 − φ0

j ) + X(n); n = 1, . . . , 50.

Here ρ0
1 = 2.5, ρ0

2 = 2.0, ρ0
3 = 3.5 and ρ0

4 = 1.0, λ0 = 0.75398, φ0
1 = 0.5, φ0

2 = 0.9,
φ0

3 = 0.75 and φ0
4 = 0.5. X(n) = 0.5e(n− 1) + e(n).

In both the cases e(n)’s are i.i.d. Gaussian random variables with mean zero
and variance τ2. To assess the sensitivity of the method to different noise levels
we consider three different τ2, namely τ2 = 0.5, 0.75 and 1.0. For illustration
purposes we plot two data sets generated using Models 1 and 2 in Figures 5 and
6 respectively. The corresponding periodogram functions are plotted in Figures 7
and 8 respectively. It is well-known that the number of peaks in the periodogram
function plot roughly gives an estimate of the number of components p0. But it
depends on the magnitude of the amplitude associated with each effective fre-
quency and the error variance. If a particular amplitude is relatively small as
compared to others, that component may not be significant in the periodogram
plot. Considering this fact we have included Model 2 in our simulation study.
From Figure 7 it is quite clear that there are three peaks. Figure 8 also ex-
hibits three peaks properly and it is not clear that the data are generated using
model (1.1) with four harmonics. Therefore, it seems that estimating the num-
ber of components in Model 1 is an easier problem than to detect the number of
components for Model 2.
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Figure 5. Plot of the data generated by Model 1 with N = 50 and error variance = 1.0.
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Figure 6. Plot of the data generated by Model 2 with N = 50 and error variance = 1.0.

Now we estimate the model order p0 using the method proposed in Section 2.
It is assumed in both cases that the number of components can be at most 6,
i.e. K = 6. We take 12 different CN ’s, all of them satisfy (2.3). We denote them
as CN (1), . . . , CN (12) and they are as follows; CN (1) = N .2 log logN , CN (2) =

N .3, CN (3) = (logN)3

log logN , CN (4) = N .4, CN (5) = (logN)1.1, CN (6) = (logN)1.2,

CN (7) = (logN)1.3, CN (8) = N .5

(logN).9
, CN (9) = (logN)1.4, CN (10) = N .4

logN ,

CN (11) = N .5

logN and CN (12) = N .6

logN . The main idea is to choose a wide variety
of CN ’s. For each simulated data vector we estimate p for all CN ’s. Then this
procedure is replicated 1000 times to obtain the probability of correct estimates
(PCE’s) and the probability of wrong estimates (PWE’s). We mainly report the
PCE’s. The results are reported in Tables 1 and 2 for different penalty functions
and for different error variances for Model 1 and Model 2 respectively.
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Figure 7. Plot of the periodogram function of the data plotted in Figure 5.
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Figure 8. Plot of the periodogram function of the data plotted in Figure 6.

Some of the points are quite clear from the Tables. First of all the per-
formances of all CN (j)’s improve as the error variance decreases, which is not
surprising. The performances of the different CN (j)’s vary from one extreme to
the other. Some of the CN (j)’s can detect the correct order model all the times
considered here, whereas some of the CN (j)’s can not detect the correct order
model at all, although all of them satisfy (2.3) . It is observed that the correct
detection for Model 1 is much easier than Model 2. Typically, a particular CN

may not work for a particular model but may work for some others. For ex-
ample, using CN (9) the proposed method always detects the correct order for
all error variances for Model 1 whereas the same is not true in case of Model
2. Now using the bootstrap method (based on 100 replications) proposed in the
previous section we estimate the number of components for both the models and
for different error variances. The PCE’s for both the models for different error



54 DEBASIS KUNDU AND SWAGATA NANDI

Table 1. The PCE’s for different penalty functions for Model 1.

Penalty τ2 = 0.5 τ2 = 0.75 τ2 = 1.0

CN (1) 1.000 1.000 1.000

CN (2) 1.000 1.000 1.000

CN (3) 0.000 0.000 0.000

CN (4) 1.000 1.000 1.000

CN (5) 1.000 1.000 1.000

CN (6) 1.000 1.000 1.000

CN (7) 1.000 1.000 1.000

CN (8) 0.996 0.996 0.996

CN (9) 1.000 1.000 1.000

CN (10) 0.967 0.967 0.967

CN (11) 0.991 0.991 0.990

CN (12) 1.000 1.000 1.000

Table 2. The PCE’s for different penalty functions for Model 2.

Penalty τ2 = 0.5 τ2 = 0.75 τ2 = 1.0

CN (1) 0.998 0.998 0.996

CN (2) 0.999 0.999 0.994

CN (3) 0.000 0.000 0.000

CN (4) 0.941 0.869 0.799

CN (5) 0.978 0.923 0.865

CN (6) 0.873 0.780 0.702

CN (7) 0.614 0.525 0.459

CN (8) 0.988 0.988 0.988

CN (9) 0.286 0.264 0.235

CN (10) 0.928 0.926 0.926

CN (11) 0.979 0.979 0.979

CN (12) 0.995 0.995 0.995

variances are reported in Table 3. For comparison purposes we consider AIC and
BIC type estimators also, as they have been considered as standard criteria in
the literature. The results are reported in Table 3.

From Table 3, it appears that the proposed method works very well and
performs better than both AIC and BIC, in both the cases for different error
variances. Although any particular penalty function satisfying condition (2.3)
may not work well for all the models and for different error variances but the
present method works quite well for different models and for different error vari-
ances. It may not be surprising, because here we have a class of penalty functions
and from there we are going to choose the best possible one.

Now to see how our proposed method works when the error variance is quite
high, we generate a sample from Model 2 with error variance τ2 = 5.0. The
periodogram plot of the generated data set is provided in Figure 9. It is not
obvious from the periodogram plot that p0 = 4 in this case. Interestingly, our
proposed method detects correctly the number of components in this case also.
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Table 3. The PCE’s for Model 1 and Model 2 using the proposed method, AIC and BIC.

Method Model τ2 = 0.5 τ2 = 0.75 τ2 = 1.0

Model 1 1.000 1.000 1.000

Proposed

Model 2 1.000 1.000 0.998

Model 1 0.884 0.883 0.883

AIC

Model 2 0.942 0.942 0.944

Model 1 0.881 0.881 0.879

BIC

Model 2 0.937 0.935 0.935
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Figure 9. Periodogram plot of the data generated using Model 2 when τ2 = 5.0.

It should be mentioned here that although using our method it is possible to
estimate the number of components correctly, but because of such high variance
any existing frequency estimation technique can not estimate the frequencies
very accurately in this case. The analysis of any data vector depends on the
estimation of p0, as well as the estimation of λ0, ρ0

i ’s and φ0
i ’s.

6. Data analysis

In this section we estimate the number of harmonics present in two data sets.
The periodogram functions of the datasets motivate us to use model (1.1) and
thus the proposed method is used in estimating the model order. The first data
set is the vowel sound ‘uuu’. It contains 512 signal values sampled at 10 kHz
frequency. The time series plot is presented in Figure 1 after mean correction
and the corresponding sample periodogram plot is in Figure 3. From Figure 3, it
is quite apparent that the number of harmonics should be 4. Using the penalty
functions mentioned in the previous section and K = 9, we obtain the following
results using the first step of our method. The penalty functions CN (4), CN (5),
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CN (6), CN (7), CN (9) and CN (12) estimate the number of harmonics to be 4,
the penalty function CN (1), CN (2), CN (8), CN (10) and CN (11) estimate it to be
5, whereas CN (3) estimates it to be 2 only. Therefore, it is not clear which one
is to be taken. Now using the second step (based on maximum PCE, obtained
using resampling technique discussed in Section 4) of our method we obtain the
estimate of the number of harmonics to be 4. The residual sums of squares for
different orders are as follows: 0.454586, 0.081761, 0.061992, 0.051479, 0.050173,
0.050033, 0.049870, 0.049866 and 0.049606 for the model orders 1, 2, . . . and 9
respectively. The residual sum of squares is a decreasing function of p and it
almost stabilizes at p̂. So it also indicates that the number of harmonics should
be 4. So for “uuu” data set the periodogram function and residual sum of squares
also give reasonable estimate of the order. Now using p̂ = 4, we estimate the
frequency, amplitudes and phases as λ = 0.113275, ρ1 = 0.327591, ρ2 = 0.861467,
ρ3 = 0.192446, ρ4 = 0.144400, φ1 = −2.565801, φ2 = 1.142973, φ3 = 2.972859,
and φ4 = 2.848901. We further calculate the predicted values using the estimated
parameters and they are plotted in Figure 10 along with the observed values. The
estimated plot matches quite well with the observed one.

The second data set is the sound ‘ahh’. It contains 340 signal values sampled
at 10 kHz frequency. The data set and the corresponding periodogram function
are plotted in Figures 2 and 4 respectively. From the periodogram plot it is
not clear exactly how many harmonics are present. As before using the penalty
functions mentioned in the previous section we estimate the number of harmonics
present in the data and the result is as follows. The penalty functions CN (1),
CN (2), CN (4), CN (5), CN (6), CN (7), CN (9) and CN (12) estimate it to be 6,
CN (8) and CN (11) estimate it 7 and CN (3) and CN (10) estimate it to be 1
and 8 respectively. The second step of our method suggests that the number
of harmonics should be 6. The residual sums of squares for the different orders
are 0.49690, 0.49527, 0.49014, 0.48345, 0.36156, 0.11701, 0.11361, 0.11169 and
0.11132 for the model order 1, 2, . . . , 9 respectively. Therefore, the residual sums
of squares suggest that the number of harmonics should be 6. Similarly as “uuu”
data set, we estimate the other parameters i.e. the frequency, amplitudes and
phases as follows: λ = 0.0922486, ρ1 = 0.078656, ρ2 = 0.056695, ρ3 = 0.101506,
ρ4 = 0.111626, ρ5 = 0.491332, ρ6 = 0.700800, φ1 = 1.623784, φ2 = 1.998672,
φ3 = 2.554295, φ4 = −2.920414, φ5 = −2.219181 and φ6 = 0.770404. The
observed and estimated “ahh” are plotted in Figure 11. Thus, for this data
set although the periodogram plot does not provide the exact indication of the
number of harmonics present but the proposed method provides a reasonable
estimate of the model order.

To implement the resampling technique in obtaining the probability of cor-
rect estimates for different penalty functions, the observed values are scaled such
that the variance is equal is .5. Thus the parameter estimates correspond to the
data vectors with mean zero and variance .5 whereas the predicted values are
obtained with original scaling to compare the observed values.
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Figure 10. Plot of the observed (continuous line) and estimated (dotted) “uuu” sound.
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Figure 11. Plot of the observed (continuous line) and estimated (dotted) “ahh” sound.

7. Some generalizations

So far we have assumed that all the adjacent harmonics of the fundamental
frequency are present in the model. In this section we generalize our result
to those models where some of the adjacent harmonics might be absent. It is
observed that our method can be extended for those models but it involves much
heavier computations. Using the idea of Sakai (1993), we write the model as
follows;

y(n) =
p0∑
j=1

v0
j ρ

0
j cos(njλ0 − φ0

j ) + X(n); n = 1, . . . N.(7.1)
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Here ρ0
j , λ0, φ0

j and X(n) are same as defined before. The variable v0
j is an

indicator function as follows;

v0
j =

{
1 if the harmonics jλ0 is present

0 otherwise.

In this case it is assumed that the maximum number of harmonics (including
the missing ones) can be at most K. Consider a vector v = (v1, . . . , vK) of length
K, where each vi is either 0 or 1. Therefore, there are total 2K such vector v
and for each model there is a one to one correspondence to a particular vector
v. For each v, compute

R(v) = min
λ,ρj ,φj

1

N

N∑
n=1


y(n) −

K∑
j=1

ρjvj cos(njλ− φj)




2

.(7.2)

Consider
IC(v) = N logR(v) + 2CN × (# of 1′s in v),(7.3)

here CN is same as defined before. Among the 2K choices of v, choose that
particular v for which IC(v) is minimum. Using the same steps as in Section 2,
it can be seen that

R(v) ≈ 1

N
Y TY − 2 max

λ

∑
j∈{k;vk=1}

∣∣∣∣∣ 1

N

N∑
n=1

y(n)einjλ
∣∣∣∣∣
2

.

Using the same idea as in Section 3, it can be shown that the proposed method
provides consistent estimator of v0, the true value of v. The re-sampling proce-
dure can be performed along the same manner. Therefore, our method can be
used in this situation. But one point should be mentioned that for model (1.1)
we need to search among K possible models whereas for the model (7.1), the
search space involves 2K possible models.

8. Conclusions

In this paper we propose a new technique to estimate the number of harmon-
ics of a fundamental frequency model using the penalty function approach. We
prove the strong consistency of the proposed method under the assumption of
stationary errors. We propose a re-sampling technique to estimate the probabil-
ity of wrong detection and that was used to compute the number of components
of the fundamental frequency model. The performances of the proposed method
are much better than the classical methods like AIC or BIC.

One final point should be mentioned that in many practical situations it is
possible that more than one fundamental frequencies and their harmonics are
present in the data. If this kind of prior knowledge is available and the clusters
are well separated, then the parameters of one cluster may be estimated by using
the data set where all the other clusters have been suppressed by a suitable band-
pass filter. In each step of estimation, the whole data set after being filtered may
be used to estimate only the parameters within one cluster. Further work is
needed in that direction.
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