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A SKEWED TRUNCATED PEARSON TYPE VII
DISTRIBUTION

Saralees Nadarajah* and Arjun K. Gupta**

Skewed symmetric distributions have attracted a great deal of attention in the
last few years. One of them, the skewed Pearson type VII distribution suffers from
limited applicability because it is well known that the Pearson type VII distribution
does not have finite moments of all orders. This note proposes an alternative referred
to as skewed truncated Pearson type VII distribution and defined by the pdf f(x) =
2g(x)G(λx), where g(·) and G(·) are taken, respectively, to be the pdf and the cdf of a
truncated Pearson type VII distribution. This distribution possesses finite moments
of all orders and could therefore be a better model for certain practical situations.
Two such situations are discussed. The note also derives various properties of the
distribution, including its moments.

Key words and phrases: Gauss hypergeometric function, skewed truncated Pearson
type VII distribution, truncated Pearson type VII distribution.

1. Introduction

Skewed symmetric distributions have attracted a great deal of attention in
the last few years. Most notable is the work by Professor A. K. Gupta and his
colleagues (see, for example, Gupta and Chen (2001), where goodness-of-fit tests
for the skew normal distribution are proposed; Gupta and Huang (2002), where
a characterization of the skew normal as well as relevant results on quadratic
and linear forms are given; Gupta et al. (2002), where properties of the skew
normal, skew uniform, skew t, skew Cauchy, skew Laplace, and the skew logistic
distributions are explored; and, Gupta (2003), Gupta and Chang (2003), where
some multivariate skew symmetric distributions are studied). One of the well
known skew symmetric distributions is the skewed Pearson type VII distribution
given by the probability density function (pdf):

f(x) = 2h(x)H(γx)(1.1)

for −∞ < x < ∞, where −∞ < γ < ∞, m > 0, N > 1, h(·) is the pdf of the
Pearson type VII distribution given by:

h(x) =
Γ(N − 1/2)√
mπΓ(N − 1)

(
1 +

x2

m

)1/2−N

,(1.2)
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and H(·) is the corresponding cumulative distribution function (cdf). This dis-
tribution, however, suffers from limited applicability because it is well known
that the Pearson type VII distribution does not have finite moments of all orders
(see, for example, Johnson et al. (1995)). In this note, we propose an alternative
to (1.1) which overcomes this weakness. We refer to it as the skewed truncated
Pearson type VII distribution. It is defined as follows: consider a truncated ver-
sion of the standard Pearson type VII distribution with the pdf and cdf specified
by

g(x) =
h(x)

D
(1.3)

and

G(x) =
1

D
{H(x) + H(A) − 1},(1.4)

respectively, for −A ≤ x ≤ A and A > 0, where D = 2H(A) − 1. The cdf H of
the Pearson type VII distribution can be expressed by:

H(x) =




1

2
Im/(m+x2)

(
N − 1,

1

2

)
, if x ≤ 0,

1 − 1

2
Im/(m+x2)

(
N − 1,

1

2

)
, if x > 0,

where Ix(a, b) denotes the incomplete beta function ratio defined by

Ix(a, b) =
1

B(a, b)

∫ x

0
wa−1(1 − w)b−1dw.(1.5)

Thus, one can express the difference D = 2H(A) − 1 as

D =



Im/(m+A2)

(
N − 1,

1

2

)
− 1, if A ≤ 0,

1 − Im/(m+A2)

(
N − 1,

1

2

)
, if A > 0.

Because (1.3) is defined over a finite interval, the truncated Pearson type VII
distribution has all its moments. Following the usual definition of skew symmetric
distributions (see, for example, Gupta et al. (2002)), we define a random variable
X to have the skewed truncated Pearson type VII distribution if its pdf is given
by

f(x) = 2g(x)G(γx),(1.6)

where −A ≤ x ≤ A. We assume without loss of generality that γ ≥ 0 in (1.6)
since the corresponding properties for γ < 0 can be obtained using the fact
G(γx) = 1 −G(−γx). It follows from (1.3), (1.4) and (1.6) that the pdf of X is

f(x) =
2

D2
{H(γx) + H(A) − 1}h(x)(1.7)
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Figure 1. The skewed truncated Pearson type VII pdf (1.7) for γ = 0, 1, 2, 5, 10, A = 1, m = 1

and N = 3.

for −A ≤ x ≤ A. When γ = 0, (1.7) reduces to the truncated Pearson type VII
pdf (1.3). When ν = 1, (1.7) reduces to a skewed truncated Cauchy pdf (1.3).
When N = 1+ν/2 and m = ν, (1.7) reduces to a skewed truncated t distribution
with degrees of freedom ν. Figure 1 below illustrates the shape of the pdf (1.7)
for a range of values of γ.

The pdf (1.7) has all its moments and could therefore be a better model for
practical situations than one based on just the skewed Pearson type VII distribu-
tion. Two such situations are discussed in Section 3. Section 2 provides various
representations for the moments of (1.7). The calculations use the following
important lemma:

Lemma 1. (equation (3.194.1), Gradshteyn and Ryzhik, 2000) For µ > 0,

∫ u

0

xµ−1

(1 + βx)ν
dx =

uµ

µ
2F1(ν, µ; 1 + µ;−βu),

where

2F1(a, b; c;x) =
∞∑
k=0

(a)k(b)k
(c)k

xk

k!

denotes the Gauss hypergeometric function and (z)k = z(z + 1) · · · (z + k − 1)
denotes the ascending factorial.
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The properties of the Gauss hypergeometric function can be found in
Prudnikov et al. (1986) and Gradshteyn and Ryzhik (2000).

2. Moments

Theorem 1 provides an expression for E(Xn) for n even. The expression
involves the Gauss hypergeometric function.

Theorem 1. If X has the pdf (1.3) with then

E(Xn) =
2Γ(N − 1/2)

(n + 1)
√
mπΓ(N − 1)D

An+1

× 2F1

(
N − 1

2
,
n + 1

2
;
n + 3

2
;−A2

m

)
(2.1)

for even integers n ≥ 2.

Proof. By Lemma 2 in Gupta et al. (2002), the nth even order moment
of X is the same as the nth moment of (1.3). The latter can be rewritten as:

E(Xn) =
Γ(N − 1/2)√
mπΓ(N − 1)D

∫ A

−A
xn
(

1 +
x2

m

)1/2−N

dx

=
2Γ(N − 1/2)√
mπΓ(N − 1)D

∫ A

0
xn
(

1 +
x2

m

)1/2−N

dx

=
Γ(N − 1/2)√
mπΓ(N − 1)D

∫ A2

0
y(n−1)/2

(
1 +

y

m

)1/2−N

dy.(2.2)

By application of Lemma 1, the integral in (2.2) can be calculated as

∫ A2

0
y(n−1)/2

(
1 +

y

m

)1/2−N

dy

=
2An+1

n + 1
2F1

(
N − 1

2
,
n + 1

2
;
n + 3

2
;−A2

m

)
.(2.3)

The result in (2.1) follows by combining (2.2) and (2.3).
Corollaries 1 to 6 provide simpler and explicit expressions for the first five

even order moments.

Corollary 1. If X has the pdf (1.7) with N = 2 then its first five even
order moments are:

E(X2) = m{
√
m + A2arcsinh(A/

√
m) −A}/(

√
m + A2D),

E(X4) = m{A3 + 3mA− 3m
√
m + A2arcsinh(A/

√
m)}/(2

√
m + A2D),

E(X6) = m{15m2
√
m + A2arcsinh(A/

√
m)

+2A5 − 5mA3 − 15m2A}/(8
√
m + A2D),

E(X8) = m{8A7 − 14mA5 + 35m2A3 + 105m3A
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−105m3
√
m + A2arcsinh(A/

√
m)}/(48

√
m + A2D),

E(X10) = m{315m4
√
m + A2arcsinh(A/

√
m) + 16A9

−24mA7 + 42m2A5 − 105m3A3 − 315m4A}/(128
√
m + A2D).

Proof. Set N = 2 and n = 2, 4, . . . , 10 into (2.1) and use properties of the
Gauss hypergeometric function.

Corollary 2. If X has the pdf (1.7) with N = 3 then its first five even
order moments are:

E(X2) = mA3/{2(m + A2)3/2D},
E(X4) = m2{3m

√
m + A2arcsinh(A/

√
m)

+3
√
m + A2A2arcsinh(A/

√
m) − 4A3 − 3mA}/{2(m + A2)3/2D},

E(X6) = m2{3A5 + 20mA3 + 15m2A

−15m2
√
m + A2arcsinh(A/

√
m)

−15m
√
m + A2A2arcsinh(A/

√
m)}/{4(m + A2)3/2D},

E(X8) = m2{105m3
√
m + A2arcsinh(A/

√
m)

+105m2
√
m + A2A2arcsinh(A/

√
m) + 6A7 − 21mA5

−140m2A3 − 105m3A}/{16(m + A2)3/2D},
E(X10) = m2{8A9 − 18mA7 + 63m2A5 + 420m3A3 + 315m4A

−315m4
√
m + A2arcsinh(A/

√
m)

−315m3
√
m + A2A2arcsinh(A/

√
m)}/{32(m + A2)3/2D}.

Proof. Set N = 3 and n = 2, 4, . . . , 10 into (2.1) and use properties of the
Gauss hypergeometric function.

Corollary 3. If X has the pdf (1.7) with N = 4 then its first five even
order moments are:

E(X2) = mA3{5m + 2A2}/{8(m + A2)5/2D},
E(X4) = 3m2A5/{8(m + A2)5/2D},
E(X6) = m3{15m2

√
m + A2arcsinh(A/

√
m)

+30mA2
√
m + A2arcsinh(A/

√
m)

+15A4
√
m + A2arcsinh(A/

√
m)

−23A5 − 35mA3 − 15m2A}/{8(m + A2)5/2D},
E(X8) = m3{15A7 + 161mA5 + 245m2A3 + 105m3A

−105m3
√
m + A2arcsinh(A/

√
m)

−210m2A2
√
m + A2arcsinh(A/

√
m)

−105mA4
√
m + A2arcsinh(A/

√
m)}/{16(m + A2)5/2D},
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E(X10) = 3m3{315m4
√
m + A2arcsinh(A/

√
m)

+630m3A2
√
m + A2arcsinh(A/

√
m)

+315m2A4
√
m + A2arcsinh(A/

√
m) + 10A9 − 45mA7

−483m2A5 − 735m3A3 − 315m4A}/{64(m + A2)5/2D}.

Proof. Set N = 4 and n = 2, 4, . . . , 10 into (2.1) and use properties of the
Gauss hypergeometric function.

Corollary 4. If X has the pdf (1.7) with N = 5 then its first five even
order moments are:

E(X2) = mA3{35m2 + 28mA2 + 8A4}/{48(m + A2)7/2D},
E(X4) = m2A5{7m + 2A2}/{16(m + A2)7/2D},
E(X6) = 5m3A7/{16(m + A2)7/2D},
E(X8) = m4{105m3

√
m + A2arcsinh(A/

√
m)

+315m2A2
√
m + A2arcsinh(A/

√
m)

+315mA4
√
m + A2arcsinh(A/

√
m)

+105A6
√
m + A2arcsinh(A/

√
m)

−176A7 − 406mA5 − 350m2A3 − 105m3A}/{48(m + A2)7/2D},
E(X10) = m4{35A9 + 528mA7 + 1218m2A5 + 1050m3A3 + 315m4A

−315m4
√
m + A2arcsinh(A/

√
m)

−945m3A2
√
m + A2arcsinh(A/

√
m)

−945m2A4
√
m + A2arcsinh(A/

√
m)

−315mA6
√
m + A2arcsinh(A/

√
m)}/{32(m + A2)7/2D}.

Proof. Set N = 5 and n = 2, 4, . . . , 10 into (2.1) and use properties of the
Gauss hypergeometric function.

Corollary 5. If X has the pdf (1.7) with N = 6 then its first five even
order moments are:

E(X2) = mA3{105m3 + 126m2A2 + 72mA4 + 16A6}/{128(m + A2)9/2D},
E(X4) = m2A5{63m2 + 36mA2 + 8A4}/{128(m + A2)9/2D},
E(X6) = 5m3A7{9m + 2A2}/{128(m + A2)9/2D},
E(X8) = 35m4A9/{128(m + A2)9/2D},
E(X10) = m5{315m4

√
m + A2arcsinh(A/

√
m)

+1260m3A2
√
m + A2arcsinh(A/

√
m)

+1890m2A4
√
m + A2arcsinh(A/

√
m)

+1260mA6
√
m + A2arcsinh(A/

√
m)

+315A8
√
m + A2arcsinh(A/

√
m) − 563A9 − 1746mA7

−2268m2A5 − 1365m3A3 − 315m4A}/{128(m + A2)9/2D}.
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Figure 2. Fits of the skewed t distribution (solid line) and the truncated skewed t distribution

(broken line) for the United Kingdom exchange rate data (with A = 1.5).

Proof. Set N = 6 and n = 2, 4, . . . , 10 into (2.1) and use properties of the
Gauss hypergeometric function.

Corollary 6. If X has the pdf (1.7) with N = 7 then its first five even
order moments are:

E(X2) = mA3{1155m4 + 1848m3A2 + 1584m2A4

+704mA6 + 128A8}/{1280(m + A2)11/2D},
E(X4) = 3m2A5{231m3 + 198m2A2

+88mA4 + 16A6}/{1280(m + A2)11/2D},
E(X6) = m3A7{99m2 + 44mA2 + 8A4}/{256(m + A2)11/2D},
E(X8) = 7m4A9{11m + 2A2}/{256(m + A2)11/2D},
E(X10) = 63m5A11/{256(m + A2)11/2D}.

Proof. Set N = 7 and n = 2, 4, . . . , 10 into (2.1) and use properties of the
Gauss hypergeometric function.
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Table 1. Exchange rate data for the United Kingdom Pound.

Year ER Year ER Year ER Year ER

1800 4.4623 1826 4.9652 1852 4.89 1878 4.875

1801 4.363 1827 4.9432 1853 4.8497 1879 4.845

1802 4.4743 1828 4.8662 1854 4.8123 1880 4.845

1803 4.662 1829 4.8614 1855 4.817 1881 4.85

1804 4.529 1830 4.7281 1856 4.845 1882 4.85

1805 4.3956 1831 4.8757 1857 4.8473 1883 4.855

1806 4.3956 1832 4.8286 1858 4.8709 1884 4.85

1807 4.4623 1833 4.662 1859 4.8638 1885 4.895

1808 4.8828 1834 4.7125 1860 4.6168 1886 4.85

1809 4.4405 1835 4.8403 1861 4.8444 1887 4.87

1810 4.1068 1836 4.7893 1862 6.5025 1888 4.895

1811 3.73 1837 5.0736 1863 7.3914 1889 4.84

1812 3.7736 1838 4.89 1864 11.0905 1890 4.845

1813 3.8956 1839 4.8497 1865 7.0621 1891 4.855

1814 4.4843 1840 4.8239 1866 6.5208 1892 4.885

1815 4.7506 1841 4.845 1867 6.5086 1893 4.885

1816 4.5725 1842 4.7237 1868 6.5701 1894 4.895

1817 4.529 1843 4.8239 1869 5.8583 1895 4.91

1818 4.3403 1844 4.8828 1870 5.3958 1896 4.88

1819 4.529 1845 4.7962 1871 5.3105 1897 4.86

1820 4.6232 1846 4.717 1872 5.4563 1898 4.855

1821 4.9285 1847 4.89 1873 5.3773 1899 4.885

1822 4.985 1848 4.8054 1874 5.4686 1900 4.86

1823 4.7893 1849 4.8239 1875 5.5051 1901 4.875

1824 4.8614 1850 4.8614 1876 5.2132 1902 4.875

1825 4.845 1851 4.9068 1877 5.0062 1903 4.855

3. Applications

In this section, we illustrate two possible applications of the skewed truncated
Pearson type VII distribution given by the pdf (1.7).

The Student’s t distribution (particular case of (1.2) for N = 1+ν/2 and m =
ν) has been applied in the past as models for depth map data, prices of speculative
assets such as stock returns, and the phase derivative (random frequency of a
narrow band mobile channel) of air components in an urban environment. For
data of this kind, there is no reason to believe that empirical moments of any
order should be infinite. Thus, the choice of the t distribution or the skewed
t distribution as a model is unrealistic since its moments are not finite for all
order n ≥ ν. The alternative given by (1.7) will be a more appropriate model
for the kind of data mentioned. For example, consider the exchange rate data of
the United Kingdom Pound to the United States Dollar from 1800 to 2003. The
data—obtained from the web-site http://www.globalfindata.com/—are displayed
in the table above.

Following common practice for exchange rate data, we transformed the val-
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Table 1. (continued).

Year ER Year ER Year ER Year ER

1904 4.88 1929 4.8744 1954 2.7856 1979 2.2145

1905 4.856 1930 4.8516 1955 2.8025 1980 2.395

1906 4.84 1931 3.3775 1956 2.7856 1981 1.917

1907 4.8425 1932 3.3275 1957 2.8093 1982 1.618

1908 4.871 1933 5.12 1958 2.8021 1983 1.4515

1909 4.8675 1934 4.9363 1959 2.7995 1984 1.158

1910 4.865 1935 4.93 1960 2.8038 1985 1.439

1911 4.87 1936 4.9088 1961 2.8081 1986 1.4819

1912 4.853 1937 4.9969 1962 2.8025 1987 1.8867

1913 4.855 1938 4.6363 1963 2.7969 1988 1.8089

1914 4.8525 1939 3.9537 1964 2.79 1989 1.611

1915 4.7362 1940 4.035 1965 2.8025 1990 1.932

1916 4.7556 1941 4.0325 1966 2.79 1991 1.865

1917 4.7512 1942 4.0325 1967 2.4067 1992 1.51

1918 4.7581 1943 4.02 1968 2.3849 1993 1.4765

1919 3.75 1944 4.02 1969 2.3989 1994 1.566

1920 3.525 1945 4.025 1970 2.3938 1995 1.55

1921 4.2063 1946 4.025 1971 2.552 1996 1.712

1922 4.6325 1947 4.0331 1972 2.348 1997 1.647

1923 4.3187 1948 4.0319 1973 2.3225 1998 1.6539

1924 4.7225 1949 2.8006 1974 2.347 1999 1.6176

1925 4.8481 1950 2.8013 1975 2.0242 2000 1.4957

1926 4.8481 1951 2.7814 1976 1.7025 2001 1.4541

1927 4.8762 1952 2.8096 1977 1.92 2002 1.611

1928 4.8488 1953 2.8106 1978 2.0435 2003 1.785

ues in the table by first taking logarithms and then computed the relative changes
from one year to the next. We then fitted both the skewed t distribution and
the skewed truncated t distribution to the transformed data by the method of
maximum likelihood. The truncated limit A was chosen as A = 1.5. A quasi-
Newton algorithm nlm in the R software package (Dennis and Schnabel (1983);
Schnabel et al. (1985); Ihaka and Gentleman (1996)) was used to solve the like-
lihood equations. The following estimates were obtained:

ν̂ = 124195.3, λ̂ = 0.243 with − logL = 329.4

and
ν̂ = 124195.3, λ̂ = 0.0 with − logL = 300.3

for the two models (− logL denotes the negative logarithm of the maximized
likelihood). Thus, it follows by the standard likelihood ratio test that the skewed
truncated t distribution is a much better model for the exchange rate data.
The fitted densities for the two models are shown in Figure 2. Similar observa-
tions were noted when this exercise was repeated for exchange rate data for the
Japanese Yen, Euro, Canadian Dollar, Australian Dollar and the Swiss Franc.
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Figure 3. Exact and approximated pdfs (solid and broken lines) of (3.1) for (a): n = 10;

(b): n = 20; (c): n = 50; and (d): n = 100 when x̄ is the sample mean of a random sample of

size n from a Beta (−4, 4) distribution.

The second application concerns construction of confidence intervals. Sta-
tistical inference about construction of tests and confidence intervals for finite
range data has not been well established in the literature. It can be based on
the beta distribution; but, the tables and programs for this distribution are not
widely available. An alternative and a more pragmatic approach would be to use
(1.3). Suppose x1, . . . , xn is a random sample taking values in the range [−A,A]
with the population mean of µ. Instead of assuming

x̄− µ

s/
√
n

(3.1)

has the Student’s t distribution (where x̄ is the sample mean and s is the sample
standard deviation), assume it follows the truncated version given by (1.3) for
N = 1 + ν/2 and m = ν. Then, it follows by usual arguments (see, for example,
Rohatgi (1984)) that a 100(1 − α)% confidence interval for µ can be written as(

x̄− tn−1,H(−A)+Dα/2
s√
n
, x̄ + tn−1,H(−A)+D(1−α/2)

s√
n

)
,(3.2)

where tν,a denotes the usual 100(1−a)% percentile of the Student’s t distribution.
Note that this approach requires no additional tables.
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The new confidence interval given by (3.2) will be quite robust for large A
and large n. This is intuitive because for large A the confidence interval given
by (3.2) approximates to the one based on the usual Student’s t statistic:

(
x̄− tn−1,α/2

s√
n
, x̄ + tn−1,1−α/2

s√
n

)
,

which is known to be robust for all large n (see again Rohatgi (1984)). To
investigate this, in practice, we performed a simulation study. We considered
the distribution of (3.1) when x1, . . . , xn is a random sample from a Beta (−4, 4)
distribution. We derived the exact distribution of (3.1) by computing its value
over 10,000 random samples of size n. We also approximated the distribution of
(3.1) by a truncated t distribution with A = 4. The exact and the approximated
pdfs are compared in Figure 3 for n = 10, 20, 50, 100. The fit is not very good
when n = 10 but it is clear that the approximation is excellent for all the other
values of n.

Acknowledgements
The authors would like to thank the referees and the editor for carefully

reading the paper and for their great help in improving the paper.

References

Dennis, J. E. and Schnabel, R. B. (1983). Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Gradshteyn, I. S. and Ryzhik, I. M. (2000). Table of Integrals, Series, and Products, sixth
edition, Academic Press, San Diego.

Gupta, A. K. (2003). Multivariate skew t-distribution, Statistics, 37, 359–363.
Gupta, A. K. and Chang, F.-C. (2003). Multivariate skew-symmetric distributions, Applied

Mathematics Letters, 16, 643–646.
Gupta, A. K. and Chen, T. (2001). Goodness-of-fit tests for the skew-normal distribution,

Communications in Statistics—Simulation and Computation, 30, 907–930.
Gupta, A. K. and Huang, W.-J. (2002). Quadratic forms in skew normal variates, Journal of

Mathematical Analysis and Applications, 273, 558–564.
Gupta, A. K., Chang, F. C. and Huang, W. J. (2002). Some skew-symmetric models, Random

Operators and Stochastic Equations, 10, 133–140.
Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics, Journal of

Computational and Graphical Statistics, 5, 299–314.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions,

volume 2, second edition, John Wiley & Sons, New York.
Prudnikov, A. P., Brychkov, Y. A. and Marichev, O. I. (1986). Integrals and Series, volumes 1,

2 and 3, Gordon and Breach Science Publishers, Amsterdam.
Rohatgi, V. K. (1984). Statistical Inference, John Wiley & Sons, New York.
Schnabel, R. B., Koontz, J. E. and Weiss, B. E. (1985). A modular system of algorithms for

unconstrained minimization, ACM Transactions on Mathematical Software, 11, 419–440.


