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ESTIMATING THE SMOOTHING PARAMETER IN THE
SO-CALLED HODRICK-PRESCOTT FILTER

Ekkehart Schlicht*

This note gives a statistical description of the Hodrick-Prescott Filter (1997),
originally proposed by Leser (1961). A maximum-likelihood estimator is derived
and a related moments estimator is proposed that has a straightforward intuitive
interpretation and coincides with the maximum-likelihood estimator for long time
series. The method is illustrated by an application and several simulations. The
statistical treatment in the state-space tradition implies some scepticism regarding
the interpretation in terms of low-frequency filtering.
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1. Introduction

What is known as the Hodrick-Prescott Filter (1997) is widely used in appli-
cations and has been embodied in various statistical packages. King and Rebelo
(1993) write that the filter “is commonly used in investigations of the stochastic
properties of real business cycle models,” and many papers have been published
that either use or improve the filter. The economics data bank EconLit lists
seventy-two papers with “Hodrick-Prescott Filter” in title or abstract, and the
statistics program packages eViews and Stata provide the filter as a standard
feature.

The filter has been proposed originally by Leser (1961), building on the grad-
uation method developed by Whittaker (1923) and Henderson (1924). It requires
a smoothing constant as an input. This constant is usually fixed in an ad hoc
way. The program eViews recommends 100 for annual data, 1600 for quarterly
data, and 14.400 for monthly data, for instance, presumably summing up vari-
ous findings in simulation studies and applied research. A theoretical approach
to the determination of the filter has been suggested by Hodrick and Prescott
(1997) who referred to Kalman-filtering and related the smoothing constant to
a ratio of variances. (Their guess of a variance ratio of 1600 for quarterly data
established a custom.) Earlier, Akaike (1980) and Schlicht (1984) proposed and
employed a two-sided filter as a superior alternative to the Kalman filter in the
Leser framework, also based on the variance ratio as a smoothing constant. Al-
though it is possible, in principle, to estimate the variance ratios both in the
Kalman and the Akaike/Schlicht framework by using maximum-likelihood esti-
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mates, practical implementation is often not satisfactory, and the rule-of thumb
approach prevails.

The aim of this paper is to offer a rather systematic exposition and a straight-
forward method for estimating the smoothing constant, based on the approach
by Schlicht (1984). A maximum likelihood estimator and a related and more
intuitive moments estimator will be derived and compared. A simulation study
illustrates the performance of these estimators.

The paper is organized as follows. In Section 2 the filter is described; in Sec-
tion 3, a statistical interpretation of the filter is given that involves some formal
parameters. Section 4 gives the estimator for those parameters. In Section 5 it
is proved that the descriptive procedure described in Section 2 gives an unbiased
maximum-likelihood estimate for the trend, given a smoothing parameter.

Given any smoothing parameter, the covariance matrix of the trend estimate
is given in Section 6. Section 7 turns to estimation of the variances by a maximum
likelihood method. The variances determine the smoothing parameter. It is
shown that the numerical problem can be simplified considerably in several ways.

Section 8 describes a moments estimator for the variances. This estimator is
characterized by the property that the computed variances of the error terms are
equal to their expectations. In Section 9 it is shown that the likelihood estimates
and the moments estimates differ only slightly and approach each other with an
increasing length of the time series. This gives intuitive appeal to the maximum
likelihood estimator and statistical appeal to the moments estimator.

Section 10 comments on some practical aspects and presents some simula-
tions, and Section 11 offers some concluding comments.

2. The filter

Consider a time series x ∈ R
T that is to be decomposed into a trend y ∈ R

T

and an irregular component u ∈ R
T :

x = y + u.(2.1)

Define the trend disturbance v ∈ R
T−2 as

vt = ((yt − yt−1) − (yt−1 − yt−2)) t = 3, 4, . . . , T

or

v = Py(2.2)

with

P :=




1 −2 1 0

1 −2 1

. . .

0 1 −2 1




of order (T − 2) × T .
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The decomposition of the original series x into trend y and irregular compo-
nent u is obtained by minimizing the weighted sum of squares

u′u+ α · v′v = (x− y)′(x− y) + α · y′P ′Py

with respect to y. This gives the first-order condition

(IT + α · P ′P )y = x.(2.3)

As (I + αP ′P ) is positive definite, the second order condition is satisfied in any
case and (2.3) can be uniquely solved as

y = (IT + αP ′P )−1x.(2.4)

Equation (2.4) defines the descriptive filter that associates a trend y to the
time series x, depending on the smoothing parameter α.

3. Stochastic interpretation

Equations (2.1) and (2.2) can be embedded in a stochastic model by assuming
that the disturbances u and v are normal random variables with variances σ2

u and
σ2
v and zero expectations:

u ∼ N (0, σ2
uIT ), v ∼ N (0, σ2

vIT−2).(3.1)

This turns x and y into random variables with probability distributions that will
be derived in the following. More specifically, the model is defined by (2.1), (2.2)
and (3.1). Equation (2.2) describes ∆yt = yt − yt−1 as a random walk, and
equation (2.1) describes the time series x as the sum of a trend y generated by
this random walk and the normal disturbance u. We shall refer to this model as
the true model .

For purposes of estimation we need a model that explains the observation x
as a function of the random variables u and v. This would permit calculating
the probability distribution of the observations x contingent on the parameters
of the distributions of u and v, viz. σ2

u and σ2
v . The true model does not permit

such an inference, though, because the matrix P in (2.2) is of rank T − 2 rather
than of rank T . Hence v does not determine a unique y but rather the set of
solutions

Y := {P ′(PP ′)−1v + Zβ | β ∈ R
2}(3.2)

with Z as a (T × 2)-matrix of two orthogonalized solutions z ∈ R
T to Pz = 0.

The matrix Z satisfies

PZ = 0, Z ′Z = I2(3.3)

by definition. For any v we have y ∈ Y ⇔ Py = v. Equation (2.2) and the
set (3.2) give equivalent descriptions of the relationship between y and v in this
sense.
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In view of (3.2), any solution y to Py = v can be written as

y = P ′(PP ′)−1v + Zβ(3.4)

for some β ∈ R
2. As x = y + u, equation (2.1) can be re-written as

x = u+ P ′(PP ′)−1v + Zβ.(3.5)

The model (3.4), (3.5), and (3.1) will be referred to as the equivalent orthogonally
parametrized model . It implies the true model (2.1), (2.2), and (3.1). Equation
(3.4) implies, further, that ∆yt − ∆yt−1 = vt. Hence ∆yt is a random walk even
though yt depends, according to (3.4) on past and future realizations of v.

Equation (3.5) permits calculation of the density of x dependent upon the
parameters of the distributions of u and v and the formal parameters β. In a
second step, all these parameters—σ2

u, σ
2
v , and β—can be determined by the

maximum likelihood principle. This will give our maximum likelihood estimates.
Our moments estimates—to be introduced later—will build on the equivalent
orthogonally parametrized model as well.

The orthogonal parametrization introduced above entails some advantages
with respect to symmetry and mathematical transparency, as compared to more
usual parameterizations, such as parametrization by initial values. By assuming
some initial values (y1, y2)

′ = c, the system (2.2) can be solved recursively, giving
y as a function of v and c, and the analysis would then proceed in a similar
way as indicated above. Theoretically speaking, and with regard to maximum
likelihood estimation, all parameterizations are equivalent, but practically initial
values are more cumbersome to implement than the formal parameters β. It is for
this reason that, in the context of Kalman filtering, initial values are estimated
as posterior means, i.e. but by running the filter back and forth in order to
determine the necessary initial values iteratively (Akaike (1989), 61-2). The
orthogonal parametrization used here will permit us to write down an explicit
likelihood function and estimate all relevant parameters in a unified one-shot
procedure.

Although the orthogonal parametrization may appear not very intuitive at
first sight, it has a straightforward interpretation: The formal parameter vector
β ∈ R

2 expresses linear shifts of y that leave the disturbance vector v unaffected.
Note that any linear trend q = (q1, q2, . . . , qT )′ with qt = a+ bt for some (a, b)′ ∈
R

2 gives Pq = 0. Adding Zβ means adding such a linear trend to the particular
solution P ′(PP ′)−1v. This would leave Py unaffected. A possible Z is, for
instance, given by

zt,1 =
1√
T
, t = 1, 2, . . . , T,

zt,2 =
1

c

(
t− T + 1

2

)

and the constant c chosen such that the orthogonality condition
∑

t z
2
t,2 = 1 is

satisfied. Adjusting β1 would amount to changing the intercept a of the linear
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trend qt = a+bt, and changing β2 would amount to changing the slope b. Adding
Zβ to both x and y would leave the true model (2.1), (2.2) and (3.1) unaffected,
and it will turn out that the estimation of the formal parameters β will amount
to adjusting the linear part of the estimated trend y to the linear trend found in
the observed time series x.

With regard to the relationship between the matrices P and Z, consider(
P

Z ′

)
(P ′ Z ) =

(
PP ′ 0

0 I2

)

which is of full rank. Inverting both sides, pre-multiplying by (P ′, Z) and multi-
plying from the right-hand side by

(
P
Z′
)

implies

(P ′ Z )

(
(PP ′)−1 0

0 I2

)(
P

Z ′

)
= IT

and hence

P ′(PP ′)−1P + ZZ ′ = IT .(3.6)

The joint distribution of x and y is determined by combining (3.4) and (3.5):(
x

y

)
=

(
IT P

′(PP ′)−1

0 P ′(PP ′)−1

)(
u

v

)
+

(
Z

Z

)
β.(3.7)

As the disturbances u and v are independent and normal with variances σ2
uIT

and σ2
vIT−2, respectively, the vector (u′, v′) is normal as well:(

u

v

)
∼ N (0, Suv).

The co-variance matrix is

Suv :=

(
σ2
u · IT 0

0 σ2
v · IT−2

)
.(3.8)

From (3.7) to (3.8) we obtain(
x

y

)
∼ N

((
Z

Z

)
β, Sxy

)
(3.9)

with1

Sxy :=

(
σ2
uIT + σ2

vQ σ
2
vQ

σ2
vQ σ2

vQ

)

and
1 Note that the covariance matrix Sxy is not of full rank. Hence (x′, y′) is distributed on a subspace

of R2T that is determined by the formal parameters β.
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Q := P ′(PP ′)−1(PP ′)−1P.(3.10)

Note that (3.3) entails
Z ′Q = 0.

From (3.9) we obtain the marginal density of x as

x ∼ N (Zβ, Sx)(3.11)

with

Sx := (σ2
uIT + σ2

vQ)

= σ2
u

(
IT +

σ2
v

σ2
u

Q

)
.(3.12)

Note further that

Z ′S−1
x =

1

σ2
v

Z ′
(
IT − σ

2
v

σ2
u

Q+

(
σ2
v

σ2
u

Q

)2

−
(
σ2
v

σ2
u

Q

)3

+

(
σ2
v

σ2
u

Q

)4

− · · ·
)

=
1

σ2
v

Z ′.(3.13)

The marginal density of y for given x is

(y | x) ∼ N (ȳ, Sy|x)

where

ȳ := Zβ + σ2
vQ(σ2

uIT + σ2
vQ)−1(x− Zβ)(3.14)

Sy|x := σ2
vQ− σ2

vQ(σ2
uIT + σ2

vQ)−1σ2
vQ.(3.15)

4. Estimating the formal parameters β

The parameters that need to be estimated are the formal parameter vector
β and the variances σ2

u and σ2
v .

The estimation of the formal parameters β is straightforward. Equation
(3.11) gives rise to the likelihood function

L(x, β, σ2
u, σ

2
v) : = − log det(σ2

uIT + σ2
vQ)

−(x− Zβ)′(σ2
uIT + σ2

vQ)−1(x− Zβ).

Maximizing L with respect to β leads to sufficient condition

Z ′(σ2
uIT + σ2

vQ)−1x = Z ′(σ2
uIT + σ2

vQ)−1Zβ̂.

In view of (3.3) and (3.6) this reduces to

β̂ = Z ′x.(4.1)
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5. Estimating the trend y

If we substitute the formal parameters β with the estimator β̂ in (4.1), we
obtain the conditional distribution of the trend y (which is a random variable).
It seems sensible to take the expectation of this random variable as our estimator
for the trend. This yields

ŷ := Zβ̂ +Q

(
σ2
u

σ2
v

IT +Q

)−1

(x− Zβ̂).(5.1)

Theorem 1. With the smoothing constant α equal to the variance ratio
σ2
u/σ

2
v the descriptive decomposition (2.4) is numerically identical to the estima-

tor (5.1).

Proof. Setting α = σ2
u/σ

2
v in (5.1) and and ordering terms gives

ŷ = Zβ̂ +Q(αIT +Q)−1(x− Zβ̂).(5.2)

Note that
Q(αIT +Q)−1 = IT − α(αIT +Q)−1

which is verified by right-hand multiplication with (αIT +Q). Inserting this into
(5.2) and re-arranging terms gives

(αIT +Q)−1(x− Zβ̂) =
1

α
(x− ŷ).

This can be inserted into (5.2) again, and we obtain

ŷ = Zβ̂ +Q
1

α
(x− ŷ).(5.3)

Pre-multiplication with αP ′P yields

αP ′P ŷ = αP ′PZβ̂ + P ′PQ(x− ŷ).(5.4)

As PZ = 0, the first term on the right-hand side cancels. From the definition
(3.10) of Q and (3.6) it follows that

P ′PQ = IT − ZZ ′.

Substituting this into (5.4) gives

αP ′P ŷ = (x− ŷ) − ZZ ′(x− ŷ).(5.5)

Because of (4.1) we have Z ′x = β̂. Pre-multiplying (5.3) by Z ′ while noting that
Z ′Z = I and Z ′Q = 0 results in Z ′ŷ = β̂ as well. Hence the last term in (5.5)
cancels and we obtain

(IT + αP ′P )ŷ = x(5.6)

which is numerically identical to the normal equation (2.3) that defines the de-
scriptive filter.

Note that pre-multiplying (5.6) by Z ′ gives Z ′ŷ = Z ′x. This is, according
to (4.1), the estimate for the formal parameters β which give the linear part of
the trend. The estimated trend shares, therefore, its linear component with the
original time series.
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6. The covariance matrix of the estimates

Consider a given time series x and a realization of the associated trend y.
Because x can be viewed as brought about as the sum of the trend y and the
disturbance u, we can write:

ŷ = (IT + αP ′P )−1(y + u).(6.1)

Since
y = (IT + αP ′P )y − αP ′Py

and v = Py, equation (6.1) can be written as

ŷ − y = (IT + αP ′P )−1(u− αP ′v).(6.2)

Equation (6.2) gives the estimation error, and the covariance matrix of this
error is calculated as

E{(ŷ − y)(ŷ − y)′} = σ2
u(IT + αP ′P )−1.(6.3)

For given variances (and therefore a given smoothing constant α = σ2
u/σ

2
v),

equation (6.3) gives the variances of the trend estimates. The square roots of
the main diagonal elements of (6.3) give the standard errors of the corresponding
point estimates ŷt of the trend. It is thus possible to guess, for any smoothing
parameter α, the precision of the trend estimate.

7. Maximum-likelihood estimation of the variances

In order to estimate the smoothing parameter α, we turn now to estimating
the variances σ2

u and σ2
v . A first approach is to simply write down the likelihood

function. The distribution of the observations x is given by density function
(3.11). Taking logarithms and disregarding constants gives the likelihood

L(x, β, σ2
u, σ

2
v) := − log det(σ2

uIT + σ2
vQ)

−(x− Zβ)′(σ2
uIT + σ2

vQ)−1(x− Zβ).

By replacing the parameter β with its estimate β̂ = Z ′x from (4.1), we obtain
the concentrated likelihood

L∗(x, σ2
u, σ

2
v) := − log det(σ2

uIT + σ2
vQ)(7.1)

−x′(IT − ZZ ′)(σ2
uIT + σ2

vQ)(IT − ZZ ′)x.

This would suffice, in principle, to estimate the variances σ2
u and σ2

v , but
the problem can be simplified considerably. The following theorem states that
the likelihood (7.1) can be expressed in terms of the estimated trend ŷ and the
weighted sum of the variances of the estimates errors û and v̂ which are defined
as follows:

ŷ := (IT − αP ′P )−1x(7.2)

û := x− ŷ(7.3)

v̂ := P ŷ.(7.4)
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Theorem 2. The likelihood (7.1) can be written as

L∗(x, σ2
u, σ

2
v) = − log det(σ2

uIT + σ2
vQ) − 1

σ2
u

û′û− 1

σ2
v

v̂′v̂.(7.5)

Proof. As the first terms of equations (7.1) and (7.5) are identical, it suf-
fices to show that the quadratic forms in these equations are the same. Consider
first the quadratic in (7.5). From (7.2) we obtain

û′û = x′(IT − (IT + αP ′P )−1)(IT − (IT + αP ′P )−1)x

and
v̂′v̂ = x′(IT + αP ′P )−1P ′P (IT + αP ′P )−1x.(7.6)

Because

(IT + αP ′P )−1 = IT − αP ′P + (αP ′P )2 − (αP ′P )3 + · · ·

the matrices P ′P and (IT + αP ′P )−1 commute and we can re-write equation
(7.6) as

v̂′v̂ = x′P ′P (IT + αP ′P )−1(IT + αP ′P )−1x.

Combining (7.5) and (7.6) gives

û′û+ αv̂′v̂ = x′(IT − (IT + αP ′P )−1)x.

With

A := (IT − (IT + αP ′P )−1)(7.7)

and α = σ2
u/σ

2
v the quadratic in equation (7.5) is

1

σ2
u

û′û+
1

σ2
v

v̂′v̂ =
1

σ2
u

x′Ax.(7.8)

Consider next the quadratic in (7.1). With

B := (IT − ZZ ′)′(αIT +Q)−1(IT − ZZ ′)(7.9)

it is

x′(IT − ZZ ′)′(σ2
uIT + σ2

vQ)−1(IT − ZZ ′)x =
1

σ2
v

x′Bx.(7.10)

Right-hand multiplication of (7.7) by the non-singular matrices (IT +αP ′P )
and (αIT +Q) and use of (3.6) results in

A(IT + αP ′P )(αIT +Q) = α(IT + αP ′P − ZZ ′).(7.11)

Equation (7.9) can be re-written as

B = (αIT +Q)−1 − 1

α
ZZ ′.(7.12)
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This makes use of the fact that the matrices (IT−ZZ ′) and (αIT +Q)−1 commute,
that (IT − ZZ ′) is idempotent and that Z ′Q = 0. Right-hand multiplication of
(7.12) by (αIT +Q) and (IT + αP ′P ) yields

B(IT + αP ′P )(αIT +Q) = IT + αP ′P − ZZ ′.(7.13)

This makes use of the fact that the non-singular matrices (IT + αP ′P ) and
(αIT +Q) commute and that PZ = 0. Equations (7.11) and (7.13) imply

1

σ2
u

A =
1

σ2
v

B.

Therefore the expressions given in equations (7.8) and (7.10) are identical.
For purposes of estimation, it is useful to parametrize the likelihood function

(7.5) by α and σ2
u instead of σ2

u an σ2
v . Because σ2

v = σ2
u/α, we can write:

L∗∗(x, σ2
u, α) := − log det(αIT +Q) − 1

σ2
u

(û′û+ αv̂′v̂)(7.14)

+T · logα− T · log σ2
u.

For any given α, the maximization of L∗∗ with respect to σ2
u leads to the

necessary and sufficient conditions

∂L∗∗

∂σ2
u

= − T
σ2
u

+
1

σ4
u

(û′û+ αv̂′v̂) = 0

∂2L∗∗

∂(σ2
u)

2

∣∣∣∣
∂L∗∗/∂σ2

u=0

= − T
σ4
u

< 0

which imply the estimator

σ̂2
u =

1

T
(û′û+ αv̂′v̂)(7.15)

for the variance of u.
Given any smoothing parameter α, equation (6.3) permits estimating the

precision of the trend estimates in terms of the calculated errors:

E{(ŷ − y)(ŷ − y)′} =
1

T
(û′û+ αv̂′v̂)(IT + α · P ′P )−1.

By inserting (7.15) into (7.14) and disregarding constants, a concentrated
likelihood function can be derived that involves the smoothing parameter α as
its only parameter:

L
∗∗∗

(x;α) := − log det(αIT +Q) − T · logR(α) + T · logα(7.16)

with

R(α) := û′û+ αv̂′v̂(7.17)
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as the weighted sum of estimated squared errors.
With (7.16), maximum likelihood estimation reduces to maximizing over

just one parameter. As the solution ŷ to the band-diagonal normal equation
(2.4) is straightforward, maximization of L∗∗∗ with respect to the smoothing
parameter α can be performed numerically. The solution ŷ can be calculated for
any α. The value of R(α) is calculated via (7.2)–(7.4) and (7.17). For any α, the
corresponding variances are computed according to (7.15) and α = σ2

u/σ
2
v as

σ̂2
u =

1

T
R(α)(7.18)

σ̂2
v =

1

T

R(α)

α
.(7.19)

The likelihood function can be further simplified with respect to the first
term. Consider

(αIT +Q)(P ′ Z )

(
P

Z ′

)
= (αP ′P + αZZ ′ + IT − ZZ ′).(7.20)

As

det

(
(P ′ Z )

(
P

Z ′

))
= det

((
P

Z ′

)
(P ′ Z )

)

= det

(
PP ′ 0

0 IT

)

= det(PP ′),

equation (7.20) implies

det(PP ′) det(αIT +Q) = det(IT + αP ′P + (α− 1)ZZ ′).

Right-hand multiplication by det(IT + αP ′P )−1 gives

det(PP ′) det(αIT +Q) det(IT + αP ′P )−1

= det(IT + (α− 1)ZZ ′(IT + αP ′P )−1)

= det(IT + (α− 1)ZZ ′(IT − αP ′P + (αP ′P )2 − (αP ′P )3 + · · ·))
= det(IT + (α− 1)ZZ ′)

and therefore

det(αIT +Q)

det(IT + αP ′P )
=

det(IT + (α− 1)ZZ ′)
det(PP ′)

.(7.21)

The determinant of (IT + (α − 1)ZZ ′) can be evaluated by means of its
Eigenvalues. For any symmetric matrix A ∈ R

n×n, denote the vector of its
Eigenvalues by Λ(A). The rank r(A) gives the number of non-zero Eigenvalues.
The vector of these non-zero Eigenvalues is denoted by Λ+(A) ∈ R

r(A). The
determinant of A is equal to the product of its Eigenvalues.
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We have

Λ(IT + (α− 1)ZZ ′) =




1

1
...

1


+ (α− 1)Λ(ZZ ′).(7.22)

Further, r(Z) = 2 and ZZ ′ has rank 2 and two non-zero Eigenvalues of unity.

Λ+(ZZ ′) = Λ+(Z ′Z) =

(
1

1

)
.

In view of (7.22) we conclude that (IT +(α−1)ZZ ′) has T −2 Eigenvalues of one
and two Eigenvalues of α. The determinant of (IT + (α− 1)ZZ ′) is the product
of its Eigenvalues and we can write

det(IT + (α− 1)ZZ ′) = α2.

Equation (7.21) reduces thus to

det(αIT +Q)

det(IT + αP ′P )
=

α2

det(PP ′)
.

Taking logarithms and re-arranging terms yields

log det(αIT +Q) = log det(IT + αP ′P ) + 2 logα− log det(PP ′).

Disregarding constants, the likelihood function (7.16) can be written as

L(x;α) = − log det(IT + αP ′P ) − T · logR(α) + (T − 2) logα.(7.23)

Note that this formulation avoids, in contrast to the original likelihood func-
tion (7.1), the the determination of Q = P ′(PP ′)−1(PP ′)−1P which is of prac-
tical advantage as PP ′ is large, its inversion is time-consuming, and (PP ′)−1 is
not sparse. As a consequence, (7.23) requires an evaluation of the determinant
of a band-diagonal matrix, while (7.1) would require an evaluation of the the
determinant of a full matrix at each iteration.

8. A moments estimator for the variances

The likelihood estimation described in the preceding section lacks intuitive
appeal, and its small-sample properties are difficult to ascertain. As an alter-
native, a moments estimator will be devised that is based on the idea that the
calculated variances ought to be close to their expectations. (This type of estima-
tor has originally been proposed by Schlicht (1989) in the context of state-space
models.) The estimator is derived by equating, at any sample size, the calculated
variances with their expectations.
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Assume a realization of a trend y (that we can’t observe) along with a real-
ization of the time series x (which is taken as a realization of a random variable)
for a given set of parameters β, σ2

u, and σ2
v . According to (5.6), this gives rise

to the estimate ŷ as a function of the variance ratio α = σ2
u/σ

2
v and of the time

series x which is the sum of trend y and disturbance u:

ŷ =
(
IT + αP ′P

)−1
(y + u) .(8.1)

Since
y = (IT + αP ′P )y − αP ′Py,

and v = Py, equation (8.1) can be written as

ŷ = y + (IT + αP ′P )−1(u− αP ′v).

Pre-multiplication with P gives

v̂ = v + P (IT + αP ′P )−1(u− αP ′v).

In a similar way, from û = x− ŷ we obtain

û = u− (IT + αP ′P )−1(u− αP ′v).

Thus the estimated errors û and v̂ are linear functions of the the normal
random variables u and v:(

û

v̂

)
=

(
(IT −M) αMP ′

PM IT−2 − αPMP ′

)(
u

v

)
(
û

v̂

)
=

(
I2T−2 −

(
IT 0

0 P

)(
M −M
−M M

)(
IT 0

0 αP ′

))(
u

v

)

with
M := (IT + αP ′P )−1

and their joint distribution can be calculated:

(
û

v̂

)
= N

(
0,

(
S11 S12

S21 S22

))

with

S11 := σ2
u(IT −M)2 + σ2

vα
2MP ′PM

S12 := σ2
u(IT −M)MP ′ + σ2

vαMP
′(IT−2 − αPMP ′)

S21 := σ2
uPM(IT −M) + σ2

vα(IT−2 − αPMP ′)PM

S22 := σ2
uPM

2P ′ + σ2
v(IT−2 − αPMP ′)2.



112 EKKEHART SCHLICHT

From this, the expectation of the average squared errors can be determined:

E{û′û} = σ2
u · tr(IT −M)2 + σ2

uα tr(M2P ′P )(8.2)

E{v̂′v̂} = σ2
u · tr(PM2P ′)(8.3)

+ σ2
v · tr(IT−2 − αPMP ′)2.

Note that

tr(IT −M)2 + α tr(M2P ′P ) = tr(IT − 2M + (IT + αP ′P )M2)

= tr(IT −M)

= T − tr(M)

and
α tr(PM2P ′) + tr(IT−2 − αPMP ′)2(8.4)

= tr(αPM2P ′ + IT−2 − 2αPMP ′ + α2(PMP ′)2)

= tr(αPM(IT + αP ′P )MP ′ + IT−2 − 2αPMP ′)

= tr(IT−2 − αPMP ′)

= (T − 2) − tr(αMP ′P ).

Because
M(IT + αP ′P ) = IT

we have
tr(αMP ′P ) = T − tr(M).

Inserting this into (8.4) gives

tr(IT −M)2 + α tr(M2P ′P ) = tr(M) − 2

and (8.2)–(8.3) reduce to

E{û′û} = σ2
u(T − tr(M))

E{v̂′v̂} = σ2
v(tr(M) − 2).

The moments estimators for the variances, denoted by σ̌2
u and σ̌2

v , are ob-
tained by equalizing the estimated moments û′û and v̂′v̂ with their expectations:

û′û = σ̌2
u(T − tr(M))(8.5)

v̂′v̂ = σ̌2
v(tr(M) − 2).(8.6)

Note that the estimated moments û′û and v̂′v̂ , as implied by (7.2)–(7.4) are

functions of the observations x and the variance ratio α̌ = σ̌2
u/σ̌

2
v and, thus, of

the variances σ̌2
u and σ̌2

v , and that the matrix M depends on the variance ratio
as well. Hence the solution to (8.5)–(8.6) amounts to finding a fix-point.

The system can be written equivalently as

σ̌2
u =

û′û
T − tr(M)

(8.7)

σ̌2
v =

v̂′v̂
tr(M) − 2

.(8.8)
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One way of estimating the variances is, thus, to find a fix-point of (8.5)–(8.6)
or (8.7)–(8.8). Another way is the following.

Consider the function

H(x, α) = − log det(I + αP ′P ) − (T − 2) · logR(α) + (T − 2) · logα.(8.9)

The following theorem states that the moments estimator can be derived by
maximizing the function H (x, α).

Theorem 3. The moments estimators, as defined by equations (8.7) and
(8.8), can be obtained by maximizing the function H(x, α) defined in (8.9) with
respect to α. The variances are computed from the maximizing value α̃ as

σ̌2
u =

1

T − 2
R(α̃)(8.10)

σ̌2
v =

1

T − 2

R(α̃)

α̃
.(8.11)

Proof. With M = (IT + αP ′P )−1 we have

d log det(IT + αP ′P )

dα
=
d

dα

(
T logα+ log det

(
1

α
IT + P ′P

))

=
1

α
(T − tr(M)).

Note further that

R (α) = x′(IT −M)2x+ αx′MP ′PMx(8.12)

= x′(IT − 2M +M2 + αMP ′PM)x

= x′(IT − 2M +M(IT + αP ′P )M)

= x′(IT −M)x

= x′x− x′Mx.

Consider

∂M

∂α
=
∂(α( 1

αIT + P ′P ))−1

∂α
(8.13)

= −MP ′PM.

From (8.12) and (8.13) we obtain

R′(α) = x′MP ′PMx(8.14)

= v̂′v̂.

Using these results, the derivative of H (x, α) with respect to α is calculated
as

∂H
∂α

= − 1

α
(T − tr(M)) − (T − 2)

v̂′v̂
R

+
(T − 2)

α
.
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Putting this to zero yields

α̃ =
tr(M) − 2

T − tr(M)
· û

′û
v̂′v̂
.(8.15)

Evaluating the right-hand side of (8.10) by using (8.15) gives

1

T − 2
R(α̃) =

1

T − 2

(
û′û+

tr(M) − 2

T − tr(M)
· û

′û
v̂′v̂
v̂′v̂

)

=
û′û

T − tr(M)

which is identical to (8.10). Evaluating the right-hand side of (8.11) gives

1

T − 2

R(α̃)

α̃
=

1

T − 2

(
û′û+

tr(M) − 2

T − tr(M)
· û

′û
v̂′v̂
v̂′v̂

)
T − tr(M)

tr(M) − 2
· v̂

′v̂
û′û

=
v̂′v̂

tr(M) − 2

which is identical to (8.11).

9. The relationship between the maximum-likelihood and the mo-
ments estimator

With the aid of the function H, the relationship between the maximum-
likelihood estimator and the moments estimator can be gauged easily.

Note that
H(x, α) − L(x;α) = 2R(x, α)

and denote, for some given x, the maximizer of L(x;α) by α̂ and the maximizer
of H(x;α) by α̌. By definition we have

L(x; α̂) ≥ L(x; α̌)

H(x; α̌) ≥ H(x; α̂).

This implies

H(x; α̌) − L(x; α̌) ≥ H(x; α̂) − L(x; α̂)

R(α̌) ≥ R(α̂)

with strict inequality if the maximizers α̌ and α̂ are unique and distinct. As R
is, according to (8.14), increasing in α, the method of moments will yield a larger
smoothing constant than the maximum-likelihood method.

With regard to variance estimation we have from (7.18) and (8.10)

σ̂2
u =

1

T
R(α̂), σ̌2

u =
1

T − 2
R(α̌)
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which implies that the moments estimate σ̌2
u is larger than the maximum likeli-

hood estimate σ̂2
u. From (7.19) and (8.11) we have further

σ̂2
v =

1

T

R(α̂)

α̂
, σ̌2

v =
1

T − 2

R(α̌)

α̌
.

Equations (7.17) and (8.14) imply R′
R <

1
α . Hence R

α is decreasing in α. For large
T this effect will dominate and we will have σ̂2

v > σ̌
2
v , but for small T the reverse

effect may come about.
As T−2

T → 1 for T → ∞, the moments criterion

− 1

T
log det(I + αP ′P ) − T − 2

T
logR(α) +

T − 2

T
logα(9.1)

and the likelihood criterion

− 1

T
log det(I + αP ′P ) − logR(α) +

T − 2

T
logα(9.2)

become identical for large T and the estimates will coincide. The same holds
true for the estimates of the variances (7.18), (7.19) and (8.10), (8.11).

10. Notes on numerical performance

A practical example is provided in Figure 12. The method of moments gives
σ2
u = 4.95E−5, σ2

v = 1.71E−5, and α = 2.89. The maximum likelihood estimates
are σ2

u = 4.35E−5, σ2
v = 2.10E−5, and α = 2.06. The corresponding graphs are

practically indistinguishable, the maximum relative difference between the two
estimates being below 2 percent. Only rather drastic changes in the smoothing
constant—like increasing or decreasing it by a factor of ten—produce significant
changes (Figure 2).

These observations do not tell much, however, about how well the method
recovers the smoothing constant and the variances of the time series. Some
simulations were conducted in order to obtain an impression about this aspect of
performance, and also to compare the two variants of the method, viz. maximum
likelihood and method of moments. It is beyond the scope of this paper to
present a full-fledged Monte-Carlo study. The following remarks are intended to
just convey an overall impression.

For the simulations done, the method works reasonably well in both variants.
Consider the estimation of the smoothing constant first, or rather its log10(α),
because this seems to be the more relevant quantity. Figure 3 depicts the fre-
quency distribution for the estimates of the smoothing constant that are obtained
by generating 1000 random series according to equations (2.1), (2.2), and (3.1)
with variances σ2

u = 10 and σ2
v = 1 (corresponding to a smoothing constant

log10(α) = 1) for alternative lengths T = 30, T = 60, and T = 120, respectively
and using the method of moments estimator.

As expected, the estimates are less reliable for short series and more reliable
for long series.

2 All computations are made using the Mathematica Package by Ludsteck (2004).
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Figure 1. US unemployment 1951–2002, source: US Department of Commerce, Bureau of

Labor Statistics. Estimated parameters: σ2
u = 4.95E−5, σ2

v = 1.71E−5, and α = 2.89.

Figure 2. Effect of the smoothing constant: Heavily drawn curve: smoothed with estimated

value, smooth curve: smoothed with tenfold of estimated value, thin curve: smoothed with a

tenth of estimated value.

For practical purposes, and regarding the smoothing constant, the maximum-
likelihood estimates and the moments estimates are nearly identical (Table 1).
There may be a slight but certainly insignificant advantage for the maximum-
likelihood estimator regarding the standard deviation and a slight advantage for
the moments estimator regarding numerical stability (fewer crashes under the
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Figure 3. Distribution of estimates of log10(α) for time series of different length with σ2
u = 10

and σ2
v = 1, 1000 trials each.

Table 1. Estimation of the smoothing constant: Performance of the maximum likelihood (ML)

and the moments estimator (MM) for time series of different length. True variances are σ2
u = 10

and σ2
v = 1, reported statistics based on 1000 successful trials each.

Length Estimator Mean Median Stdev Min Max Crashes

15 ML 1.00 0.92 0.74 −0.62 7.66 272

MM 1.05 0.96 0.76 −1.57 7.82 241

30 ML 1.40 0.96 0.53 −0.49 4.29 16

MM 1.08 1.01 0.50 −0.17 4.63 15

60 ML 1.01 0.99 0.28 0.12 2.30 0

MM 1.05 1.03 0.28 0.25 2.25 0

120 ML 1.01 0.99 0.18 0.45 1.66 0

MM 1.02 1.01 0.18 0.48 1.77 0

240 ML 1.00 1.00 0.13 0.60 1.53 0

MM 1.1 1.1 0.14 0.57 1.46 0

Figure 4. Changing variances while keeping the variance ratios constant does not affect the

result. (Standard deviations are in the range 0.28–0.30 in all three cases, T = 60, 1000 trials

each.)

same algorithm).
The decomposition depends on the smoothing constant, viz. the ratio of the

variances, rather than the absolute magnitude of the variances which are affected
by scaling. This independence is reconfirmed in the simulations (Figure 4).

Finally, Figure 5 gives the results when variance ratios are changed by a
factor of 10. This shifts the distribution on the logarithmic scale to the left or
to the right by one unit.

Table 2 gives the results for the smoothing constant and the variances. There,
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Figure 5. Increasing the variance ratio by some factor shifts the distribution of estimates to

the right by the same factor. The true means of 0, 1, and 2 are nicely recovered. The standard

deviation increases from 0.26 to 0.30 to 0.43 with an increasing variance ratio. (T = 60, 1000

trials each.)

Table 2. Performance of the maximum likelihood (ML) and the moments estimator (MM)

regarding the estimation of α, σ2
u, and σ2

v for time series of different length. True values are

log10 α = 1, log10 σ
2
u = 1 and log10 σ

2
v = 0; standard deviations in parentheses, reported

statistics based on 5000 successful trials each.

Length Estimator log10 α log10 σ
2
u log10 σ

2
v

30 ML 1.06 0.93 −0.13

(0.54) (0.15) (0.48)

MM 1.14 0.98 −0.16

(0.53) (0.14) (0.48)

60 ML 1.02 0.97 −0.05

(0.30) (0.10) (0.26)

MM 1.05 0.99 −0.06

(0.29) (0.10) (0.26)

is, again, no significant difference between the variants noticeable.
In conclusion, there is no big difference between the maximum likelihood

estimator and the moments estimator even in short time series.

11. Notes on modelling

The trend filter discussed here has given rise to two strands of thought. One,
originally proposed by Akaike (1980) and Schlicht (1984) and also alluded to by
Hodrick and Prescott (1997), relates to state-space modelling; the other, starting
with King and Rebelo (1993), looks at performance in the frequency domain. The
present paper falls into the first category and implies some scepticism concerning
the second.

The state-space literature tends to rely on Kalman filtering. As Kalman
filters are one-sided filters, they are never efficient in the sense of using all avail-
able information for estimating trend values at intermediate points in time. The
filter proposed here is, in contrast, two-sided and uses all information available.
Further, the orthogonal parametrization avoids the problem of estimating initial
values and allows for a unified and mathematically more transparent treatment
of the maximum likelihood estimator as well as the moments estimator than can
be achieved by parametrization in terms of initial values.
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It turns out that, in this setting, the maximum-likelihood estimator and the
moments estimator are practically identical. Hence the intuitive interpretation
suggested by the moments estimator carries over to the maximum-likelihood
estimator, and the statistical appeal of the maximum-likelihood estimator carries
over to the moments estimator.

From the perspective taken in this paper, the frequency interpretation is
problematic, as the smoothing constant is unrelated to any frequency found in
the trend. Further, two time series generated by the same trend but affected by
different disturbances u would require different smoothing constants for optimal
recovery.

Yet the filter is not well suited for determining the trend as distinct from the
business cycle. This would require an integrated full-fledged method for seasonal
and cyclical adjustment.
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