J. Japan Statist. Soc.
Vol. 35 No. 2 2005 147-170

SIMPLE ESTIMATORS FOR PARAMETRIC
MARKOVIAN TREND OF ERGODIC PROCESSES
BASED ON SAMPLED DATA *

Hiroki Masuda**

Let X be a stochastic process obeying a stochastic differential equation of the
form dX; = b(X¢,0)dt+dY:, where Y is an adapted driving process possibly depend-
ing on X’s past history, and § € © C RP is an unknown parameter. We consider
estimation of # when X is discretely observed at possibly non-equidistant time-points

(t7)i=o. We suppose hp := maxi<;<n(t] — tj_1) — 0 and ¢, — oo as n — oo: the

data becomes more high-frequency as its size increases. Under some regularity condi-
tions including the ergodicity of X, we obtain v/nhy-consistency of trajectory-fitting
estimate as well as least-squares estimate, without identifying Y. Also shown is
that some additional conditions, which requires Y’s structure to some extent, lead to
asymptotic normality. In particular, a Wiener-Poisson-driven setup is discussed as
an important special case.

Key words and phrases: Discrete sampling, parametric estimation, stochastic dif-
ferential equation, trajectory-fitting.

1. Introduction

Consider the family of partly parametrized d-dimensional processes X given
by

t
(1.1) Xy _X0+/ b(Xs,0)ds + Yy,
0

where § € © C RP, an open bounded convex domain, Xy is a random element
with £(Xg) = n possibly unknown, b : RY x © — R is a measurable function,
and Y = (Y})icr, is a d-dimensional zero-mean adapted process. Suppose that
there exists a true parameter y € © which induces true data that we observe,
and that, instead of the full trajectory we have discretely sampled data (X )i,
where (t') is, for each n € N, a given positive bounded strictly increasing se-
quence such that h, 1= maxj<j<, (] =t ;) = o(1) and t]} — oo as n — oo; (t}')
not have to be equally spaced.

The purpose of this article is to derive sets of sufficient conditions for weak
consistency, v/nh,-consistency and asymptotic normality of the trajectory-fitting
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estimator (TFE) and least-squares estimator (LSE) for 6p. Apart from the er-
godicity of X and some moment conditions, the proofs do not require any explicit
structure of Y up to the y/nh,-consistency, whereas the form of conditional co-
variance matrix of Y’s increments is needed for the asymptotic normality (see
(2.7) below); the estimation for parameters possibly involved in Y is out of our
scope, so we do not express the Y’s possible dependence on 6 in the notation.
Existence of an “exogenous” processes contaminating X is allowed; for example,
our result may apply in cases where Y obeys another stochastic differential equa-
tion (then Y may be regarded as an exogenous randomness contaminating the
skeleton dynamics x = (x;)cr, described by dx; = b(x,6)dt). Of course, within
this setup the estimates are not efficient in general, however, from a practical
point of view it is often important to obtain an easy-to-use estimate. This point
is the primary contribution of this article. Once the model (the structure of Y)
is fully specified, the classical one-step improvement together with a “better” es-
timating function often leads to a more efficient estimate with rate v/nh,, under
the condition of our Theorem (b).

The rest of this article is organized as follows. The precise framework and the
main result is described in Section 2. Section 3 presents a special important case
where, given the initial element Xy, everything is realized on the Wiener-Poisson
space. In Section 4 we consider a concrete model to observe the performance of
the estimates for different decreasing rates of h,. The proofs are given in the
Appendix.

We end this section with some historical remarks and comments. The model
in question is a fairly particular subclass of general “stochastic differential equa-
tions”, which plays an important role for modelling a continuously time-varying
phenomenon, as they are frequently used in many fields of application. How-
ever, quite often real data is sampled at discrete-time points, so that we need to
formulate a “statistical inference for stochastic differential equations from sam-
pled data”. Clearly this is a rather abstract matter because of diversity of the
model. Such studies date back to, at latest, the middle of the 1970s. In the light
of history in this area, there exists an extensive literature on estimating both
drift and diffusion coefficients for diffusion processes, including efficient results
in “smooth” cases. Regarding these points, the reader can consult Prakasa Rao
(1999) and references therein.

The TFE was studied by e.g. Dietz and Kutoyants (1997) for continuously ob-
served diffusion processes and by Kasonga (1990) for a class of discretely observed
diffusions; considering, for example, the ergodic Markovian Ornstein-Uhlenbeck
process driven by a Wiener process, we can notice that the condition of Kasonga
(1990) is not suitable for ergodic cases, so the route we shall take in this article
is different from his, although the same contrast function is used. The study of
the LSE for discrete sampling goes back to Dorogovcev (1976) and Prakasa Rao
(1983), also in case of diffusions.

Recently, inference for processes with jumps based on sampled data has
drawn the attention of statisticians because of the applicability to several kinds
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of realistic data seeming to have a discontinuous path. Nevertheless, much less
than diffusions has been known so far: Shimizu and Yoshida (2005) and Shimizu
(2005) studied asymptotic normality, both dealing with cases where the jump
part of driving noise process is of finite variation. Beyond the Markovian frame-
work (but still with the Markovian-trend structure), no result concerning the
discrete sampling has yet been established. Our present result provides a widely
applicable /nh,-consistent estimates for the drift coefficient of the process in
question possibly having infinitely many jumps on every compact time-interval
yielding unbounded variation of the driving noise process.

2. Statement of the result

Let (2, %, F = (%;)t>0, P) be an underlying complete stochastic basis sat-
isfying the usual hypothesis (e.g., Protter (1990)), on which a d-dimensional
zero-mean F-adapted process Y = (Y})er . is endowed. Let © C RP be an
open convex domain with compact closure, and consider the partly parametrized
model X given by (1.1) with Fp-measurable initial element Xy. As was men-
tioned at the beginning, we have only sampled data (X )i,. Hereafter we write
At =1t — 1t ;. Let 6y € O denote the true value, which induce the true image
measure Py of X associated with initial distribution 7. Throughout this article,
any order symbol is used for n — oo.

2.1. Two contrast functions
We introduce the set of auxiliary processes {X;((0) : t € [t]" 1, ")}, defined
by

)

Ko (0) = Xpn

i—1

(2.1) { d:)zi,t(e) = b(X;:(0),0)dt, teth |, th),

and then consider the function ®,,(0) = ®,(0; (Xir)i_,) given by

n

O, (0) =) | Xpn — X (0)%.
i=1
Let (6,) be any sequence such that ®,(6,) < ®,(6) + opg(nh%). We call

0, the trajectory-fitting estimate (TFE) for 6. We also consider ¥, () =
W, (0; (X )1g) given by

(2.2) U (0) =Y | Xup — Xen | — b(Xm |, 0) AT,
=1

and similarly define the least-squares estimate (LSE) 6,, by any sequence sat-
isfying Wy, (6n) < Wn (o) + 0pn (nh2). The LSE is convenient when (2.1) is not
explicitly solvable. There is an obvious simple relation between ®,,(0) and ¥,,(6),
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that is, according to the usual Euler scheme for ordinary differential equations,
we have

(2.3) Xiw(0) = Xen  +b(Xen ,O)AM + O(h2),  Pl-as.,

for all 8, under rather mild regularity of (z,0) — b(x,0) and non-explosivity of
X.

In the Appendix an asymptotic equivalence between ®,(0) and ¥, (6) as
well as between their derivatives will be given. Especially, (C.3) in the Appendix
says that, as soon as (nh3)~Y2VyW, () weakly tends to some limit and the
rate condition nh? = o(1) holds, 0,, and én have the same asymptotic property
up to the first order. In this sense one may bring redundancy of 6, to his/her
mind. But there is no “absolute” order of superiority between TFE and LSE.
Our numerical experiments given in Section 4 show that 6, may provide a better
finite-sample performance than 0, and vice versa: roughly speaking, 0,, (resp.
0,) provides a better performance than 6, (resp. 60,) for slower (resp. faster)
decreasing rates of h,.

2.2. Assumptions and main result

We shall use the following notation: E][f] = [ fdF] for any Fj-integrable
function f; C stands for a positive constant independent of n, A, < B, implies
A, < CB, with C possibly varying from line to line, and A, =< B, means
that there exists C' such that C~1 < A, /B, < C for each n; V, denotes the
gradient operator with respect to a variable a; R*®! stands for the set of all
? = sup | Fs|? for any interval I C Ry,
constant ¢ > 0, and process F'; finally, Ab(t,s;0) = b(Xy,0) — b(Xs,6) and
Ab(t;0,0") = b(X4,0) — b(Xy,0).

ASSUMPTION 1. The function (z,6) — b(z, ) is of class C?2, the possible
derivatives fulfilling suppee |VEVLD(2,0)] < (1 + |z)%, and moreover
SUP,c i geo |Vab(z,0)| < oo.

AssuMPTION 2. The stochastic integral equation (1.1) admits a unique
solution X, and the process (X,Y) is LY(Py')-bounded for every ¢ > 2, that is,
supser, [|(X¢,Ye)||pa(pry < oo for every ¢ = 2. Moreover, for every q > 2 there
exists a positive bounded sequence A, ,, = O(hy) such that hf/A,, = o(1), and
that

(2.4 sup EJIIY — Yoz I ) S By
1<i<n o o

ASSUMPTION 3. There exist numbers p’ > p” > p and a positive bounded
sequence €, = o(1) such that, for every 61,02 € O,

/

n P
1 n 1
Eg W E (AZ t)Ab(Xt;{l_l;el, HQ)T(}/%;’I - }/;f;(l_l) S, 671‘91 - 02 ’p .
n =1
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Also, it holds that

1
nh

D (AP Vb(Xer ,00) " (Yir — Yir ) = Opa (1),
=1

B

ASSUMPTION 4. X admits an invariant probability measure m (generally
depending on 6y, but not on ), for which

(2.5) 71 /T F(X)dt 25 mo(F)
0

as T — oo for any mp-integrable function F on R®.
AssumMpPTION 5. It holds that b(x, 6) = b(x, '), m-a.e., if and only if § = 6.

ASSUMPTION 6. Let the random variables m;" and v}' respectively denote
the conditional mean vector and covariance matrix of Yir — Yir =~ given Fp |
Then

(2.6) \/W Z (AF)Vob(Xep |, 00) 'miy = ops(1),
(2.7) nhg Z A2V ob(Xen |, 00) "0 Vgb(Xen ,00) 5,

where ¥y € RP®P is nonrandom.

Define I'(f) = [['(0)7]Y._, : © — RP®P by

d
(2.8) Py =3 / Vo, b (2, 0) Vi, b, O)mo(dz).
=1

Our main result is the following, whose proof is postponed to the Appendix.

THEOREM. Fiz any 6y € O, and suppose h, — 0, t — oo,

(2.9) max |AM — hyp| = o(hy)  and 1) < nhy,.
Then we have the following.
(a) Under Assumptions 1 to 5, 0, and 6, are weakly consistent under PJ.
(b) Further suppose that nhd = O(1), that nh® — oo for some constant
€ (1,3), and that there exists ¢ > 2 such that nhy(Ay,)¥9 = O(1).
Moreover, suppose I'(6p) is nonsingular. Then the sequences {v/nhn (0, —
00) tnen and {/nh, (0, — 00)}nen are Py -tight.
(c) Further suppose Assumption 6, that I'(0y) is non-singular, and nhy,As, =
o(1). Then
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~ S pr
(2.10) Tn (B — B6) 2% N, (0, T(60) ' SoT (6) 1T,

and \/nhn(én —6p) has the same weak limit.

Remark 1. The rate condition (2.9) is set just for technical reasons. The
second one implies that nh, — oo under ¢! — oco. Of course, the equidistant
sampling (i.e. hy, = ATt for every 7) is the case.

Remark 2. Under the assumptions, mo(f) < oo for every measurable f of
at most polynomial growth. To the knowledge of the author, how to identify 7y in
general is a difficult matter and has not been solved even for diffusion with jumps
except for Lévy-driven Ornstein-Uhlenbeck processes. This is an important issue
for direct use of Theorem (c), although the \/nh,-consistency can be verified
without identifying 7.

Remark 3. Assumption 4 concerning the “ergodicity” of X is essential in
our framework. Such a property of stochastic processes is of independent interest,
and closely related to the operator-based ergodic theory. Our result may apply
to, for example, cases where we do not know whether X itself is ergodic or not,
but instead we know that (X,Y”) with some process Y’ is ergodic. In particular,
if (X,Y”) is Markovian, then we can utilize a well-developed stability theory for
Markov processes (see the references cited in Masuda (2004)) to get the ergodic
theorem for (X,Y”), and then we have the ergodic theorem for X as well through
a projection-type function F(z,y’) = Fi(z) in (2.5). See Example 3.2 below for
such an example.

Remark 4. Under Assumption 2, Gronwall’s inequality yields

EglIX — X

G ] S B+ EGUY = Yo G4 )]

k3

S hi A Bgn S By

If A, rapidly decreases and the convergence (2.5) takes place Py-a.s., then we
may strengthen the assertion Theorem (a) to a strong consistency, mimicking the
argument of Kasonga (1988). However, such cases do not occur in the presence of
jumps: e.g., if X is a diffusion process with jumps, then A, ,, = O(h,,) whatever ¢
is large, see Appendix E. When X is a diffusion-type process with Markovian drift
coefficient and possibly non-Markovian diffusion coefficient, A, , may decrease
rapidly by taking ¢ large.

Remark 5. In order to utilize the asymptotic normality (2.10), I'(6y) and
Yo should be estimated. Claim C.1 in the Appendix (a uniform law of large
numbers) says that

1

A PY

(2.11)
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Hence I',, can serve as an explicit estimator of I'(6p), without any knowledge of
mo (recall Remark 2). Moreover, when ¥ is of the form

20 = /H(x,eo)ﬂo(dx)

for some measurable H : R? x © — RP®P like (3.5) in Example 3.1 below, we
can utilize the uniform law of large numbers in order to ensure that

. 1 — . pr
(2.12) Sim ST H(Xgy,60) ~5 5
=1

as is the case with (2.11). Of course, H here must be smooth enough to fulfill the
conditions corresponding to [U1] to [U3] in Claim B.2 in Appendix B. So, in this
case Yo can be also estimated without specifying mg. Unfortunately, it is not clear
how to construct an estimator of ¥y in our general setup. For example, ¥ of
(3.9) in Example 3.2 below involves integration with respect to 3 corresponding
to the unobservable variables (Y;’?)”:O, so that we cannot follow the same line as

7

(2.11) and (2.12). We shall not pursue this in this article.

3. Wiener-Poisson-driven case

In this section we shall consider Y belonging to a class of martingales. Let
the underlying basis equip an r,-dimensional standard Wiener process w and a
Poisson random measure {u(I, E);I € Ry, E C R™\{0}} with corresponding
Lévy measure v. Suppose that

(3.1) / |z|%7v(dz) < oo for every g > 0,
|z|>1

so that the process J; = fg [ zi(ds, dz), where i = p — v, is an r,-dimensional
zero-mean Lévy process of pure-jump type. Let M = M¢+ M? be an F-adapted
d-dimensional martingale, where

t t
Mf = / osdw, and Mo = / CodJ;
0 0

with predictable processes o = (O-;“)lgigd,lgjgrw and C = (C;)lgigd,lgjgr,f The
X considered is given by

t
(3.2) X, = Xo+ / b(X,,0)ds + M¢ + ME,
0

where o and ¢ may depend on the history of X as well as of (w, u), so that the
solution to (3.2) may be non-Markovian. We shall implicitly exclude the trivial

case, (0,¢) =0.
The setting given above is still too general to go forward, and we now set
the following ad-hoc assumption. Denote by || - ||oo the sup-norm with respect to

weQandte R,
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AssumMpPTION WP. For k = ¢ and (, there exist a finite signed measure
e on (—oo, 0], finite F-adapted processes x(1) and £, and a globally Lipschitz
measurable function F,, : R* — R?, for which « is represented as

(3.3) Kt = ﬁgl) / Fo(Xppo)ri(du) + I€§2),
(_t70]

where ||k < 00, |67 < 0o for every ¢ > 0 and compact I C R... Here,
1, k@ F. and r. themselves do not depend on X, that is, x depends on X
through the function Fy(-) only.

The underlying stochastic basis here is the enlarged Wiener-Poisson space
on which the initial process (X¢);e[—ps,o) is attached. We then obtain:

LEMMA 3.1. Suppose that sup;cp, || XtllLo(pny < 00 for every ¢ = 2. Then
Assumptions 2 with Agpn = hy (¢ > 2) and 3 are implied by Assumption WP.

See Appendix E for the proof of Lemma 3.1. Given h,,, it is easy to check the
remaining conditions on the decreasing rate of h, in Theorem (b). The reason
why we set the L?(P))-boundedness of X is that the (functional-type) Lipschitz
structure of the coefficients and (3.1) are not sufficient to obtain the boundedness.
A simple example of k of (3.3) is k; = leio F,,(X;_5) for some constant § > 0
and D € N.

Assumption 5 can be easily checked for each given b(x, 6). As for Assumption
4, we do not know any general answer, and we here go no further than mentioning
how to verify it in two examples (Examples 3.1 and 3.2 below). Turning to
Assumption 6, (2.6) is automatic whereas (2.7) is left to be considered. The
isometry of Itd’s stochastic integrals and the orthogonality between M¢ and M?
yield

tn

: 7
(34) o= [ Elo®|Fp s+ / B [gs ( / z®2u(dz)> T

n n
i 24

9’7,5?7 1 :| dS,

where v¥? = vu". The expression (3.4) implies that, in order to identify ¥q we
should furthermore get knowledge about (), F., and r, to some extent. So it is
not clear whether Assumption WP and Assumption 4 are sufficient for (2.7) in
general. Nevertheless, in Markovian cases we have the following (see Appendix E
for the proof):

LEMMA 3.2. Suppose that X is a diffusion with jumps, say os = o(Xs)
and (s = ((X,), where o and ¢ are C'-functions on R with bounded partial
derivatives. If Assumption 4 is additionally met, Assumption 6 holds true with

Yo = / Vob(x,00) " o(2)®?Vob(z, o) mo(dx)

(3.5) + / Vob(,60) " ¢(x) < / z®2u<dz)> ¢(z) " Vgb(x, 6)mo(dx).
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We end this section with two examples.

Ezample 3.1. (Markovian case) Let X be given by
(36) dXt == b(Xt)dt + O'(Xt)dws + /C(Xt_, Z)ﬂ(dt, dZ)

The appropriate regularity conditions on the coefficients (b, o, () as well as on
the Lévy measure v (here possibly fM <112[v(dz) = 0o) may lead to Assumption
4 and the LY(P}')-boundedness of X (see Masuda (2004b, 2005) for details). If
((x,z) = ((x)z (though this is not essential), ¥o is given by (3.5). When X
is a Lévy-driven Ornstein-Uhlenbeck process (i.e., b(x,0) = 61 — 01z, o(x) is
a constant non-negative definite matrix, and ((z,z) = z), we can identify 7,
which is necessarily operator-selfdecomposable, and it is also possible to give
mo beforehand; we know that all the Assumptions are then fulfilled as soon as
[ |z|Pn(dz) < oo for every p > 0 (see Masuda (2004a) and references therein).
For model (3.6), Shimizu and Yoshida (2005) proved the first order efficiency of
an approximate maximum-likelihood type estimate in case where v(R"™) < oo
and the probability of occurrence of small jumps is small in a certain sense.

Ezample 3.2. (Filtering model; a non-Markovian case) Here is an example
in which (X,Y”) is ergodic for some process Y’. This example is a continuous-
time analogue of autoregressive processes with autocorrelated error in the context
of time-series analysis. As mentioned in Remark 3, in this case we can get the
ergodic theorem for X: taking F(x,y') = Fi(z) in (2.5) for any mp-integrable F}
and denoting by 7 (dx) = mo(dz, R9?) the invariant probability measure of X,
where ds is the dimension of Y/ and 7y the invariant probability measure of the
process (X,Y”), we have

T Pl-as.
(3.7) Tl/o F(XNdt =222 71X ().

Now let Z' and Z? be two zero-mean Lévy processes taking values respectively
in R™ and R™ and admitting moments of any order at time 1 (hence at any
t € Ry). Let Y/ = [ ¢(Y]_)dZ? with some ¢ : R% — R%®". Suppose then
(X,Y") satisfies

o @)= (7G5 @

for some b : R" x © — R%, ¢ : RY x R% — RU®"  and constant matrix
B € R"®d We suppose that the available data is not (X, Yin)ig, but (Xin )iy
only. In this case the target X is dX; = b(Xy, 0)dt + dY; with di-dimensional
martingale Y = [) §(X,_, Y! )dZ! + BY’; X is not necessarily Markovian, while
(X,Y’) is. With good property of the coefficient of (dZ',dZ?) that induces the
irreducibility of (X,Y”), the result of Masuda (2004b, 2005) may be used to
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verify Assumption 4, and Theorem (b) may apply. Especially, if the coefficient
of (dZ',dZ?) is smooth enough to yield an expansion of the form

Efl(Yer = Yar )¥% | Fup ] = ha W (Xep |, Yin )+ 0pn(ha)

for some Y : R% x R% — RM®% (see the first paragraph of the Appendix for
the definition of o Pg](‘)), then Theorem (c) may also apply with

(3.9) Eo—/ Vob(x,00) " Y (x, v )Vb(x, 8o)mo(dz, dy).

4. The effect of data frequency: a numerical example

In this section we look at finite-sample behaviors of TFE and LSE for differ-
ent decreasing rates of h, in a one-dimensional Markovian case, which belongs
to the Wiener-Poisson-driven case discussed in the previous section.

Let Z be a non-skewed and centered normal inverse Gaussian Lévy motion
with £(Z1) = NIG(«,0,6,0), where a and ¢ are positive constants; see e.g.
Masuda (2002) and references therein for the details of NIG(a, 3,6, pu)-distri-
bution. Here Z is of pure-jump type with divergent symmetric Lévy measure v
such that f\Zl <1 |z|v(dz) = oo, implying that Z is of infinite variation on every
compact time intervals. We know that E[|Z;|?] < oo for every t € R4 and ¢ > 0.
Then consider X given by

1
4.1 dX; = —0X,dt 1+ —= ) dZ;.
( ) t t +< +1+Xt2> t

Suppose 0y > 0. If nh2 = o(1), all the required assumptions are fulfilled with 7
satisfying [ |z|9n(dz) < oo for every ¢ > 0, Ay, = hy, (for every g > 2); also we
have

Yo = (/ z2y(dz)> {/:ﬂ(aﬂ +2)%(1 +x2)27ro(dw)}, T'(6p) = /xzﬂo(da?).

The estimates are explicitly given by

~ 1 >y Xn Xym
0,=——1log | =——+ =1 and
! fin ; ( 2?11 X%Ll

i L (i XXy,
T XL XR '

Note that nh2 = O(1) is sufficient for the tightness of the estimates; take ¢’ = 2
in Theorem (b).

For simulation we set 6y = 3, (o, 6) = (3,3), and Xy = 0, in which case
Var[Z;] = t though £(Z;) has much heavier tails than N(0,t), the case of Wiener
process; specifically, the density behaves as |2|~3/2 exp(—3|z|) for |z| — co. Also

(4.2)
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we set h, = Al't = An~7 for every ¢ and some v > 0 and A > 0. The sample
paths of X were simulated via the Euler scheme (cf. Jacod and Protter (1998,
Section 6)) with generating mesh in each simulation being h,/100. At each stage
we simulated 1000 independent trajectories of X, and then computed the mean,
standard deviation, and sample MSE of the estimates; it seems quite hard to
give theoretical expressions for the bias and MSE of the estimates. We chose
v = 0.3,0.5 and 0.8 for the decreasing rate of h,. Note that for v = 0.3 we do
not know whether the tightness holds true or not in our context, while the weak
consistency is valid as soon as h,, — 0. Also, only v = 0.8 leads to the asymptotic
normality.

The results are given in Table 1. In all trials except for the starred case,
the quantity > i" ) Xyn Xyn />0 X 2?_1 was positive so that the corresponding
TFE were indeed well-defined; in the case of (v, A,n) = (0.3,5,500), there was
11 exceptions, so we reported the remaining independent 989 estimates. It is
clear from the table that TFE remarkably dominates LSE for v = 0.3, whereas
LSE becomes better as 7 increases. TFE (resp. LSE) seems convenient when
the observation times are moderately sparse (resp. dense), although there is no

Table 1. TFE 6, (left) and LSE 6,, (right) for (4.1). The true value is g = —3.

¥ A n Simulated mean S.D. Sample MSE

0.3 05 500 —3.0410 -—2.7042 0.6383 0.5661 0.1677 0.1902
1000 —3.0358 —2.7611 0.5477 0.4973 0.0913 0.1183

1.0 500 —3.0584 —2.4302 0.5801 0.4565 0.1167 0.3680
1000 —3.0180 —2.5084 0.4882 0.4030 0.0572 0.2680

3.0 500 —3.0801 —1.6287 0.6283 0.3012 0.1622 1.8886
1000 —3.0305 —1.8014 0.4897 0.2755 0.0584 1.4425

5.0 500" —3.1872 —1.1671 0.8722 0.2412 0.6136 3.3628
1000 —-3.0789 —1.3545 0.5937 0.2214 0.1305 2.7102

0.5 05 500 —3.1300 —3.0183 0.8203 0.7901 0.4697 0.3900
1000 —3.0923 —3.0154 0.7579 0.7386 0.3384 0.2978

1.0 500 —=3.0600 —2.8550 0.7092 0.6606 0.2565 0.2114
1000  —3.0579 —2.9125 0.6257 0.5955 0.1566 0.1334

3.0 500 —3.0398 —2.4914 0.5757 0.4681 0.1114 0.3067
1000 —3.0176 —2.6219 0.5028 0.3781 0.0642 0.1788

5.0 500 —3.0340 —2.1970 0.5704 0.4038 0.1070 0.6715
1000 —-3.0135 —2.3946 0.4798 0.3774 0.0532 0.3868

0.8 05 500 —3.7232 —3.6916 1.4578 1.4441 5.0394 4.8270
1000 —3.5976 —3.5809 1.4094 1.4022 4.3026 4.2035

1.0 500 —=3.3340 —3.2896 1.1629 1.1452 1.9404 1.8039
1000 -3.3314 —3.3064 1.1193 1.1101 1.6793 1.6256

3.0 500 —3.1134 —3.0098 0.8446 0.8160 0.5217 0.4436
1000 —3.1296 —3.0695 0.8038 0.7879 0.4343 0.3902

5.0 500 —3.0885 —2.9170 0.7465 0.7054 0.3170 0.2544
1000 —3.0832 —2.9883 0.6947 0.6730 0.2398 0.2052
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measure in practice for “sparsity” of sampling schemes which should be carefully
determined by taking the data characteristic in question into account.

Appendix: Proof of Theorem

Write 0 = (0,)"_,, and &* for the k-th component of any random vector .
In order to avoid possible misreading of gradient operators, we specifically write
ViyB((0),0) = ViB(x,0)|,—p6) and Vg qB(x(0),0) = Vg, B(x,0)|,—z@) for
any function of  of the form (x(0),0) — B(x(6),0). For a sequence of random
variables (H,,(6)) depending on # and for a nonrandom positive sequence (a,), we
write Hy(0) = 0pn(an) and Hy(0) = OP(’)’I(an) if supgee E[|Hn(0)/an]? = o(1)
and supgeg E([|Hn(6)/an|? = O(1) for every g > 0, respectively. In what fol-
lows we shall use Taylor’s formula and Holder and Gronwall-Bellman inequalities
without notice.

Appendix A: “Elementary properties of the auxiliary function”
We begin with preparing simple almost sure expansions concerning auxiliary

sequence (X;n(0))i_,, which later enable us to unify the proofs for TFE and
LSE.

LEMMA A.1. Under Assumptions 1 and 2, we have

(A1) K (6) = Xeo, + b(Xer, O)ATE + O (12),
(AQ) VGQXi,t? (9) == v9ab(Xt?,1 s G)A?t + Opgz (hi),
(A.3) Va0 Xitr (0) = Vi,0,0(Xer |, 0) ATt + Opn(h7h),

Pjl-a.s., for everyi € {1,...,n}, a,b€ {1,... ,p}, and 6 € O.

PROOF. Since supgeg tefr . 4n) X (0)] S (14 [Xen ]), Py-ass., it follows

i—1 1

from the definition (2.1) and Assumption 1 that X;u(0) = X +
b(Xt?fl ,O)ATE + T?(‘g)(A?t)Q, where

1 1
rn(0) = /O /0 V(K0 (6), 0)D(X:a(0).0)} e s dudo.

Clearly supypeg |77 (0)] S (1 + | Xz [), hence we get (A.1). Also we have

(28 _ _
Vo, Xlip (0) = [ (V00 (X0a0),0)](V0, X (0)ds
i,
7
(A.4) + V(2,q0 (Xis(0),0)ds,
e,
2 k t? T 2 1k/v v
VebeaXi,t" (0) = {[VGaXZ,S(G)] [V[l}b (Xz,s(9)79)][V9in,s(9)]
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+ [Vb* (Xis(0),0)][V5, 0, Xi,s(0)]
+ [V Vizab* (Xis(0),0)][Vo, Xis(0)] s
7 )
(A.5) + Vo Vizab® (Xis(0), 0)ds

n
ti*l

for every k € {1,2,...,d}, from which we obtain suppee s ) Ve, Xi+(0)] <

i—1

ha(L+ | Xep )9 and supgee sepn | im) V3,0, Xit ()] S hn(1 + [Xep ). From

=1

this, the first terms of the right-hand sides of (A.4) and (A.5) can be bounded
by a polynomial of |Xir |, uniformly in § € ©. Then expanding s
Vi2,ab"(Xp,s(6),0) and s — Vo Vig,qb®(Xis(0),0) around ¢, yields (A.2)
and (A.3). O

Appendix B: “Proof of (a)”
Define contrast functions associated with TFE and LSE by

KR(0) = 1 (B0(6) ~ @0(60)  and  KY(0) =~ (0,(6) — (b)),

respectively. We fix 6y € © arbitrarily in what follows. Define Ky : © — R, by
(B.1) Ko(6) :/|b(m,9) — b(z, 0p)|*mo(dz).

Assumption 5 implies that Ky(f) = 0 if and only if § = 6y. According to the
standard argument (see, e.g., van der Vaart (1998, Chapter 5)), the assertion (a)

P
then follows if we prove supgeg |Z5(0)] —= 0 as n — oo for A = ® and ¥, where

=806) = o (An(6) — An(00)) — Ko(6).

(Note that we have K®(8,,) < K2 (6y) +opn(1) and KY(0,) < KY(6)) +opn(1).)
However, by the definitions of @, and ¥,, we have

(B.2) sup [, (0)| < sup [=(0)] + I, + I,
0cO 0cO
where, writing xj'(0) = Xin — Xpn | — b(Xer |, 0)Al,
1 n
I! = sup | — AP |r(0) 2 — |r(60)|}
o1 g AT O o))
1 n
Iy =sup | —= > (AF)*{x}'(60) "7 (Bo) — x}'(6) " 17(8)} -

Now it suffices to show the following claims:

. p7l
CLAamM B.1. maxj—1» I =% 0asn — oco.
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CrAM B.2. There exists p’ > p” > p such that for every 61,60 € ©: [U]]

PT] / —_—
¥(61) 2 0; (U2 suppen BYIEL O] < 15 and [U3] sup,ey BN (61) ~
H0)7) <100 027"

[1] [1]

P
Claim B.1 means that it suffices to prove supgeg |2y (8)] —> 0, which is

Py
slightly simpler to handle than supyeg [EE(6)] —= 0, and this uniform conver-
gence is in turn ensured by Claim B.2 (see Ibragimov and Has'minskii (1981,
Appendix I. Theorem 20)).

PrROOF OF CLAIM B.1. We are going to show Eg[[,%] — 0 for j =1,2. For
I}, we readily get

2 &
EYII) S =2 B+ [Xep )] < b = o(1)

n
i=1

by Assumptions 1 and 2 together with what we have seen in the proof of Lemma
A.1. Next we consider I2. Notice that EJ[I2] < et + ¢2?, where

ZEn {sz (60)| <Sup|7“ (6) — 77 (9)\)],
ZE" (sup 10tz 0.0001) (sup o) |

0cO

It is clear that cn2 < h,,. As for cnl, we first estimate as

1 n
21 « + 1/2
et S = AE X (00) 112

=1

On the other hand we have |x7'(0y)| < f;{l | Xs — Xyn |ds +Yin — Ve, so that
{E5 Ik (00) 1}/

i 1/2
< {hn E| X% + ]Xt?1|2]ds} AN S+ A2 S A2

2n ~ 2n ~
tn
i—1

on account of Assumption 2. Therefore we get c%l < Aé/j , and this together

with ¢z < hy, yields EJ[12] < A%/j = 0(1). The proof is complete. [

. Ploas.
Remark 6. It is possible to show maxj_12I; 07 0 when

S (Apgn)/® < oo (for some a > 1 and sufficiently large q). Indeed, in a
manner similar to the above we can see that EJ[(I1)9] < hal and EJ[(I2)9] <
(Angn)'/® for every a > 1. Therefore Borel-Cantelli lemma yields the claim.
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PrOOF OF CrLAIM B.2. We begin with [Ul] and [U2]. Fix any 6; € ©
and any p' € N greater than p. According to the definition of ZY(6), simple
computations yield EJ[|Z¥(61)[P'] < JL(01) 4+ J2(01) 4+ J2(0:), where

11
J,i(@l) = Eg — ]Ab(s 91, 90)’ ds — Ko(@l)

/
1244 ‘ ) p
) b
n J0

tn

/

p

9

1 n
Ja(6r) = B e > (AP (B0) T Ab(E; 61, 60)
n =1

/

1 [ g
T0) = By hQZA" b3 00, 00 = [ 180561, 00) s

n

From Assumption 4 we know that

1 [ o, P
t_” ‘Ab(5;01,90)| ds — Kg(@l).
n J0

Also, we have sup,cn J;(01) < sup,en (t7)71 ftn EJ[|Ab(s;01,00)* 1ds + 1 <

n
1. Therefore () fO" |Ab(s; 01, 00)|?ds ﬂ Ko (1), implying J1(01) — 0.

Next, from the assumptlons it follows that

/

p

Jn(61) < Ef nh2 Z (Af't) Ab(& P1500) T Ab(t1; 01, 60)ds

/

p
+ By

1 n
el Z(A?t)(Yt? — Yo ) TAb(t] 1501, 60)

2/\

o 1/«
. Z/ (BIIX. = Xop "))/ ds + e,
S (Aap’,n)l/ +€n:0(1)'

In particular, sup,cny J2(61) < 1. As for J3(0;), we first estimate as follows:

/

1 P

tn
—/ |Ab(s; 61, 60)|*ds
tr Jo

n

J3(91 Z|Ab i— 1701790)’ A?t_

/

p

1 s [(thAE n
t_nz (W ) |Ab(t} 1561, 00)* At

nho )P =1 I [t '
< Al S [ BRIX, — X P14 (X )C)ds
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np 1 p n ?7 .
<t () SO+ 1)
(2

/

p
(B3) < VBt <— mas af ) ,

where we wrote a? = t"A”t/(nh2) — 1 and partly used the second one of (2.9).

Observe that
maxi<i<n ‘A;Lt — hn| t% - nhn

25

th — nhy,
tn

=o(1) +

al <
max
1<i<n @~ hy,

S3[3

Moreover, we have

tz - nhn nhn ‘hn — minlgign A?t‘
tn -t b,
i<n APt — hn
< o =Bl el — 01)o(1) - o)

Thus, from (B.3) we get J3(61) — 0, and in particular sup, ¢y J3(61) < 1. After
all we get EJ[|ZY(61)P] — 0 and sup,cn EJ[IZY (61)|P] < 1, so the proofs of
[U1] and [U2] are complete.

Now we turn to [U3]. For any 6;,02 € ©, we have

EJIE (61) — E%)V”]

nh2 ZAb i— 1)92391) (A?t){2(Xt? _thfl)

/

p

— (b(Xer,,01) + b(Xen ,02))} | + [Ko(61) — Ko(62)”

= AL(01,05) + A%(61,6,), say.

Obviously AL(61,609) < {01 —0a]” + 61 — 622"} [(1+ |2])Cmo(dz) < |61 — 6] +
|01 — 62)%"" under the assumptions. At the same time, it follows from (1.1) and
the assumptions that

t

- ZAb tutnn)” o2 [ ans s

t g
14 ]
/

1 n t p
S By {nhn > /t 01 — 62 (1 + | X, )91 — thu|d5}
=1 i—1

A2(01,05) <

+ Q(Yt;l =Y )

(AT (AB(E 0. 01) + Ab(E2 1,90,92»}
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n pl
1 A0
B || Do (ATOAE 302,00 (Vi = Vi)
=1
- | p’
+ E] {ﬁ Z 01 — 62| (1 + |Xt?1|)c}
=1

10— 0o (L +en +1) S |01 — 027,
hence we are done. O

Appendix C: “Proof of Theorem (b)”
For the proof of v/nh,-consistency of TFE and LSE, we prepare the following
simple lemma, from which we can again unify the proofs for TFE and LSE.

LEMmMmA C.1. Under Assumptions 1 and 2, we have

(C.1) V. ®n(0) = Vo, ¥, (0) + Opn(nhy),
(C.2) V0. ®n(0) = V5,0, 90 (6) + Opn(nhy)),

Pjl-a.s. for every a,b e {1,... ,p}.

PrROOF. For convenience, we denote by Rg(z) : R? 