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SIMPLE ESTIMATORS FOR PARAMETRIC
MARKOVIAN TREND OF ERGODIC PROCESSES

BASED ON SAMPLED DATA*

Hiroki Masuda**

Let X be a stochastic process obeying a stochastic differential equation of the
form dXt = b(Xt, θ)dt+dYt, where Y is an adapted driving process possibly depend-
ing on X’s past history, and θ ∈ Θ ⊂ Rp is an unknown parameter. We consider
estimation of θ when X is discretely observed at possibly non-equidistant time-points
(tni )ni=0. We suppose hn := max1≤i≤n(tni − tni−1) → 0 and tnn → ∞ as n → ∞: the
data becomes more high-frequency as its size increases. Under some regularity condi-
tions including the ergodicity of X, we obtain

√
nhn-consistency of trajectory-fitting

estimate as well as least-squares estimate, without identifying Y . Also shown is
that some additional conditions, which requires Y ’s structure to some extent, lead to
asymptotic normality. In particular, a Wiener-Poisson-driven setup is discussed as
an important special case.

Key words and phrases: Discrete sampling, parametric estimation, stochastic dif-
ferential equation, trajectory-fitting.

1. Introduction

Consider the family of partly parametrized d-dimensional processes X given
by

Xt = X0 +

∫ t

0
b(Xs, θ)ds + Yt,(1.1)

where θ ∈ Θ ⊂ Rp, an open bounded convex domain, X0 is a random element
with �(X0) = η possibly unknown, b : Rd × Θ → Rd is a measurable function,
and Y = (Yt)t∈R+ is a d-dimensional zero-mean adapted process. Suppose that
there exists a true parameter θ0 ∈ Θ which induces true data that we observe,
and that, instead of the full trajectory we have discretely sampled data (Xtni

)ni=0,
where (tni ) is, for each n ∈ N , a given positive bounded strictly increasing se-
quence such that hn := max1≤i≤n(tni − tni−1) = o(1) and tnn → ∞ as n → ∞; (tni )
not have to be equally spaced.

The purpose of this article is to derive sets of sufficient conditions for weak
consistency,

√
nhn-consistency and asymptotic normality of the trajectory-fitting
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estimator (TFE) and least-squares estimator (LSE) for θ0. Apart from the er-
godicity of X and some moment conditions, the proofs do not require any explicit
structure of Y up to the

√
nhn-consistency, whereas the form of conditional co-

variance matrix of Y ’s increments is needed for the asymptotic normality (see
(2.7) below); the estimation for parameters possibly involved in Y is out of our
scope, so we do not express the Y ’s possible dependence on θ in the notation.
Existence of an “exogenous” processes contaminating X is allowed; for example,
our result may apply in cases where Y obeys another stochastic differential equa-
tion (then Y may be regarded as an exogenous randomness contaminating the
skeleton dynamics x = (xt)t∈R+ described by dxt = b(xt, θ)dt). Of course, within
this setup the estimates are not efficient in general, however, from a practical
point of view it is often important to obtain an easy-to-use estimate. This point
is the primary contribution of this article. Once the model (the structure of Y )
is fully specified, the classical one-step improvement together with a “better” es-
timating function often leads to a more efficient estimate with rate

√
nhn under

the condition of our Theorem (b).
The rest of this article is organized as follows. The precise framework and the

main result is described in Section 2. Section 3 presents a special important case
where, given the initial element X0, everything is realized on the Wiener-Poisson
space. In Section 4 we consider a concrete model to observe the performance of
the estimates for different decreasing rates of hn. The proofs are given in the
Appendix.

We end this section with some historical remarks and comments. The model
in question is a fairly particular subclass of general “stochastic differential equa-
tions”, which plays an important role for modelling a continuously time-varying
phenomenon, as they are frequently used in many fields of application. How-
ever, quite often real data is sampled at discrete-time points, so that we need to
formulate a “statistical inference for stochastic differential equations from sam-
pled data”. Clearly this is a rather abstract matter because of diversity of the
model. Such studies date back to, at latest, the middle of the 1970s. In the light
of history in this area, there exists an extensive literature on estimating both
drift and diffusion coefficients for diffusion processes, including efficient results
in “smooth” cases. Regarding these points, the reader can consult Prakasa Rao
(1999) and references therein.

The TFE was studied by e.g. Dietz and Kutoyants (1997) for continuously ob-
served diffusion processes and by Kasonga (1990) for a class of discretely observed
diffusions; considering, for example, the ergodic Markovian Ornstein-Uhlenbeck
process driven by a Wiener process, we can notice that the condition of Kasonga
(1990) is not suitable for ergodic cases, so the route we shall take in this article
is different from his, although the same contrast function is used. The study of
the LSE for discrete sampling goes back to Dorogovcev (1976) and Prakasa Rao
(1983), also in case of diffusions.

Recently, inference for processes with jumps based on sampled data has
drawn the attention of statisticians because of the applicability to several kinds
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of realistic data seeming to have a discontinuous path. Nevertheless, much less
than diffusions has been known so far: Shimizu and Yoshida (2005) and Shimizu
(2005) studied asymptotic normality, both dealing with cases where the jump
part of driving noise process is of finite variation. Beyond the Markovian frame-
work (but still with the Markovian-trend structure), no result concerning the
discrete sampling has yet been established. Our present result provides a widely
applicable

√
nhn-consistent estimates for the drift coefficient of the process in

question possibly having infinitely many jumps on every compact time-interval
yielding unbounded variation of the driving noise process.

2. Statement of the result

Let (Ω,�,F = (�t)t≥0, P ) be an underlying complete stochastic basis sat-
isfying the usual hypothesis (e.g., Protter (1990)), on which a d-dimensional
zero-mean F -adapted process Y = (Yt)t∈R+ is endowed. Let Θ ⊂ Rp be an
open convex domain with compact closure, and consider the partly parametrized
model X given by (1.1) with �0-measurable initial element X0. As was men-
tioned at the beginning, we have only sampled data (Xtni

)ni=0. Hereafter we write
∆n

i t = tni − tni−1. Let θ0 ∈ Θ denote the true value, which induce the true image
measure P η

0 of X associated with initial distribution η. Throughout this article,
any order symbol is used for n → ∞.

2.1. Two contrast functions
We introduce the set of auxiliary processes {X̄i,t(θ) : t ∈ [tni−1, t

n
i )}ni=1 defined

by {
dX̄i,t(θ) = b(X̄i,t(θ), θ)dt, t ∈ [tni−1, t

n
i ),

X̄i,tni−1
(θ) = Xtni−1

,
(2.1)

and then consider the function Φn(θ) = Φn(θ; (Xtni
)ni=0) given by

Φn(θ) =

n∑
i=1

|Xtni
− X̄i,tni

(θ)|2.

Let (θ̃n) be any sequence such that Φn(θ̃n) ≤ Φn(θ0) + oP η
0
(nh2

n). We call

θ̃n the trajectory-fitting estimate (TFE) for θ0. We also consider Ψn(θ) =
Ψn(θ; (Xtni

)ni=0) given by

Ψn(θ) =
n∑

i=1

|Xtni
−Xtni−1

− b(Xtni−1
, θ)∆n

i t|2,(2.2)

and similarly define the least-squares estimate (LSE) θ̂n by any sequence sat-
isfying Ψn(θ̂n) ≤ Ψn(θ0) + oP η

0
(nh2

n). The LSE is convenient when (2.1) is not
explicitly solvable. There is an obvious simple relation between Φn(θ) and Ψn(θ),
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that is, according to the usual Euler scheme for ordinary differential equations,
we have

X̄i,tni
(θ) = Xtni−1

+ b(Xtni−1
, θ)∆n

i t + O(h2
n), P η

0 -a.s.,(2.3)

for all θ, under rather mild regularity of (x, θ) �→ b(x, θ) and non-explosivity of
X.

In the Appendix an asymptotic equivalence between Φn(θ) and Ψn(θ) as
well as between their derivatives will be given. Especially, (C.3) in the Appendix
says that, as soon as (nh3

n)−1/2∇θΨn(θ0) weakly tends to some limit and the
rate condition nh3

n = o(1) holds, θ̃n and θ̂n have the same asymptotic property
up to the first order. In this sense one may bring redundancy of θ̃n to his/her
mind. But there is no “absolute” order of superiority between TFE and LSE.
Our numerical experiments given in Section 4 show that θ̃n may provide a better
finite-sample performance than θ̂n, and vice versa: roughly speaking, θ̃n (resp.
θ̂n) provides a better performance than θ̂n (resp. θ̃n) for slower (resp. faster)
decreasing rates of hn.

2.2. Assumptions and main result
We shall use the following notation: Eη

0 [f ] =
∫
fdP η

0 for any P η
0 -integrable

function f ; C stands for a positive constant independent of n, An � Bn implies
An ≤ CBn with C possibly varying from line to line, and An � Bn means
that there exists C such that C−1 ≤ An/Bn ≤ C for each n; ∇a denotes the
gradient operator with respect to a variable a; Rk⊗l stands for the set of all
k × l matrices with real entries; ‖F‖∗,qI = sups∈I |Fs|q for any interval I ⊂ R+,
constant q > 0, and process F ; finally, ∆b(t, s; θ) = b(Xt, θ) − b(Xs, θ) and
∆b(t; θ, θ′) = b(Xt, θ) − b(Xt, θ

′).

Assumption 1. The function (x, θ) �→ b(x, θ) is of class C2,2, the possible
derivatives fulfilling supθ∈Θ |∇k

x∇l
θb(x, θ)| � (1 + |x|)C , and moreover

supx∈Rd,θ∈Θ |∇xb(x, θ)| < ∞.

Assumption 2. The stochastic integral equation (1.1) admits a unique
solution X, and the process (X,Y ) is Lq(P η

0 )-bounded for every q ≥ 2, that is,
supt∈R+

‖(Xt, Yt)‖Lq(P η
0 ) < ∞ for every q ≥ 2. Moreover, for every q ≥ 2 there

exists a positive bounded sequence ∆q,n = O(hn) such that hq
n/∆q,n = o(1), and

that

sup
1≤i≤n

Eη
0 [‖Y − Ytni−1

‖∗,q(tni−1,t
n
i ]] � ∆q,n.(2.4)

Assumption 3. There exist numbers p′ ≥ p′′ > p and a positive bounded
sequence εn = o(1) such that, for every θ1, θ2 ∈ Θ,

Eη
0



∣∣∣∣∣ 1

nh2
n

n∑
i=1

(∆n
i t)∆b(Xtni−1

; θ1, θ2)
�(Ytni

− Ytni−1
)

∣∣∣∣∣
p′

 � εn|θ1 − θ2|p

′′
.
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Also, it holds that

1√
nh3

n

n∑
i=1

(∆n
i t)∇θb(Xtni−1

, θ0)
�(Ytni

− Ytni−1
) = OP η

0
(1).

Assumption 4. X admits an invariant probability measure π0 (generally
depending on θ0, but not on η), for which

T−1

∫ T

0
F (Xt)dt

P η
0−→ π0(F )(2.5)

as T → ∞ for any π0-integrable function F on Rd.

Assumption 5. It holds that b(x, θ) = b(x, θ′), π0-a.e., if and only if θ = θ′.

Assumption 6. Let the random variables mn
i and vni respectively denote

the conditional mean vector and covariance matrix of Ytni
− Ytni−1

given �tni−1
.

Then

1√
nh3

n

n∑
i=1

(∆n
i t)∇θb(Xtni−1

, θ0)
�mn

i−1 = oP η
0
(1),(2.6)

1

nh3
n

n∑
i=1

(∆n
i t)

2∇θb(Xtni−1
, θ0)

�vni ∇θb(Xtni−1
, θ0)

P η
0−→ Σ0,(2.7)

where Σ0 ∈ Rp⊗p is nonrandom.

Define Γ(θ) = [Γ(θ)ij ]pi,j=1 : Θ → Rp⊗p by

Γ(θ)ij =

d∑
l=1

∫
∇θib

l(x, θ)∇θjb
l(x, θ)π0(dx).(2.8)

Our main result is the following, whose proof is postponed to the Appendix.

Theorem. Fix any θ0 ∈ Θ, and suppose hn → 0, tnn → ∞,

max
1≤i≤n

|∆n
i t− hn| = o(hn) and tnn � nhn.(2.9)

Then we have the following.
(a) Under Assumptions 1 to 5, θ̃n and θ̂n are weakly consistent under P η

0 .
(b) Further suppose that nh3

n = O(1), that nhα
n → ∞ for some constant

α ∈ (1, 3), and that there exists q′ ≥ 2 such that nhn(∆q′,n)2/q
′

= O(1).
Moreover , suppose Γ(θ0) is nonsingular. Then the sequences {

√
nhn(θ̃n −

θ0)}n∈N and {
√
nhn(θ̂n − θ0)}n∈N are P η

0 -tight.
(c) Further suppose Assumption 6, that Γ(θ0) is non-singular , and nhn∆2,n =

o(1). Then



152 HIROKI MASUDA

√
nhn(θ̃n − θ0)

�(P η
0 )−−−−→ �p(0,Γ(θ0)

−1Σ0Γ(θ0)
−1�),(2.10)

and
√
nhn(θ̂n − θ0) has the same weak limit.

Remark 1. The rate condition (2.9) is set just for technical reasons. The
second one implies that nhn → ∞ under tnn → ∞. Of course, the equidistant
sampling (i.e. hn = ∆n

i t for every i) is the case.

Remark 2. Under the assumptions, π0(f) < ∞ for every measurable f of
at most polynomial growth. To the knowledge of the author, how to identify π0 in
general is a difficult matter and has not been solved even for diffusion with jumps
except for Lévy-driven Ornstein-Uhlenbeck processes. This is an important issue
for direct use of Theorem (c), although the

√
nhn-consistency can be verified

without identifying π0.

Remark 3. Assumption 4 concerning the “ergodicity” of X is essential in
our framework. Such a property of stochastic processes is of independent interest,
and closely related to the operator-based ergodic theory. Our result may apply
to, for example, cases where we do not know whether X itself is ergodic or not,
but instead we know that (X,Y ′) with some process Y ′ is ergodic. In particular,
if (X,Y ′) is Markovian, then we can utilize a well-developed stability theory for
Markov processes (see the references cited in Masuda (2004)) to get the ergodic
theorem for (X,Y ′), and then we have the ergodic theorem for X as well through
a projection-type function F (x, y′) = F1(x) in (2.5). See Example 3.2 below for
such an example.

Remark 4. Under Assumption 2, Gronwall’s inequality yields

Eη
0 [‖X −Xtni−1

‖∗,q(tni−1,t
n
i ]] � hq

n + Eη
0 [‖Y − Ytni−1

‖∗,q(tni−1,t
n
i ]]

� hq
n + ∆q,n � ∆q,n.

If ∆q,n rapidly decreases and the convergence (2.5) takes place P η
0 -a.s., then we

may strengthen the assertion Theorem (a) to a strong consistency, mimicking the
argument of Kasonga (1988). However, such cases do not occur in the presence of
jumps: e.g., if X is a diffusion process with jumps, then ∆q,n = O(hn) whatever q
is large, see Appendix E. When X is a diffusion-type process with Markovian drift
coefficient and possibly non-Markovian diffusion coefficient, ∆q,n may decrease
rapidly by taking q large.

Remark 5. In order to utilize the asymptotic normality (2.10), Γ(θ0) and
Σ0 should be estimated. Claim C.1 in the Appendix (a uniform law of large
numbers) says that

Γ̂n :=
1

2nh2
n

∇2
θΨ(θ̂n)

P η
0−→ Γ(θ0).(2.11)
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Hence Γ̂n can serve as an explicit estimator of Γ(θ0), without any knowledge of
π0 (recall Remark 2). Moreover, when Σ0 is of the form

Σ0 =

∫
H(x, θ0)π0(dx)

for some measurable H : Rd × Θ → Rp⊗p like (3.5) in Example 3.1 below, we
can utilize the uniform law of large numbers in order to ensure that

Σ̂n :=
1

n

n∑
i=1

H(Xtni−1
, θ̂n)

P η
0−→ Σ0(2.12)

as is the case with (2.11). Of course, H here must be smooth enough to fulfill the
conditions corresponding to [U1] to [U3] in Claim B.2 in Appendix B. So, in this
case Σ0 can be also estimated without specifying π0. Unfortunately, it is not clear
how to construct an estimator of Σ0 in our general setup. For example, Σ0 of
(3.9) in Example 3.2 below involves integration with respect to y′ corresponding
to the unobservable variables (Y ′

tni
)ni=0, so that we cannot follow the same line as

(2.11) and (2.12). We shall not pursue this in this article.

3. Wiener-Poisson-driven case

In this section we shall consider Y belonging to a class of martingales. Let
the underlying basis equip an rw-dimensional standard Wiener process w and a
Poisson random measure {µ(I, E); I ⊂ R+, E ⊂ Rrµ\{0}} with corresponding
Lévy measure ν. Suppose that∫

|z|>1
|z|qν(dz) < ∞ for every q > 0,(3.1)

so that the process Jt =
∫ t
0

∫
zµ̃(ds, dz), where µ̃ = µ − ν, is an rµ-dimensional

zero-mean Lévy process of pure-jump type. Let M = M c +Md be an F -adapted
d-dimensional martingale, where

M c
t =

∫ t

0
σsdws and Md

t =

∫ t

0
ζs−dJs

with predictable processes σ = (σi
j)1≤i≤d,1≤j≤rw and ζ = (ζij)1≤i≤d,1≤j≤rµ . The

X considered is given by

Xt = X0 +

∫ t

0
b(Xs, θ)ds + M c

t + Md
t ,(3.2)

where σ and ζ may depend on the history of X as well as of (w, µ), so that the
solution to (3.2) may be non-Markovian. We shall implicitly exclude the trivial
case, (σ, ζ) ≡ 0.

The setting given above is still too general to go forward, and we now set
the following ad-hoc assumption. Denote by ‖ · ‖∞ the sup-norm with respect to
ω ∈ Ω and t ∈ R+.
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Assumption WP. For κ = σ and ζ, there exist a finite signed measure
rκ on (−∞, 0], finite F -adapted processes κ(1) and κ(2), and a globally Lipschitz
measurable function Fκ : Rd → Rd, for which κ is represented as

κt = κ
(1)
t

∫
(−t,0]

Fκ(Xt+u)rκ(du) + κ
(2)
t ,(3.3)

where ‖κ(1)‖∞ < ∞, ‖κ(2)‖∗,qI < ∞ for every q > 0 and compact I ⊂ R+. Here,
κ(1), κ(2), Fκ and rκ themselves do not depend on X, that is, κ depends on X
through the function Fκ(·) only.

The underlying stochastic basis here is the enlarged Wiener-Poisson space
on which the initial process (Xt)t∈[−Dδ,0] is attached. We then obtain:

Lemma 3.1. Suppose that supt∈R+
‖Xt‖Lq(P η

0 ) < ∞ for every q ≥ 2. Then
Assumptions 2 with ∆q,n = hn (q ≥ 2) and 3 are implied by Assumption WP.

See Appendix E for the proof of Lemma 3.1. Given hn, it is easy to check the
remaining conditions on the decreasing rate of hn in Theorem (b). The reason
why we set the Lq(P η

0 )-boundedness of X is that the (functional-type) Lipschitz
structure of the coefficients and (3.1) are not sufficient to obtain the boundedness.
A simple example of κ of (3.3) is κt =

∑D
l=0 Fκ(Xt−lδ) for some constant δ > 0

and D ∈ N .
Assumption 5 can be easily checked for each given b(x, θ). As for Assumption

4, we do not know any general answer, and we here go no further than mentioning
how to verify it in two examples (Examples 3.1 and 3.2 below). Turning to
Assumption 6, (2.6) is automatic whereas (2.7) is left to be considered. The
isometry of Itô’s stochastic integrals and the orthogonality between M c and Md

yield

vni =

∫ tni

tni−1

Eη
0 [σ⊗2

s |�tni−1
]ds +

∫ tni

tni−1

Eη
0

[
ζs

(∫
z⊗2ν(dz)

)
ζ�s

∣∣∣∣ �tni−1

]
ds,(3.4)

where v⊗2 = vv�. The expression (3.4) implies that, in order to identify Σ0 we
should furthermore get knowledge about κ(l), Fκ, and rκ to some extent. So it is
not clear whether Assumption WP and Assumption 4 are sufficient for (2.7) in
general. Nevertheless, in Markovian cases we have the following (see Appendix E
for the proof):

Lemma 3.2. Suppose that X is a diffusion with jumps, say σs = σ(Xs)
and ζs = ζ(Xs), where σ and ζ are C1-functions on Rd with bounded partial
derivatives. If Assumption 4 is additionally met , Assumption 6 holds true with

Σ0 =

∫
∇θb(x, θ0)

�σ(x)⊗2∇θb(x, θ0)π0(dx)

+

∫
∇θb(x, θ0)

�ζ(x)

(∫
z⊗2ν(dz)

)
ζ(x)�∇θb(x, θ0)π0(dx).(3.5)
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We end this section with two examples.

Example 3.1. (Markovian case) Let X be given by

dXt = b(Xt)dt + σ(Xt)dws +

∫
ζ(Xt−, z)µ̃(dt, dz).(3.6)

The appropriate regularity conditions on the coefficients (b, σ, ζ) as well as on
the Lévy measure ν (here possibly

∫
|z|≤1 |z|ν(dz) = ∞) may lead to Assumption

4 and the Lq(P η
0 )-boundedness of X (see Masuda (2004b, 2005) for details). If

ζ(x, z) = ζ(x)z (though this is not essential), Σ0 is given by (3.5). When X
is a Lévy-driven Ornstein-Uhlenbeck process (i.e., b(x, θ) = θ1 − θ1x, σ(x) is
a constant non-negative definite matrix, and ζ(x, z) = z), we can identify π0,
which is necessarily operator-selfdecomposable, and it is also possible to give
π0 beforehand; we know that all the Assumptions are then fulfilled as soon as∫
|x|pη(dx) < ∞ for every p > 0 (see Masuda (2004a) and references therein).

For model (3.6), Shimizu and Yoshida (2005) proved the first order efficiency of
an approximate maximum-likelihood type estimate in case where ν(Rrµ) < ∞
and the probability of occurrence of small jumps is small in a certain sense.

Example 3.2. (Filtering model; a non-Markovian case) Here is an example
in which (X,Y ′) is ergodic for some process Y ′. This example is a continuous-
time analogue of autoregressive processes with autocorrelated error in the context
of time-series analysis. As mentioned in Remark 3, in this case we can get the
ergodic theorem for X: taking F (x, y′) = F1(x) in (2.5) for any π0-integrable F1

and denoting by πX
0 (dx) = π0(dx,R

d2) the invariant probability measure of X,
where d2 is the dimension of Y ′ and π0 the invariant probability measure of the
process (X,Y ′), we have

T−1

∫ T

0
F1(X

1
t )dt

P η
0 -a.s.−−−−→ πX

0 (F1).(3.7)

Now let Z1 and Z2 be two zero-mean Lévy processes taking values respectively
in Rr1 and Rr2 and admitting moments of any order at time 1 (hence at any
t ∈ R+). Let Y ′

t =
∫ t
0 ζ(Y

′
s−)dZ2

s with some ζ : Rd2 → Rd2⊗r2 . Suppose then
(X,Y ′) satisfies

(
dXt

dY ′
t

)
=

(
b(Xt, θ)

0

)
dt +

(
ξ(Xt−, Y ′

t−) Bζ(Y ′
t−)

0 ζ(Y ′
t−)

)(
dZ1

t

dZ2
t

)
(3.8)

for some b : Rd1 × Θ → Rd1 , ξ : Rd1 × Rd2 → Rd1⊗r1 , and constant matrix
B ∈ Rd1⊗d2 . We suppose that the available data is not (Xtni

, Y ′
tni

)ni=0, but (Xtni
)ni=0

only. In this case the target X is dXt = b(Xt, θ)dt + dYt with d1-dimensional
martingale Y =

∫ ·
0 ξ(Xs−, Y ′

s−)dZ1
s +BY ′; X is not necessarily Markovian, while

(X,Y ′) is. With good property of the coefficient of (dZ1, dZ2) that induces the
irreducibility of (X,Y ′), the result of Masuda (2004b, 2005) may be used to
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verify Assumption 4, and Theorem (b) may apply. Especially, if the coefficient
of (dZ1, dZ2) is smooth enough to yield an expansion of the form

Eη
0 [(Ytni

− Ytni−1
)⊗2 | �tni−1

] = hnΥ(Xtni−1
, Y ′

tni−1
) + ōP η

0
(hn)

for some Υ : Rd1 × Rd2 → Rd1⊗d1 (see the first paragraph of the Appendix for
the definition of ōP η

0
(·)), then Theorem (c) may also apply with

Σ0 =

∫∫
∇θb(x, θ0)

�Υ(x, y′)∇θb(x, θ0)π0(dx, dy
′).(3.9)

4. The effect of data frequency: a numerical example

In this section we look at finite-sample behaviors of TFE and LSE for differ-
ent decreasing rates of hn in a one-dimensional Markovian case, which belongs
to the Wiener-Poisson-driven case discussed in the previous section.

Let Z be a non-skewed and centered normal inverse Gaussian Lévy motion
with �(Z1) = NIG(α, 0, δ, 0), where α and δ are positive constants; see e.g.
Masuda (2002) and references therein for the details of NIG(α, β, δ, µ)-distri-
bution. Here Z is of pure-jump type with divergent symmetric Lévy measure ν
such that

∫
|z|≤1 |z|ν(dz) = ∞, implying that Z is of infinite variation on every

compact time intervals. We know that E[|Zt|q] < ∞ for every t ∈ R+ and q > 0.
Then consider X given by

dXt = −θXtdt +

(
1 +

1

1 + X2
t

)
dZt.(4.1)

Suppose θ0 > 0. If nh2
n = o(1), all the required assumptions are fulfilled with η

satisfying
∫
|x|qη(dx) < ∞ for every q > 0, ∆q,n = hn (for every q ≥ 2); also we

have

Σ0 =

(∫
z2ν(dz)

){∫
x2(x2 + 2)2(1 + x2)−2π0(dx)

}
, Γ(θ0) =

∫
x2π0(dx).

The estimates are explicitly given by

θ̃n = − 1

hn
log

(∑n
i=1 Xtni

Xtni−1∑n
i=1 X

2
tni−1

)
and

θ̂n = − 1

hn

(∑n
i=1 Xtni

Xtni−1∑n
i=1 X

2
tni−1

− 1

)
.

(4.2)

Note that nh2
n = O(1) is sufficient for the tightness of the estimates; take q′ = 2

in Theorem (b).
For simulation we set θ0 = 3, (α, δ) = (3, 3), and X0 = 0, in which case

Var[Zt] = t though �(Zt) has much heavier tails than N(0, t), the case of Wiener
process; specifically, the density behaves as |x|−3/2 exp(−3|x|) for |x| → ∞. Also
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we set hn = ∆n
i t = ∆n−γ for every i and some γ > 0 and ∆ > 0. The sample

paths of X were simulated via the Euler scheme (cf. Jacod and Protter (1998,
Section 6)) with generating mesh in each simulation being hn/100. At each stage
we simulated 1000 independent trajectories of X, and then computed the mean,
standard deviation, and sample MSE of the estimates; it seems quite hard to
give theoretical expressions for the bias and MSE of the estimates. We chose
γ = 0.3, 0.5 and 0.8 for the decreasing rate of hn. Note that for γ = 0.3 we do
not know whether the tightness holds true or not in our context, while the weak
consistency is valid as soon as hn → 0. Also, only γ = 0.8 leads to the asymptotic
normality.

The results are given in Table 1. In all trials except for the starred case,
the quantity

∑n
i=1 Xtni

Xtni−1
/
∑n

i=1 X
2
tni−1

was positive so that the corresponding

TFE were indeed well-defined; in the case of (γ,∆, n) = (0.3, 5, 500), there was
11 exceptions, so we reported the remaining independent 989 estimates. It is
clear from the table that TFE remarkably dominates LSE for γ = 0.3, whereas
LSE becomes better as γ increases. TFE (resp. LSE) seems convenient when
the observation times are moderately sparse (resp. dense), although there is no

Table 1. TFE θ̃n (left) and LSE θ̂n (right) for (4.1). The true value is θ0 = −3.

γ ∆ n Simulated mean S.D. Sample MSE

0.3 0.5 500 −3.0410 −2.7042 0.6383 0.5661 0.1677 0.1902

1000 −3.0358 −2.7611 0.5477 0.4973 0.0913 0.1183

1.0 500 −3.0584 −2.4302 0.5801 0.4565 0.1167 0.3680

1000 −3.0180 −2.5084 0.4882 0.4030 0.0572 0.2680

3.0 500 −3.0801 −1.6287 0.6283 0.3012 0.1622 1.8886

1000 −3.0305 −1.8014 0.4897 0.2755 0.0584 1.4425

5.0 500∗ −3.1872 −1.1671 0.8722 0.2412 0.6136 3.3628

1000 −3.0789 −1.3545 0.5937 0.2214 0.1305 2.7102

0.5 0.5 500 −3.1300 −3.0183 0.8203 0.7901 0.4697 0.3900

1000 −3.0923 −3.0154 0.7579 0.7386 0.3384 0.2978

1.0 500 −3.0600 −2.8550 0.7092 0.6606 0.2565 0.2114

1000 −3.0579 −2.9125 0.6257 0.5955 0.1566 0.1334

3.0 500 −3.0398 −2.4914 0.5757 0.4681 0.1114 0.3067

1000 −3.0176 −2.6219 0.5028 0.3781 0.0642 0.1788

5.0 500 −3.0340 −2.1970 0.5704 0.4038 0.1070 0.6715

1000 −3.0135 −2.3946 0.4798 0.3774 0.0532 0.3868

0.8 0.5 500 −3.7232 −3.6916 1.4578 1.4441 5.0394 4.8270

1000 −3.5976 −3.5809 1.4094 1.4022 4.3026 4.2035

1.0 500 −3.3340 −3.2896 1.1629 1.1452 1.9404 1.8039

1000 −3.3314 −3.3064 1.1193 1.1101 1.6793 1.6256

3.0 500 −3.1134 −3.0098 0.8446 0.8160 0.5217 0.4436

1000 −3.1296 −3.0695 0.8038 0.7879 0.4343 0.3902

5.0 500 −3.0885 −2.9170 0.7465 0.7054 0.3170 0.2544

1000 −3.0832 −2.9883 0.6947 0.6730 0.2398 0.2052
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measure in practice for “sparsity” of sampling schemes which should be carefully
determined by taking the data characteristic in question into account.

Appendix: Proof of Theorem

Write θ = (θa)
p
a=1, and ξk for the k-th component of any random vector ξ.

In order to avoid possible misreading of gradient operators, we specifically write
∇[1]B(x(θ), θ) = ∇xB(x, θ)|x=x(θ) and ∇[2,a]B(x(θ), θ) = ∇θaB(x, θ)|x=x(θ) for
any function of θ of the form (x(θ), θ) �→ B(x(θ), θ). For a sequence of random
variables (Hn(θ)) depending on θ and for a nonrandom positive sequence (an), we
write Hn(θ) = ōP η

0
(an) and Hn(θ) = ŌP η

0
(an) if supθ∈Θ Eη

0 [|Hn(θ)/an|q] = o(1)

and supθ∈Θ Eη
0 [|Hn(θ)/an|q] = O(1) for every q > 0, respectively. In what fol-

lows we shall use Taylor’s formula and Hölder and Gronwall-Bellman inequalities
without notice.

Appendix A: “Elementary properties of the auxiliary function”
We begin with preparing simple almost sure expansions concerning auxiliary

sequence (X̄i,tni
(θ))ni=1, which later enable us to unify the proofs for TFE and

LSE.

Lemma A.1. Under Assumptions 1 and 2, we have

X̄i,tni
(θ) = Xtni−1

+ b(Xtni−1
, θ)∆n

i t + ŌP η
0
(h2

n),(A.1)

∇θaX̄i,tni
(θ) = ∇θab(Xtni−1

, θ)∆n
i t + ŌP η

0
(h2

n),(A.2)

∇2
θbθa

X̄i,tni
(θ) = ∇2

θbθa
b(Xtni−1

, θ)∆n
i t + ŌP η

0
(h2

n),(A.3)

P η
0 -a.s., for every i ∈ {1, . . . , n}, a, b ∈ {1, . . . , p}, and θ ∈ Θ.

Proof. Since supθ∈Θ,t∈[tni−1,t
n
i ) |X̄i,t(θ)| � (1 + |Xtni−1

|), P η
0 -a.s., it follows

from the definition (2.1) and Assumption 1 that X̄i,tni
(θ) = Xtni−1

+

b(Xtni−1
, θ)∆n

i t + rni (θ)(∆n
i t)

2, where

rni (θ) =

∫ 1

0

∫ 1

0
u{∇[1]b(X̄i,s(θ), θ)b(X̄i,s(θ), θ)} |s=uvhn+tni−1

dudv.

Clearly supθ∈Θ |rni (θ)| � (1 + |Xtni−1
|), hence we get (A.1). Also we have

∇θaX̄
k
i,tni

(θ) =

∫ tni

tni−1

[∇[1]b
k(X̄i,s(θ), θ)][∇θaX̄i,s(θ)]ds

+

∫ tni

tni−1

∇[2,a]b
k(X̄i,s(θ), θ)ds,(A.4)

∇2
θbθa

X̄k
i,tni

(θ) =

∫ tni

tni−1

{[∇θaX̄i,s(θ)]
�[∇2

[1]b
k(X̄i,s(θ), θ)][∇θbX̄i,s(θ)]
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+ [∇[1]b
k(X̄i,s(θ), θ)][∇2

θbθa
X̄i,s(θ)]

+ [∇[1]∇[2,a]b
k(X̄i,s(θ), θ)][∇θbX̄i,s(θ)]}ds

+

∫ tni

tni−1

∇[2,b]∇[2,a]b
k(X̄i,s(θ), θ)ds(A.5)

for every k ∈ {1, 2, . . . , d}, from which we obtain supθ∈Θ,t∈[tni−1,t
n
i ) |∇θaX̄i,t(θ)| �

hn(1 + |Xtni−1
|)C and supθ∈Θ,t∈[tni−1,t

n
i ) |∇2

θbθa
X̄i,t(θ)| � hn(1 + |Xtni−1

|)C . From

this, the first terms of the right-hand sides of (A.4) and (A.5) can be bounded
by a polynomial of |Xtni−1

|, uniformly in θ ∈ Θ. Then expanding s �→
∇[2,a]b

k(X̄k,s(θ), θ) and s �→ ∇[2,b]∇[2,a]b
k(X̄k,s(θ), θ) around tni−1 yields (A.2)

and (A.3). �

Appendix B: “Proof of (a)”
Define contrast functions associated with TFE and LSE by

KΦ
n (θ) =

1

nh2
n

(Φn(θ) − Φn(θ0)) and KΨ
n (θ) =

1

nh2
n

(Ψn(θ) − Ψn(θ0)),

respectively. We fix θ0 ∈ Θ arbitrarily in what follows. Define K0 : Θ → R+ by

K0(θ) =

∫
|b(x, θ) − b(x, θ0)|2π0(dx).(B.1)

Assumption 5 implies that K0(θ) = 0 if and only if θ = θ0. According to the
standard argument (see, e.g., van der Vaart (1998, Chapter 5)), the assertion (a)

then follows if we prove supθ∈Θ |ΞΛ
n(θ)| P η

0−→ 0 as n → ∞ for Λ = Φ and Ψ, where

ΞΛ
n(θ) =

1

nh2
n

(Λn(θ) − Λn(θ0)) −K0(θ).

(Note that we have KΦ
n (θ̃n) ≤ KΦ

n (θ0)+oP η
0
(1) and KΨ

n (θ̂n) ≤ KΨ
n (θ0)+oP η

0
(1).)

However, by the definitions of Φn and Ψn we have

sup
θ∈Θ

|ΞΦ
n (θ)| � sup

θ∈Θ
|ΞΨ

n (θ)| + I1
n + I2

n,(B.2)

where, writing χn
i (θ) = Xtni

−Xtni−1
− b(Xtni−1

, θ)∆n
i t,

I1
n = sup

θ∈Θ

∣∣∣∣∣ 1

nh2
n

n∑
i=1

(∆n
i t)

4{|rni (θ)|2 − |rni (θ0)|2}
∣∣∣∣∣ ,

I2
n = sup

θ∈Θ

∣∣∣∣∣ 1

nh2
n

n∑
i=1

(∆n
i t)

2{χn
i (θ0)

�rni (θ0) − χn
i (θ)�rni (θ)}

∣∣∣∣∣ .
Now it suffices to show the following claims:

Claim B.1. maxj=1,2 I
j
n

P η
0−→ 0 as n → ∞.
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Claim B.2. There exists p′ ≥ p′′ > p such that for every θ1, θ2 ∈ Θ: [U1]

ΞΨ
n (θ1)

P η
0−→ 0; [U2] supn∈N Eη

0 [|ΞΨ
n (θ1)|p

′
] � 1; and [U3] supn∈N Eη

0 [|ΞΨ
n (θ1) −

ΞΨ
n (θ2)|p

′
] � |θ1 − θ2|p

′′
.

Claim B.1 means that it suffices to prove supθ∈Θ |ΞΨ
n (θ)| P η

0−→ 0, which is

slightly simpler to handle than supθ∈Θ |ΞΦ
n (θ)| P η

0−→ 0, and this uniform conver-
gence is in turn ensured by Claim B.2 (see Ibragimov and Has’minskǐı (1981,
Appendix I. Theorem 20)).

Proof of Claim B.1. We are going to show Eη
0 [Ijn] → 0 for j = 1, 2. For

I1
n, we readily get

Eη
0 [I1

n] � h2
n

n

n∑
i=1

Eη
0 [(1 + |Xtni−1

|)C ] � h2
n = o(1)

by Assumptions 1 and 2 together with what we have seen in the proof of Lemma
A.1. Next we consider I2

n. Notice that Eη
0 [I2

n] � c2,1n + c2,2n , where

c2,1n =
1

n

n∑
i=1

Eη
0

[
|χn

i (θ0)|
(

sup
θ∈Θ

|rni (θ0) − rni (θ)|
)]

,

c2,2n =
hn

n

n∑
i=1

Eη
0

[(
sup
θ∈Θ

|∆b(tni−1; θ, θ0)|
)(

sup
θ∈Θ

|rni (θ)|
)]

.

It is clear that c2,2n � hn. As for c2,1n , we first estimate as

c2,1n � 1

n

n∑
i=1

{Eη
0 [|χn

i (θ0)|2]}1/2.

On the other hand we have |χn
i (θ0)| �

∫ tni
tni−1

|Xs −Xtni−1
|ds + Ytni

− Ytni−1
, so that

{Eη
0 [|χn

k(θ0)|2]}1/2

�
{
hn

∫ tni

tni−1

Eη
0 [|Xs|2 + |Xtni−1

|2]ds
}1/2

+ ∆
1/2
2,n � hn + ∆

1/2
2,n � ∆

1/2
2,n

on account of Assumption 2. Therefore we get c2,1n � ∆
1/2
2,n , and this together

with c2,2n � hn yields Eη
0 [I2

n] � ∆
1/2
2,n = o(1). The proof is complete. �

Remark 6. It is possible to show maxj=1,2 I
j
n

P η
0 −a.s.−−−−−→ 0 when∑∞

n=1(∆αq,n)1/α < ∞ (for some α > 1 and sufficiently large q). Indeed, in a

manner similar to the above we can see that Eη
0 [(I1

n)q] � h2q
n and Eη

0 [(I2
n)q] �

(∆αq,n)1/α for every α > 1. Therefore Borel-Cantelli lemma yields the claim.
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Proof of Claim B.2. We begin with [U1] and [U2]. Fix any θ1 ∈ Θ
and any p′ ∈ N greater than p. According to the definition of ΞΨ

n (θ), simple
computations yield Eη

0 [|ΞΨ
n (θ1)|p

′
] � J1

n(θ1) + J2
n(θ1) + J3

n(θ1), where

J1
n(θ1) = Eη

0

[∣∣∣∣ 1

tnn

∫ tnn

0
|∆b(s; θ1, θ0)|2ds−K0(θ1)

∣∣∣∣
p′
]
,

J2
n(θ1) = Eη

0



∣∣∣∣∣ 1

nh2
n

n∑
i=1

(∆n
i t)χ

n
i (θ0)

�∆b(tni−1; θ1, θ0)

∣∣∣∣∣
p′

 ,

J3
n(θ1) = Eη

0



∣∣∣∣∣ 1

nh2
n

n∑
i=1

(∆n
i t)

2|∆b(tni−1; θ1, θ0)|2 −
1

tnn

∫ tnn

0
|∆b(s; θ1, θ0)|2ds

∣∣∣∣∣
p′

 .

From Assumption 4 we know that

1

tnn

∫ tnn

0
|∆b(s; θ1, θ0)|2ds

P η
0−→ K0(θ1).

Also, we have supn∈N J1
n(θ1) � supn∈N (tnn)−1

∫ tnn
0 Eη

0 [|∆b(s; θ1, θ0)|2p
′
]ds + 1 �

1. Therefore (tnn)−1
∫ tnn
0 |∆b(s; θ1, θ0)|2ds

Lp′ (P η
0 )−−−−−→ K0(θ1), implying J1

n(θ1) → 0.
Next, from the assumptions it follows that

J2
n(θ1) � Eη

0



∣∣∣∣∣ 1

nh2
n

n∑
i=1

(∆n
i t)

∫ tni

tni−1

∆b(s, tni−1; θ0)
�∆b(tni−1; θ1, θ0)ds

∣∣∣∣∣
p′



+ Eη
0



∣∣∣∣∣ 1

nh2
n

n∑
i=1

(∆n
i t)(Ytni

− Ytni−1
)�∆b(tni−1; θ1, θ0)

∣∣∣∣∣
p′



� 1

nhn

n∑
i=1

∫ tni

tni−1

(Eη
0 [|Xs −Xtni−1

|αp′ ])1/αds + εn

� (∆αp′,n)1/α + εn = o(1).

In particular, supn∈N J2
n(θ1) � 1. As for J3

n(θ1), we first estimate as follows:

J3
n(θ1) � Eη

0



∣∣∣∣∣ 1

tnn

n∑
i=1

|∆b(tni−1; θ1, θ0)|2∆n
i t−

1

tnn

∫ tnn

0
|∆b(s; θ1, θ0)|2ds

∣∣∣∣∣
p′



+ Eη
0



∣∣∣∣∣ 1

tnn

n∑
i=1

(
tnn∆n

i t

nh2
n

− 1

)
|∆b(tni−1; θ1, θ0)|2∆n

i t

∣∣∣∣∣
p′



� (nhn)p
′−1

(tnn)p′

n∑
i=1

∫ tni

tni−1

Eη
0 [|Xs −Xtni−1

|p′(1 + |Xtni−1
|)C ]ds
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+
np′−1

(tnn)p′

(
max
1≤i≤n

ani

)p′ n∑
i=1

Eη
0 [(1 + |Xtni−1

|)C ]

�
√

∆2p′,n +

(
n

tnn
max
1≤i≤n

ani

)p′

,(B.3)

where we wrote ani = tnn∆n
i t/(nh

2
n) − 1 and partly used the second one of (2.9).

Observe that

n

tnn
max
1≤i≤n

ani � max1≤i≤n |∆n
i t− hn|

hn
+

∣∣∣∣ tnn − nhn

tnn

∣∣∣∣ = o(1) +

∣∣∣∣ tnn − nhn

tnn

∣∣∣∣ .
Moreover, we have∣∣∣∣ tnn − nhn

tnn

∣∣∣∣ ≤ nhn

tnn

|hn − min1≤i≤n ∆n
i t|

hn

� O(1) · max1≤i≤n |∆n
i t− hn|

hn
= O(1)o(1) = o(1).

Thus, from (B.3) we get J3
n(θ1) → 0, and in particular supn∈N J3

n(θ1) � 1. After
all we get Eη

0 [|ΞΨ
n (θ1)|p

′
] → 0 and supn∈N Eη

0 [|ΞΨ
n (θ1)|p

′
] � 1, so the proofs of

[U1] and [U2] are complete.
Now we turn to [U3]. For any θ1, θ2 ∈ Θ, we have

Eη
0 [|ΞΨ

n (θ1) − ΞΨ
n (θ2)|p

′
]

� Eη
0

[∣∣∣∣∣ 1

nh2
n

n∑
i=1

∆b(tni−1; θ2, θ1)
�(∆n

i t){2(Xtni
−Xtni−1

)

− (b(Xtni−1
, θ1) + b(Xtni−1

, θ2))}
∣∣∣∣∣
p′]

+ |K0(θ1) −K0(θ2)|p
′

= A1
n(θ1, θ2) + A2

n(θ1, θ2), say.

Obviously A1
n(θ1, θ2) � {|θ1−θ2|p

′
+ |θ1−θ2|2p

′}
∫

(1+ |x|)Cπ0(dx) � |θ1−θ2|p
′
+

|θ1 − θ2|2p
′
under the assumptions. At the same time, it follows from (1.1) and

the assumptions that

A2
n(θ1, θ2) � Eη

0

[∣∣∣∣∣ 1

nh2
n

n∑
i=1

∆b(tni−1; θ2, θ1)
�(∆n

i t)

{
2

∫ tni

tni−1

∆b(s, tni−1; θ0)ds

+ 2(Ytni
− Ytni−1

)

+ (∆n
i t)(∆b(tni−1; θ0, θ1) + ∆b(tni−1; θ0, θ2))

}∣∣∣∣∣
p′]

� Eη
0



{

1

nhn

n∑
i=1

∫ tni

tni−1

|θ1 − θ2|(1 + |Xtni−1
|)C |Xs −Xtni−1

|ds
}p′


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+ Eη
0



∣∣∣∣∣ 1

nh2
n

n∑
i=1

(∆n
i t)∆b(tni−1; θ2, θ1)

�(Ytni
− Ytni−1

)

∣∣∣∣∣
p′



+ Eη
0



{

1

n

n∑
i=1

|θ1 − θ2|(1 + |Xtni−1
|)C
}p′



� |θ1 − θ2|p
′
(1 + εn + 1) � |θ1 − θ2|p

′
,

hence we are done. �

Appendix C: “Proof of Theorem (b)”
For the proof of

√
nhn-consistency of TFE and LSE, we prepare the following

simple lemma, from which we can again unify the proofs for TFE and LSE.

Lemma C.1. Under Assumptions 1 and 2, we have

∇θaΦn(θ) = ∇θaΨn(θ) + ŌP η
0
(nh3

n),(C.1)

∇2
θbθa

Φn(θ) = ∇2
θbθa

Ψn(θ) + ŌP η
0
(nh3

n),(C.2)

P η
0 -a.s. for every a, b ∈ {1, . . . , p}.

Proof. For convenience, we denote by Rθ(x) : Rd → Rd any function
indexed by θ fulfilling supθ∈Θ |Rθ(x)| � (1+|x|)C ; under the assumptions, clearly
Rθ(Xt) = ŌP η

0
(1) for any t ∈ R+. Recall that X̄i,tni

(θ) = Xtni−1
+b(Xtni−1

, θ)∆n
i t+

rni (θ)(∆n
i t)

2, where all of ∇j
θr

n
i (θ), j = 0, 1, 2, are Rθ(Xtni−1

). From this and
Lemma A.1, we get

∇θaΦn(θ) = ∇θaΨn(θ) − 2
n∑

i=1

(∆n
i t)

2∇θaχ
n
i (θ)�rni (θ) +

n∑
i=1

(∆n
i t)

4∇θa |rni (θ)|2

= ∇θaΨn(θ) + ŌP η
0
(nh3

n) + ŌP η
0
(nh4

n),

where the same way as showing c2,1n � hn in Claim B.1 was used for the middle
term. Hence (C.1) follows, and the proof of (C.2) is similar. �

Recall that θ0 ∈ Θ is presupposed, so that by weak consistency we have
θ̃n ∈ Θ for every n large enough with P η

0 -probability tending to 1. Taking a
subsequence (θ̃nk

) tending P η
0 -a.s. to θ0 and then letting k be sufficiently large,

we may set ∇θΦn(θ̃n) = 0 P η
0 -a.s. for n large enough. Thus the usual expansion

yields

1

2nh2
n

∇2
θΦn(θ∗n)

√
nhn(θ̃n − θ0) = − 1

2
√
nh3

n

∇θΦn(θ0)
�,

where θ∗n is a point on the segment connecting θ̃n and θ0. But Lemma C.1 implies
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that (
1

2nh2
n

∇2
θΨn(θ∗n) + ōP η

0
(1)

)√
nhn(θ̃n − θ0)

= − 1

2
√
nh3

n

∇θΨn(θ0)
� + ŌP η

0
(
√
nh3

n).(C.3)

We have ŌP η
0
(
√
nh3

n) = ŌP η
0
(1) because of the condition nh3

n = O(1). Also, both

of the terms ōP η
0
(1) and ŌP η

0
(1) in (C.3) are identically zero in case of LSE.

What is crucial is the following uniform weak law of large numbers:

Claim C.1. supθ∈Θ |(2nh2
n)−1∇2

θΨn(θ) − Γ(θ)| P η
0−→ 0 with Γ(θ) defined by

(2.8).

Proof. Fix θ ∈ Θ arbitrarily. For every a, b ∈ {1, . . . , p}, we have

1

2nh2
n

∇2
θaθb

Ψn(θ) =
1

nh2
n

n∑
i=1

d∑
j=1

(∆n
i t)

2[∇θab
j(Xtni−1

, θ)][∇θbb
j(Xtni−1

, θ)]

− 1

nh2
n

n∑
i=1

d∑
j=1

(∆n
i t)χ

n,j
i (θ)[∇2

θaθb
bj(Xtni−1

, θ)]

= H1,ab
n (θ) + H2,ab

n (θ), say.

Apply Assumption 4 to conclude that H1,ab
n (θ) tends in P η

0 -probability to Γ(θ)ab,
as in the argument concerning J1

n(θ1) in the proof of Claim B.2. Also, by mim-

icking the proof of J3
n(θ1) = o(1), it is not difficult to show that H2,ab

n (θ) =
ōP η

0
(1). Thus it remains to consider the modulus of continuity of the random

field (H1,ab
n (θ) − Γ(θ)ab)θ∈Θ. Assumption 1 ensures |∇θab

j(x, θ1)∇θbb
j(x, θ1) −

∇θab
j(x, θ2)∇θbb

j(x, θ2)|p
′ ≤ (1 + |x|)C |θ1 − θ2|p

′
for any θ1, θ2 ∈ Θ and p′ > p.

Therefore we have Eη
0 [|H1,ab

n (θ1) − H1,ab
n (θ2)|p

′
] + Eη

0 [|Γ(θ1)
ab − Γ(θ2)

ab|p′ ] �
|θ1 − θ2|p

′
, as desired. �

Now we introduce some notation as follows:

λn =
√
nhn(θ̃n − θ0),

Γn =
1

2nh2
n

∇2
θΨn(θ∗n),

Σn = − 1

2
√
nh3

n

∇θΨn(θ0)
�.

The tightness of (λn) is implied by existence of a tight sub-subsequence of any
subsequence of (λn); e.g. Kallenberg (1997, Proposition 4.27). Take any sub-
sequence (n′) ⊂ N , then the consistency of θ̃n and the continuity of θ �→
Γ(θ) together with Claim C.1 imply that we can find a further subsequence
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(n′′) ⊂ (n′) along which Γn′′
P η

0 −a.s.−−−−−→ Γ(θ0). Without loss of generality we may
take (n′′) as an increasing sequence. By the presupposed non-degeneracy of
Γ(θ0), we may suppose that Γ̄m := Γm + ōP η

0
(1), which corresponds to the term

(2nh2
n)−1∇2

θΨn(θ∗n) + ōP η
0
(1) in the left-hand side of (C.3), is bounded and non-

degenerate for every m ∈ (n′′) large enough. Taking a tail of the increasing
sequence (n′′), we may suppose that (Γ̄m) is bounded and non-degenerate uni-
formly in m ∈ (n′′), so that supm∈(n′′) |Γ̄−1

m | � 1, P η
0 -a.s. From (C.3) we then

have λm = Γ̄−1
m {Σm + O(1)}, m ∈ (n′′), P η

0 -a.s., hence the proof is complete if
we prove that the sequence (Σn)n∈N is tight. This can be seen as follows. We
have Σn = Σ1

n + Σ2
n, where

Σ1
n =

n∑
i=1

∆n
i t√
nh3

n

∫ tni

tni−1

∇θb(Xtni−1
, θ0)

�∆b(s, tni−1; θ0)ds,

Σ2
n =

n∑
i=1

∆n
i t√
nh3

n

∇θb(Xtni−1
, θ0)

�(Ytni
− Ytni−1

).

But, under Assumption 2 we see that Eη
0 [|Σ1

n|] �
√
nhn(∆q′,n)1/q

′
= O(1) (q′ ≥

2), therefore (Σ1
n)n∈N is tight in view of Markov’s inequality. This together with

Assumption 3 implies the tightness of Σn, completing the proof.

Appendix D: “Proof of Theorem (c)”
According to (C.3) and Claim C.1, it suffices to show that Σn weakly tends

to �p(0,Σ0) under P η
0 . First, under the condition of Theorem (c) we notice that

Eη
0 [|Σ1

n|] �
1√
nhn

n∑
i=1

∫ tni

tni−1

√
∆2,nds = O(

√
nhn∆2,n) = o(1),

so that Σ1
n = oP η

0
(1). Thus it remains to obtain the central limit theorem for Σ2

n.

Put Σ2
n =

∑n
i=1 B

n
i (θ0). By (2.6), we have

∑n
i=1 B

n
i (θ0) = oP η

0
(1)+

∑n
i=1 C

n
i (θ0),

where

Cn
i (θ0) =

∆n
i t√
nh3

n

∇θb(Xtni−1
, θ0)

�(Ytni
− Ytni−1

−mn
i ).

By virtue of the central limit theorem for multidimensional martingale-difference
triangular arrays (e.g. Shiryaev (1996), p. 543, Theorem 4) combined with the
Cramér-Wald device, it suffices to prove the following: (i)

∑n
i=1 E

η
0 [|Cn

i (θ0)|2+δ |
�tni−1

]
P η

0−→ 0 for some δ > 0; and (ii)
∑n

i=1 E
η
0 [Cn

i (θ0)
⊗2 | �tni−1

]
P η

0−→ Σ0. But (ii)
is ensured by (2.7). On the other hand, under the condition nhα

n → ∞ for some
α ∈ (1, 3), it is not difficult to see that, for δ = 2/(α− 1) > 0,

Eη
0

[∣∣∣∣∣
n∑

i=1

Eη
0 [|Cn

i (θ0)|2+δ | �tni−1
]

∣∣∣∣∣
]
� (nh1+2/δ

n )−δ/2 = o(1).

Hence we get (i), and the proof is thus achieved.



166 HIROKI MASUDA

Appendix E: “Proofs of Lemmas 3.1 and 3.2”
Proof of Lemma 3.1. First we consider Assumption 2. Specifically writ-

ing κ(X) instead of κ, we see that for every Y ′, Y ′′ ∈ D
d (the space of all càdlàg

functions from R+ to Rd),

|κ(Y ′)t − κ(Y ′′)t| ≤ ‖κ(1)‖∞

∣∣∣∣∣
∫

(−t,0]
(Fκ(Y

′
t+u) − Fκ(Y

′′
t+u))rκ(du)

∣∣∣∣∣
�
∫

(−t,0]
|Y ′

t+u − Y ′′
t+u||r|(du)

≤ ‖Y ′ − Y ′′‖∗t , P η
0 -a.s.,

where ‖F‖∗t := sups≤t |Fs|. Therefore Assumptions 1 and WP imply the existence
and uniqueness of the solution process X to (3.2) for every θ ∈ Θ, and moreover
we know that Xt is �0 ∨ σ(wu − wv, Ju − Jv;u, v ∈ [0, t])-measurable for each
t ∈ R+; see, e.g., Protter (1990, Theorem V-7).

Fix a q ≥ 2 arbitrarily in the sequel. Using the assumptions we get

‖κ‖∗,qR+
� sup

t∈R+

Eη
0

[∣∣∣∣∣
∫

(−t,0]
Fκ(Xu+t)rκ(du)

∣∣∣∣∣
q]

+ 1

�
(

1 + sup
s∈R+

Eη
0 [|Xs|q]

)
rκ(−R+) + 1 � 1,

hence the Lq(P η
0 )-boundedness of M = M c + Md follows.

We now turn to the estimate (2.4) of Assumption 2. Put

gq,i(t) = Eη
0 [‖X· −Xtni−1

‖∗,q(tni−1,t]
], t ∈ (tni−1, t

n
i ].(E.1)

For diffusions with jumps such an estimate is rather classical and well known,
however, not so straightforward to obtain in our setup.

We shall utilize the following lemma, which is essentially due to Bichteler
and Jacod (1983, Lemma (A.14)); we here rephrase it just to note the orders of
the upper bounds with respect to hn, all of which are obvious from the original
proofs.

Lemma E.1. Let q ≥ 2.
(a) For a d-dimensional measurable process H, we have

Eη
0



∥∥∥∥∥
∫ ·

tni−1

Hsds

∥∥∥∥∥
∗,q

(tni−1,t
n
i ]


 ≤ hq−1

n

∫ tni

tni−1

Eη
0 [|Hs|q]ds(E.2)

for i = 1, 2, . . . , n.
(b) For a Rd⊗rw-valued predictable process G, we have

Eη
0



∥∥∥∥∥
∫ ·

tni−1

Gsdws

∥∥∥∥∥
∗,q

(tni−1,t
n
i ]


 � hq/2−1

n

∫ tni

tni−1

Eη
0 [|Gs|q]ds(E.3)
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for i = 1, 2, . . . , n.
(c) Let Brµ denote the rµ-dimensional Borel σ-field. For a d-dimensional �⊗Brµ-
measurable process U(s, z) = U(ω; s, z) defined on Ω×R+× (Rrµ\{0}) such that
|U(ω; s, z)| ≤ Ūs(ω)ρ(z) with ξ predictable and ρ ∈ L2(ν) ∩ Lq(ν), we have

Eη
0



∥∥∥∥∥
∫ ·

tni−1

∫
U(s, z)µ̃(ds, dz)

∥∥∥∥∥
∗,q

(tni−1,t
n
i ]


 �

∫ tni

tni−1

Eη
0 [|Ūs|q]ds(E.4)

for i = 1, 2, . . . , n.

Remark 7. The inequalities (E.2) to (E.4) still hold true P η
0 -a.s. for Eη

0 [·]
replaced by the conditional expectation Eη

0 [· | �tni−1
].

Now observe that Assumption 1 and Lemma E.1 yield

gq,i(t) � Eη
0

[∥∥∥∥∥
∫ ·

tni−1

∆b(s, tni−1; θ0)ds

∥∥∥∥∥
∗,q

(tni−1,t]

+ hq
n|b(Xtni−1

, θ0)|q

+

∥∥∥∥∥
∫ ·

tni−1

σsdws

∥∥∥∥∥
∗,q

(tni−1,t]

+

∥∥∥∥∥
∫ ·

tni−1

ζsdJs

∥∥∥∥∥
∗,q

(tni−1,t]

]

� hq−1
n

∫ t

tni−1

gq,i(s)ds + hq
n

+ hq/2−1
n

∫ t

tni−1

Eη
0 [|σs|q]ds +

∫ t

tni−1

Eη
0 [|ζs|q]ds.(E.5)

In view of Assumption WP we see that, for κ = σ and ζ, and for s ≥ tni−1,

|κs|q �
{∫ 0

−s
|Fκ(Xs+u)||rκ|(du)

}q

+ |κ(2)
s |q

�
∫ 0

−s
|Fκ(Xs+u)|q|rκ|(du) + |κ(2)

s |q

�
∫ 0

−(s−tni−1)
|Fκ(Xs+u) − Fκ(Xtni−1

)|q|rκ|(du) + |Fκ(Xtni−1
)|q

+

∫ −(s−tni−1)

−s
|Fκ(Xs+u)|q|rκ|(du) + |κ(2)

s |q

� ‖X −Xtni−1
‖∗,q(tni−1,s]

+ |Fκ(Xtni−1
)|q

+

∫ −(s−tni−1)

−s
|Fκ(Xs+u)|q|rκ|(du) + |κ(2)

s |q,

which in turn yields∫ t

tni−1

Eη
0 [|κs|q]ds �

∫ t

tni−1

gq,i(s)ds + hnE
η
0 [|Fκ(Xtni−1

)|q]
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+

∫ tni

tni−1

∫ −(s−tni−1)

−s
Eη

0 [|Fκ(Xs+u)|q]|rκ|(du)ds

+

∫ tni

tni−1

Eη
0 [|κ(2)

s |q]ds

�
∫ t

tni−1

gq,i(s)ds + hn.(E.6)

Here note that the term “
∫ t
tni−1

gq,i(s)ds” in the upper bound of (E.6) appears

only when Fκ is not identically null. Combine (E.5) and (E.6) to conclude that,

for each i = 1, . . . , n, gq,i(t) � h
q/2
n if ζ ≡ 0, and otherwise gq,i(t) � hn. Using

(E.3) and (E.4) together with (E.6), we get (2.4) with ∆q,n = hn for any q ≥ 2.
As soon as nh2

n = O(1), the condition
√
nhn(∆q′,n)1/q

′
= O(1) in Theorem

(b) is met with q′ = 2.

Remark 8. As evidenced by the above, if ζ(j) ≡ 0, σ(2) ≡ 0 and σ is not
identically null, then it is possible to obtain a more rapidly decreasing rate of
∆q,n (indeed depending on q in this case).

Next we consider Assumption 3. Fix any integer p′ > p such that p′ ≥ 2,
and θ1, θ2 ∈ Θ. Write 1i(s) = 1(tni−1,t

n
i ](s). Then, using Assumption 1, tnn � nhn,

and Lemma E.1, we have

Eη
0



∣∣∣∣∣ 1

nh2
n

n∑
i=1

(∆n
i t)∆b(Xtni−1

; θ1, θ2)
�(Mtni

−Mtni−1
)

∣∣∣∣∣
p′



� (nh2
n)−p′

{
Eη

0



∣∣∣∣∣
∫ tnn

0

n∑
i=1

(∆n
i t)1i(s)∆b(Xtni−1

; θ1, θ2)
�σsdws

∣∣∣∣∣
p′



+ Eη
0



∣∣∣∣∣
∫ tnn

0

n∑
i=1

(∆n
i t)1i(s)∆b(Xtni−1

; θ1, θ2)
�ζsdJs

∣∣∣∣∣
p′


}

� (nh2
n)−p′

{
(tnn)p

′/2−1

×
∫ tnn

0
Eη

0



{

n∑
i=1

1i(s)|∆n
i t||∆b(Xtni−1

; θ1, θ2)
�σs|

}p′

 ds

+

∫ tnn

0
Eη

0



{

n∑
i=1

1i(s)|∆n
i t||∆b(Xtni−1

; θ1, θ2)
�ζs|

}p′

 ds

}

� (nhn)−p′

{
(nhn)p

′/2−1
n∑

i=1

∫ tni

tni−1

Eη
0 [|∆b(Xtni−1

; θ1, θ2)
�σs|p

′
]ds
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+
n∑

i=1

∫ tni

tni−1

Eη
0 [|∆b(Xtni−1

; θ1, θ2)
�ζs|p

′
]ds

}

� (nhn)−p′{(nhn)p
′/2|θ1 − θ2|p

′
+ nhn|θ1 − θ2|p

′}
� (nhn)−p′/2|θ1 − θ2|p

′
,

hence the first statement of 3 is fulfilled with εn = (nhn)−p′/2 and p′′ = p′. All
without distinction, we can get

Eη
0



∣∣∣∣∣ 1√

nh3
n

n∑
i=1

(∆n
i t)(Mtni

−Mtni−1
)∇θb(Xtni−1

, θ0)

∣∣∣∣∣
p′

 � 1,

so that the second statement of Assumption 3 also follows. �

Proof of Lemma 3.2. It is enough to consider component-by-component,
so that without loss of generality we may set d = rw = rµ = p = 1. The
boundedness of the derivatives readily yields∫ tni

tni−1

Eη
0 [κ(Xs)

2 | �tni−1
]ds = κ(Xtni−1

)2∆n
i t(E.7)

+ 2

∫ tni

tni−1

Eη
0

[{∫ 1

0
[κκ′](Xtni−1

+ u(Xs −Xtni−1
))du

}

× (Xs −Xtni−1
)

∣∣∣∣ �tni−1

]
ds

for κ ∈ {σ, ζ} with κ′ denoting the derivative. Hence, writing the last term of
(E.7) as rκ,ni , we get

Eη
0

[∣∣∣∣∣ 1

nh3
n

n∑
i=1

(∆n
i t)

2{∇θb(Xtni−1
, θ0)}2rκ,ni

∣∣∣∣∣
q]

� 1

nhn

n∑
i=1

∫ tni

tni−1

Eη
0 [|∇θb(Xtni−1

, θ0)|q

· Eη
0 [{1 + |Xtni−1

| + |Xs −Xtni−1
|}q|Xs −Xtni−1

|q | �tni−1
]]ds

� (∆αq,n)1/α = o(1)

for every q ≥ 2 and α > 1. Therefore the proof is complete if we show that

1

nh3
n

n∑
i=1

(∆n
i t)

3{∇θb(Xtni−1
, θ0)}2{σ(Xtni−1

)2 + Kζ(Xtni−1
)2}

P η
0−→
∫

{∇θb(x, θ0)}2(σ(x)2 + Kζ(x)2)π0(dx),

where K =
∫
|z|2ν(dz). But this convergence can be verified by virtue of As-

sumption 4 as before (the proof of Claim B.2), hence the desired claim. �
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Lévy process, Bernoulli , 10, 1–24.
Masuda, H. (2004b). Ergodicity and exponential β-mixing bounds for a strong solution of Lévy-
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