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MONTE CARLO SIMULATION
WITH ASYMPTOTIC METHOD

Akihiko Takahashi* and Nakahiro Yoshida**

We shall propose a new computational scheme with the asymptotic method to
achieve variance reduction of Monte Carlo simulation for numerical analysis particu-
larly for finance. We not only provide general scheme of our method, but also show
its effectiveness through numerical examples such as computing optimal portfolio and
pricing an average option. Finally, we show mathematical validity of our method.
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1. Introduction

We propose a new method to increase efficiency of Monte Carlo simulation.
We utilize the analytic approximation based on the asymptotic method to achieve
variance reduction of the Monte Carlo simulation especially for numerical prob-
lems in finance. The idea of the method is as follows. Suppose that F (w) is a
Wiener functional and our objective is the evaluation of the expectation of F (w).
That is,

V := E [F (w)].

A typical estimate of V may be obtained by a naive Monte Carlo simulation
based on Euler-Maruyama approximation. That is,

V (n,N) =
1

N

N∑
j=1

[F (n)]j ,

where [Z]j (j = 1, . . . , N) denote independent copies of the random variable Z,
Z(n) represents a random variable obtained by discretization of Z depending on a
continuous time parameter and n is the number of time points in discretization.
We introduce a modified estimator V ∗(n,N) defined by

V ∗(n,N) = E [F̂ ] +
1

N

N∑
j=1

[F (n) − F̂ (n)]j

where E [F̂ ] is assumed to be analytically known. Intuitively, if we are able
to find F̂ such that the errors of [F (n)]j and [F̂ (n)]j , that is, [F (n)]j − V and
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[F̂ (n)]j − E [F̂ ] take close numerical values for each independent copy j, then
V ∗(n,N) becomes a better estimate since the error of each j in V ∗(n,N) which
is represented by the difference of the errors of [F (n)]j and [F̂ (n)]j becomes small.
As seen below, the asymptotic method (or perturbation method) provides such
F̂ . That is, F̂ obtained by the asymptotic method has a strong correlation with
F , and E [F̂ ] is evaluated analytically.

Variance reduction methods in Monte Carlo simulations arising from finance
has been examined by various authors. (See chapter 4 of Glasserman (2003)
for the detail.) Among them, our method may be somewhat similar to the
control variate technique. (For instance, see chapter 3 of Robert and Casella
(2000) or section 4.1 of Glasserman (2003) on basics of control variate technique.)
However, the main difficulty in the control variate technique is that it is generally
difficult to find F̂ strongly correlated with F whose expectation E [F̂ ] can be
analytically obtained. A well-known exception is pricing of an arithmetic average
option under a log-normal price process where a geometric average option can
be used as a control variate (Kemna and Vorst (1990)). However, this does not
always work when the price process is not log-normal because the price of a
geometric average option can not be analytically obtained in general. Newton
(1994) derived theoretically optimal control variates, but this includes a term
which is not easy to evaluate. He gave some approximations and claimed it was
useful for some cases of numerical examples. Milshtein and Schoenmakers (2002)
applied and extended Newton’s idea to pricing of derivatives in finance without
numerical examples.

Our method based on the perturbation of the stochastic differential equations
overcomes the difficulty since the asymptotic method allows us to find such F̂ in
the unified way. In the following sections, we will show this idea more rigorously
and concretely. We also note that our method may be used together with other
acceleration methods such as the antithetic variables technique and an extrapo-
lation method of Talay and Tubaro (1990) to pursue further variance reduction
of Monte Carlo simulation. Moreover, an asymptotic expansion approach may
be effectively applied with importance sampling technique developed by Newton
(1994).

Asymptotic methods have been applied successfully to a broad class of Itô
processes appearing in finance. Kunitomo and Takahashi (1992) proposed a
normal approximation to evaluate average options in the Black-Scholes setting.
Yoshida (1992b) applied the asymptotic expansion method to price path-de-
pendent options for nonlinear price processes. This method was based on the
Malliavin calculus and had been developed in statistics for stochastic processes
(Yoshida (1992a, 1993)).

Takahashi (1999) presented a third-order pricing formula for plain options
and second-order formulas for more complicated derivatives such as average
options, basket options, and options with stochastic volatility in a general
Markovian setting. Kunitomo and Takahashi (2001) derived expansions for in-
terest rate models based on Heath-Jarrow-Morton (1992) which is not necessarily
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Markovian, and provided pricing formulas for bond options (swap options), av-
erage options on interest rates. Takahashi (1995) also presented a second order
scheme for average options on foreign exchange rates with stochastic interest
rates in Heath-Jarrow-Morton framework.

Moreover, Takahashi and Yoshida (2004) extended the method to dynamic
portfolio problems; starting with a result in Ocone and Karatzas (1991), they
derived formulas for optimal portfolios associated with maximizing utility from
terminal wealth in a general Markovian setting. Recently, Takahashi and Saito
(2003) successfully applied the method to American options. For details of math-
ematical validity based on the Malliavin calculus and of further applications, see
Kunitomo and Takahashi (2003a, 2003b, 2004).

The organization of the paper is as follows: In the next section, we will
show our new scheme and state main theorems. In Section 3, we will give two
examples to illustrate our method in finance; computing the market price of risk
component in the optimal portfolio problem and pricing an average option. In
Section 4, we will examine numerical examples for the problems discussed in
Section 3. In Sections 5 and 6, we will give proofs of the main theorems. In
Section 7, we will provide mathematical validity of the asymptotic method with
square-root process used in the numerical examples.

2. Monte Carlo simulation with the asymptotic method

Let (Ω,F , P ) be probability space and T ∈ (0,∞) denotes some fixed time
horizon. Process w = {(w1(t), . . . , wr(t))∗; t ∈ [0, T ]} is an Rr-valued Brownian
motion defined on (Ω,F , P ), and {Ft}, 0 ≤ t ≤ T stands for P-augmentation of
the natural filtration Fw

t = σ(w(s); 0 ≤ s ≤ t). Here we use the notation x∗ as
the transpose of x. Suppose that an RD-valued process Xu(t, x) (0 ≤ t ≤ u ≤
T, x ∈ RD) satisfy the stochastic integral equation:

Xε
u(t, x) = x +

∫ u

t
V0(X

ε
s(t, x), ε)ds +

r∑
α=1

∫ u

t
Vα(Xε

s(t, x), ε)dws,(2.1)

where ε is a parameter ε ∈ (0, 1] and Vα ∈ C∞
↑ (RD × (0, 1];RD), α = 0, 1, . . . , r;

C∞
↑ (RD × (0, 1];E) denotes the set of smooth mappings f : RD × (0, 1] → E

whose derivatives ∂n
x ∂k

ε f(x, ε) are of at most polynomial growth uniformly in ε
for n ∈ ZD

+ and k ∈ Z+. That is

sup
ε∈(0,1]

|∂n
x ∂k

ε f(x, ε)| ≤ Cn,k(1 + |x|)Cn,k for some Cn,k > 0.

∂n
x ∂k

ε is defined by

∂n
x ∂k

ε =

(
∂

∂x1

)n1
(

∂

∂x2

)n2

· · ·
(

∂

∂xD

)nD
(

∂

∂ε

)k

where x = (xm)1≤m≤D and n = (nm)1≤m≤D. We also assume that
(V0, V1, . . . , Vr) is graded according to RD = Rd1 × · · · × Rdq in the sense of
Definition 1 below.
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Definition 1. A grading of RD is a decomposition Rd1 × · · · ×Rdq with∑q
i=1 di = D. The coordinates of a point in RD are always arranged in an

increasing order along the subspaces Rdi. We set M0 = 0 and Ml =
∑l

i=1 di for
1 ≤ l ≤ q. We say that the coefficients (V0, V1, . . . , Vr) are graded according to
the grading RD = Rd1 × · · · × Rdq if V i

α(x, ε), α = 0, 1, . . . , r depend on x only
through the coordinates (xm)1≤m≤Ml

when Ml−1 < i ≤ Ml where V i
α denotes the

i-th element of Vα.

We further suppose that ∂nl

x(l)V
i
α(x, ε), α = 0, 1, . . . , r are bounded for nl ∈

Z dl
+ such that |nl| ≥ 1 where nl = (nj)1≤j≤dl and |nl| =

∑dl
j=1 nj ; x(l) =

(x
(l)
j )1≤j≤dl and x

(l)
j denotes the (Ml−1 + j)-th coordinate of x ∈ RD; ∂nl

x(l) is
defined by

∂nl

x(l) =

(
∂

∂x
(l)
1

)n1
(

∂

∂x
(l)
2

)n2

· · ·

 ∂

∂x
(l)
dl




ndl

.

Due to Chapter II-5 of Bichteler et al. (1987), Xu(t, x) admits a unique
solution and sup0≤u≤T E [|Xu(t, x)|p] < ∞ for all p ≥ 1.

We finally note that the Markovian system (3.9) in Section 3 is an example
of this class.

2.1. Smooth case
Suppose that f ∈ C∞

↑ (RD;R), where C∞
↑ (RD;R) denotes the set of smooth

functions f : RD → R whose derivatives are of at most polynomial growth. For
stochastic approximation to V := E [f(Xε

T (0, x))], an estimator by naive Monte
Carlo simulation is given as

V (ε, n,N) =
1

N

N∑
j=1

[f(X̄ε
T )]j .(2.2)

Here [Z]j (j = 1, . . . , N) denote independent copies of the random variable Z,
and the Euler-Maruyama scheme X̄ε is defined by:

X̄ε
u = x +

∫ u

0
V0(X̄

ε
η(s), ε)ds +

r∑
α=1

∫ u

0
Vα(X̄ε

η(s), ε)dws(2.3)

with η(s) = [ns/T ]T/n.
In the sequel, we will consider a modified estimator for V :

V ∗(ε, n,N) = E [f(X
[0]
T (0, x))] +

1

N

N∑
j=1

[f(X̄ε
T ) − f(X̄

[0]
T )]j ,(2.4)

where X
[0]
T (0, x) and X̄

[0]
T denote Xε

T (0, x) and X̄ε
T when ε = 0 respectively.

Intuitively, we expect that V ∗(ε, n,N) is a better estimate if [f(X̄ε
T )]j −V and

[f(X̄
[0]
T )]j − E [f(X

[0]
T (0, x))] take close values for each independent copy j since

they are canceled with each other in each j of our estimator V ∗(ε, n,N). We can



MONTE CARLO SIMULATION 175

easily notice it by observing that the error of V ∗(ε, n,N) is given by the sample

average of the difference between deviations of [f(X̄ε
T )]j and [f(X̄

[0]
T )]j from their

respective true values:

V ∗(ε, n,N) −V =
1

N

N∑
j=1

[{f(X̄ε
T ) −E [f(Xε

T (0, x))]}

− {f(X̄
[0]
T ) −E [f(X

[0]
T (0, x))]}]j .

Our main objective is to state this intuition more rigorously. We shall start
with a known error bound of the naive estimator V (ε, n,N):

Theorem 1. Suppose that f ∈ C∞
↑ (RD;R). Then:

(i) For the bias Bias[V (ε, n,N)] of V (ε, n,N),

Bias[V (ε, n,N)] = E [V (ε, n,N)] −V = O

(
1

n

)
.

(ii) For the variance Var[V (ε, n,N)] of V (ε, n,N),

Var[V (ε, n,N)] =
1

N
Var[f(X̄ε

T )] = O

(
1

N

)
.

(iii) For the mean-square-error MSE[V (ε, n,N)] = E [(V (ε, n,N) −V )2],

MSE[V (ε, n,N)] = O

(
1

n2
+

1

N

)
.

Theorem 1 is not a result we really want to show in this article. Presenting
it here is just for comparison with our main results presented below. Since we
will need the same procedure at the beginning of the proof of our main results,
it is convenient to recall the proof of Theorem 1 in Section 5.1.

For our modified estimator V ∗(ε, n,N), we obtain a better error bound.

Theorem 2. Suppose that f ∈ C∞
↑ (RD;R). Then:

(i) For the bias of V ∗(ε, n,N), it holds that

Bias[V ∗(ε, n,N)] = O

(
ε

n

)
.

(ii) For the variance of V ∗(ε, n,N),

Var[V ∗(ε, n,N)] =
1

N
Var[f(X̄ε

T ) − f(X̄0
T )] = O

(
ε2

N

)
.

(iii) The mean-square-error

MSE[V ∗(ε, n,N)] = O

(
ε2
(

1

n2
+

1

N

))
.
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Proof. See Section 5.2.

Remark 1. We put the condition f ∈ C∞
↑ (RD;R) for simplicity. This can

be relaxed to a certain extent such as f ∈ Ck
↑ (RD;R) for some positive k.

Remark 2. Though it is not so rigorous since V ∗(ε, n,N) is random, we may
roughly regard V ∗(ε, n,N) approximating V with the same order of precision
as the expansion of V up to the ε-order if n ≥ O(ε−1) and N ≥ O(ε−2).

Comparing V ∗(ε, n,N) with V (ε, n,N) in mean-square-error, we see that

MSE[V (ε, n,N)] − MSE[V ∗(ε, n,N)]

≥ 1

N
{Var[f(X̄ε

T )] − Var[f(X̄ε
T ) − f(X̄0

T )]} − θ1(ε, n)

≥ 1

N
Var[f(X̄ε

T )] − θ2(ε, n,N),

where

0 ≤ θ1(ε, n) = O

((
ε

n

)2
)

and

0 ≤ θ2(ε, n,N) = O

(
ε2
(

1

n2
+

1

N

))
.

We then expect that θ2(ε, n,N) is smaller than N−1Var[f(X̄ε
T )], and hence that

MSE of V ∗(ε, n,N) is smaller than MSE of V (ε, n,N).

2.2. Non smooth case
If f is not smooth, in particular, if f is a Borel measurable function of at

most polynomial growth, we can still obtain the similar results as in the smooth
case under appropriate additional assumptions.

We consider a stochastic approximation to V := E [f(Xε
T (0, x))]. An esti-

mator may be obtained by a naive Monte Carlo simulation. However, Malliavin
calculus is used in order to give an error bound, because of non smoothness of f .
To apply Malliavin calculus effectively, we will take a modified Euler-Maruyama
scheme similar to Kohatsu-Higa (1997). That is, we compute

V (ε, n,N) =
1

N

N∑
j=1

[
f

(
X̄ε

T +
1

n
ŵT

)]
j
,(2.5)

instead of V (ε, n,N) given in (2.2), where {ŵt; t ∈ [0, T ]} is a Wiener process
independent of Xε. Bally and Talay (1995) also applied the Malliavin calculus to
derive an error bound when f is not smooth. We will use the Malliavin calculus
over the product space of two Winer spaces equipped with the product measure
Pw ⊗ P ŵ.
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Similarly, our new estimator (2.4) is modified as follows:

V∗(ε, n,N) = E [f(X
[0]
T (0, x))](2.6)

+
1

N

N∑
j=1

[
f

(
X̄ε

T +
1

n
ŵT

)
− f

(
X̄

[0]
T +

1

n
ŵT

)]
j
.

To justify this scheme, we first make the following assumption:

[A1] For every p > 1,
sup
ε

E [|σXε
T (0,x)|−p] < ∞,

where σXε
T (0,x) denotes the Malliavin covariance of Xε

T (0, x).

It is sometimes difficult to check Condition [A1]. Then in stead of [A1], we
may put the following condition [A2] which is practically more convenient.

[A2] For every p > 1,
E [|σ

X
[0]
T (0,x)

|−p] < ∞,

where σ
X

[0]
T (0,x)

denotes the Malliavin covariance of X
[0]
T (0, x).

We can obtain similar results in the non smooth case corresponding to The-
orems 1 and 2 in the smooth case. In particular, we have the following result
similar to Theorem 2 under Condition [A1] or Condition [A2].

Theorem 3. Suppose that f is a Borel measurable function of at most
polynomial growth. Suppose that for some positive constant ω, ε = o(n−ω) as
n → ∞. Then under the Condition [A1] or [A2], the following properties hold :

(i) The bias of V ∗(ε, n,N) satisfies

Bias[V ∗(ε, n,N)] = O

(
ε

n

)
.

(ii) The variance of V ∗(ε, n,N) admits

Var[V ∗(ε, n,N)] =
1

N
Var[f(X̄ε

T ) − f(X̄0
T )] = O

(
ε2

N

)
.

(iii) The mean-square-error satisfies

MSE[V ∗(ε, n,N)] = O

(
ε2
(

1

n2
+

1

N

))
.

Proof. See Section 6.

3. Examples

In this section, we take two examples from finance to illustrate our method.
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3.1. Example 1: Computation of optimal portfolio for investment
The first example is computation of the Market Price of Risk component of

an optimal portfolio in multiperiod setting. (Hereafter, we call the component
MPR-hedge following a convention in finance.) We note that this example belongs
to smooth case in Section 2.1. We start with basic set up of the financial market.

Let (Ω,F , P ) probability space and T ∈ (0,∞) denotes some fixed time hori-
zon of the economy. w = {(w1(t), . . . , wr(t))∗; t ∈ [0, T ]} is Rr-valued Brownian
motion defined on (Ω,F , P ) and {Ft}, 0 ≤ t ≤ T stands for P -augmentation of
the natural filtration, Fw

t = σ(w(s); 0 ≤ s ≤ t). Here, we use the notation of x∗

as the transpose of x.
For t ∈ [0, T ], the price processes of risky assets and a locally riskless asset

are described as follows.

dSi = Si(t)


bi(t)dt +

r∑
j=1

σij(t)dwj(t)


 ; Si(0) = si, i = 1, . . . , r(3.1)

dS0 = γ(t)S0(t)dt; S0(0) = 1

where γ(t), bi(t), and σij(t) are progressively measurable with respect to {Ft}.
bi(t) and σij(t) satisfy the integrability conditions:

∫ T

0
{|b(t)| + |σ(t)|2}dt < ∞

where |b(t)| := (
∑r

i=1 |bi(t)|2)1/2 and |σ(t)|2 :=
∑r

i,j=1 |σij(t)|2. σ(t) is as-
sumed to be non-singular Lebesgue-almost-every t ∈ [0, T ], a.s. Then, Rr-
valued process θ(t), t ∈ [0, T ], the market price of risk process is well-defined as
θ(t) := σ−1(t)[b(t)−γ(t)-1]. We further assume that γ(t) and θi(t), i = 1, 2, . . . , r
are bounded.

Next, we illustrate the problem of a (small) investor’s optimal portfolio for
investment in the multiperiod setting. Given the financial market described
above, an investor’s wealth W (t) at time t ∈ [0, T ] is described as

dW (t) = [γ(t)W (t) − c(t)]dt + π(t)∗[(b(t) − γ(t)1)dt + σ(t)dw(t)];

where W (0) = W > 0 is the initial capital (wealth), c(t) denotes the consumption
rate and π(t) = {πi(t)}∗i=1,...,r denotes the portfolio, which satisfy the integrability
condition; ∫ T

0
{|π(t)|2 + c(t)}dt < ∞ a.s.

Let A(W ) denote the set of stochastic processes (π, c) which generate W (t) ≥
0 for all t ∈ [0, T ] given W (0) = W . If (π, c) ∈ A(W ), (π, c) is called admissible
for W . Then, the problem of an investor’s optimal portfolio for investment is
formulated as follows;

sup
(π,c)∈A(W )

E[U(W (T ))](3.2)
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where E[·] denotes the expectation operator under P , and U represents a utility
function such that

U : (0,∞) → R,(3.3)

a strictly increasing, strictly concave function of class C 2

with U(0+) ≡ lim
c↓0

U(c) ∈ [−∞,∞), U ′(0+) ≡ lim
c↓0

U ′(c) = ∞

and U ′(∞) ≡ lim
c→∞

U ′(c) = 0.

From now on, we will concentrate on a Markovian model . We consider a
Wiener space on [t, T ] for some fixed t ∈ [0, T ] and assume that all random
variables will be defined on it. Let Xε

u be a D-dimensional diffusion process
defined by the stochastic differential equation:

dXε
u = V0(X

ε
u, ε)du + V (Xε

u, ε)dwu, Xε
t = x(3.4)

for u ∈ [t, T ] where ε ∈ (0, 1], V0 ∈ C∞
b (RD × (0, 1];RD), and V = (Vβ)rβ=1 ∈

C∞
b (RD × (0, 1];RD ⊗ Rr). Here C∞

b (Rd × (0, 1];E) denotes a class of smooth
mappings f : RD× (0, 1] → E whose derivatives ∂n

x ∂m
ε f(x, ε) are all bounded for

n ∈ Z d
+ such that |n | ≥ 1 and m ∈ Z+. Note that time-dependent-coefficient

diffusion processes are included in the above equation if we enlarge the process
to a higer-dimensional one. Let Y ε

t,u be a unique solution of the D × D-matrix
valued stochastic differential equation:{

dY ε
t,u =

∑r
α=0 ∂xVα(Xε

u, ε)Y
ε
t,udw

α
u

Y ε
t,t = I

.(3.5)

We further assume the bounded processes γ(u) (short rate) and θ(u)
(the market price of risk) to be γ(u) = γ(Xε

u) and θ(u) = θ(Xε
u) where γ ∈

C∞
b (RD;R+) and θ ∈ C∞

b (RD;Rr). The case that b(u) = b(Xε
u) and σ(u) =

σ(Xε
u) is an example in this formulation. Next, we suppose that a utility function

is so called a power function;

U(x) =
xδ

δ
, x ∈ (0,∞), δ < 1, δ �= 0.

Then, due to Takahashi and Yoshida (2004), the optimal proportions of risky
assets in given wealth W at time t, are provided by

π∗(t)/W =
1

(1 − δ)
θ(x)∗σ−1(x) +

δ

(1 − δ)

1

E [(H0,t,T )(−δ/(1−δ))]
(3.6)

×E

[
(H0,t,T )(−δ/(1−δ))

(∫ T

t
∂γ(Xε

u)Y
ε
t,udu

+
r∑

α=1

∫ T

t
∂θα(Xε

u)Y
ε
t,udw

α(u)

+
r∑

α=1

∫ T

t
θα(Xε

u)∂θα(Xε
u)Y

ε
t,udu

)]
V (x, ε)σ−1(x),
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where the state density process, H0,t,T is defined by

H0,t,T ≡ exp

(
−
∫ T

t
θ(Xε

u)
∗dw(u) − 1

2

∫ T

t
|θ(Xε

u)|2du−
∫ T

t
γ(Xε

u)du

)
.

Next, we define the mean variance, the interest rate hedge (IR-hedge) and
the market price of risk hedge (MPR-hedge) components of the optimal portfolio
for a power utility function:

mean variance ≡ 1

(1 − δ)
θ(x)∗σ−1(x)(3.7)

IR-hedge ≡ δ

(1 − δ)

1

E [(H0,t,T )(−δ/(1−δ))]

×E

[
(H0,t,T )(−δ/(1−δ))

∫ T

t
∂γ(Xε

u)Y
ε
t,udu

]
V (x, ε)σ−1(x)

MPR-hedge ≡ δ

(1 − δ)

1

E [(H0,t,T )(−δ/(1−δ))]

×E

[
(H0,t,T )(−δ/(1−δ))

(
r∑

α=1

∫ T

t
∂θα(Xε

u)Y
ε
t,udw

α(u)

+
r∑

α=1

∫ T

t
θα(Xε

u)∂θα(Xε
u)Y

ε
t,udu

)]
V (x, ε)σ−1(x).

Then, we put a main assumption on the asymptotic method:

[A3] the deterministic limit condition: V (·, 0) ≡ 0.

Under the assumption [A3], each component of the optimal portfolio for a
power utility function in the asymptotic method up to ε order is given due to
Takahashi and Yoshida (2004):

mean variance ≡ 1

(1 − δ)
θ∗(x)σ−1(x)(3.8)

IR-hedge ≡ ε
δ

(1 − δ)

(∫ T

t
∂γ[0](u)Yt,udu

)
∂εV (x, 0)σ−1(x)

MPR-hedge

≡ ε
δ

(1 − δ)2

(
r∑

α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

)
∂εV (x, 0)σ−1(x).

From now on, we illustrate our scheme by using MPR-hedge component (3.7).
Similar method can be applied to IR-hedge component. (Note that mean vari-
ance component is analytically obtained.)
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Numerical computation of MPR-hedge
In computation of MPR-hedge, we first consider a naive estimator by Monte

Carlo. Hereafter we set t = 0. A Markovian system of SDEs used in Monte Carlo
simulation is given as follows:




dXε
u = V0(X

ε
u, ε)du + V (Xε

u, ε)dwu, Xε
t = x

dY ε
t,u =

∑r
α=0 ∂xVα(Xε

u, ε)Y
ε
t,udw

α
u , Y ε

t,t = I

dhε
0,t,u = hε

0,t,u[{( δ
1−δ )γ(Xε

u) + δ
2(1−δ)2

|θ(Xε
u)|2}du

+ ( δ
1−δ )θ(X

ε
u)

∗dw(u)], hε
0,t,t = 1

dηε
u =

∑r
α=1 θα(Xε

u)∂θα(Xε
u)Y

ε
t,udu

+
∑r

α=1 ∂θα(Xε
u)Y

ε
t,udw

α(u), ηε
t = 0.

(3.9)

We note that above system of equations (3.9) corresponds to the equation (2.1)
in Section 2. Then, the estimator based on naive Monte Carlo simulation (2.2)
for the denominator of MPR-hedge (3.7);

E [(H0,t,T )(−δ/(1−δ))] = E [hε
0,t,T ](3.10)

may be expressed as

1

N

N∑
j=1

[h̄ε
0,t,T ]j .(3.11)

Similarly, the estimator for the numerator of MPR-hedge (3.7);

E

[
(H0,t,T )(−δ/(1−δ))

(
r∑

α=1

∫ T

t
∂θα(Xε

u)Y
ε
t,udw

α(u)(3.12)

+
r∑

α=1

∫ T

t
θα(Xε

u)∂θα(Xε
u)Y

ε
t,udu

)]

may be expressed as

1

N

N∑
j=1

[h̄ε
0,t,T × η̄ε

T ]j .(3.13)

Next, we consider modified estimators for (3.10) and (3.12) in the following.
First, we note that

(H
[0]
0,t,T )(−δ/(1−δ)) = h

[0]
0,t,T = C × ξ

[0]
T

where

ξ
[0]
T = e−1/2(δ/(1−δ))2

∫ T

t
|θ[0](u)|2du+(δ/(1−δ))

∫ T

t
θ[0](u)dw(u)

and
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C ≡ exp

{(
δ

1 − δ

)∫ T

t
γ[0](u)du +

δ

2(1 − δ)2

∫ T

t
|θ[0](u)|2du

}
.

A modified estimator for the denominator (3.10) is given by

E [h
[0]
0,t,T ] +

1

N

N∑
j=1

{{[h̄ε
0,t,T − h̄

[0]
0,t,T ]j}(3.14)

where
E [h

[0]
0,t,T ] = C,

because clearly

E [ξ
[0]
T ] = 1.

Further, h̄
[0]
0,t,u denotes the Euler-Maruyama scheme of h

[0]
0,t,u:

 dh
[0]
0,t,u = h

[0]
0,t,u[{( δ

1−δ )γ
[0]
u + δ

2(1−δ)2
|θ[0]

u |2}du + ( δ
1−δ )θ

[0],∗
u dw(u)],

h
[0]
0,t,t = 1.

(3.15)

In the similar way, a modified estimator for the numerator (3.12) is given by

E [h
[0]
0,t,uη

[0]
T ] +

1

N

N∑
j=1

{[h̄ε
0,t,T × η̄ε

T − h̄
[0]
T × η̄

[0]
T ]j}(3.16)

where

E [h
[0]
0,t,uη

[0]
T ] = C ×

(
1

1 − δ

)[ r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

]
,

and η̄
[0]
u denotes the Euler-Maruyama scheme of η

[0]
u :

dη[0]
u =

r∑
α=1

θα(X [0]
u )∂θα(X [0]

u )Y
[0]
t,udu(3.17)

+
r∑

α=1

∂θα(X [0]
u )Y

[0]
t,udw

α(u), η
[0]
t = 0.

3.2. Example 2: Pricing of an average call option
The second example is pricing an average call option which belongs to non

smooth case in Section 2.2. Given filtered probability space satisfying usual
conditions (Ω,F , P, {Ft}0≤t≤T ) with one-dimensional Brownian motion {wt; 0 ≤
t ≤ T}, where P represents a so called equivalent Martingale measure in finance.
The underlying asset price process St, 0 ≤ t ≤ T is assumed to follow a one-
dimensional diffusion process:

dSε
t = γSε

tdt + εσ(Sε
t , t)dwt, Sε

0 = S0(> 0)(3.18)
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where ε ∈ (0, 1], σ ∈ C∞
b (R+ × [0, T ];R+), γ is a positive constant. The payoff

of an average call option with strike price K(> 0) and with the maturity T is
given by

V (T ) =

(
1

T
Zε

T −K

)
+
,(3.19)

where (x)+ = max(x, 0). Then, to obtain the price of an average call option at
t = 0, we evaluate

V = e−γTE

[(
1

T
Zε

T −K

)
+

]

given that {
dSε

t = γSε
tdt + εσ(Sε

t , t)dwt, Sε
0 = S0(> 0)

dZε
t = Sε

tdt, Zε
0 = 0.

(3.20)

(For details of average options, see Kunitomo and Takahashi (1992) and He and
Takahashi (2000) for instance.) It is re-expressed by

V = e−γT εE

[(
1

T
Xε

2T + y

)
+

]
(3.21)

where

Xε
1t ≡

Sε
t − S

[0]
t

ε
,

Xε
2t ≡

Zε
t − Z

[0]
t

ε
,

y ≡
1
T Z

[0]
T −K

ε
,

S
[0]
t = eγtS0,

Z
[0]
t =

S0

γ
(eγt − 1).

We also notice that Xε
1t and Xε

2t satisfy SDEs:{
dXε

1t = γXε
1tdt + σ(εXε

1t + S
[0]
t , t)dwt, Xε

10 = 0

dXε
2t = Xε

1tdt, Xε
20 = 0.

(3.22)

Next, we assume the condition:

Σ ≡
∫ T

0

1

T 2

[
e(T−u) − 1

γ

]2

σ2(S[0]
u , u)du > 0.(3.23)

Under condition (3.23), The asymptotic expansion of V upto ε-order is obtained
by

V = e−γT ε

(
yΦ

(
y√
Σ

)
+ Σ

1√
2πΣ

exp

(
−y2

2Σ

))
+ o(ε).
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Then, a modified estimator for (3.21) is given by

e−γTE

[(
1

T
X

[0]
2T + y

)
+

]
+

1

N

N∑
j=1

{[
e−γT

(
1

T
X̄ε

2T + y +
1

n
ŵT

)
+

(3.24)

− e−γT
(

1

T
X̄

[0]
2T + y +

1

n
ŵT

)
+

]
j

}

where

e−γTE

[(
1

T
X

[0]
2T + y

)
+

]
(3.25)

= e−γT

{
yΦ

(
y√
Σ

)
+ Σ

1√
2πΣ

exp

(
−y2

2Σ

)}
.

X̄
[0]
it , i = 1, 2 denote the Euler-Maruyama scheme of X

[0]
it , i = 1, 2, which is given

by 
 dX

[0]
1t = γX

[0]
1t dt + σ(S

[0]
t , t)dwt, X

[0]
10 = 0

dX
[0]
2t = X

[0]
1t dt, X

[0]
20 = 0.

(3.26)

Here, Φ(x) denotes the standard normal distribution evaluated at x.

4. Numerical examples

4.1. Example 1: MPR-hedge
We take a numerical example in Takahashi and Yoshida (2004) where they

computed the MPR-hedge component based on the analytic approximation (3.8).
We will demonstrate our new scheme is effective in increasing the efficiency of
Monte Carlo simulations as well as to aciheve further numerical accuracy for
the case when the approximation error is relatively large. We start with brief
explanation of the setup. (See Takahashi and Yoshida (2004) for the details.)

We suppose that D = 2, that is Xε
u = (X

ε(1)
u , X

ε(2)
u )∗ and that they satisfy

the following stochastic differential equations:
 dX

ε(1)
u = κ1(X̄

ε(1) −X
ε(1)
u )du− ε(X

ε(1)
u )

1
2dwu; X

ε(1)
0 = γ0

dX
ε(2)
u = κ2(X̄

ε(2) −X
ε(2)
u )du + εσ2dwu; X

ε(2)
0 = θ0

(4.1)

where w denotes one-dimensional Brownian motion.

Remark 3. The volatility function of Xε(1) is not smooth at the origin and
we need to use a smoothed version of the square root process at the origin in
our framework. However, we can show that smoothing does not make significant
differences and the effects are negligible for the small disturbance asymptotic
theory . This is also true for Example 2 in the next subsection. See Section 7 for
a rigorous argument on this point.
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We also suppose that there exist one risky asset and a locally riskless asset,

and assume that θu = X
ε(2)
u and γu is a smooth modification of min{Xε(1)

u ,M}
where M is a positive large number. Then, the dynamics of both assets are
described by

 dSε
u = Sε

u(γ(X
ε(1)
u ) + σθ(X

ε(2)
u ))du + Sε

uσdwu, Sε(0) = s

dSε
0u = Sε

0uγ(X
ε(1)
u )du, Sε

0(0) = 1.
(4.2)

Further, we set the values of the parameters for Xε
u following Detemple et al.

(2003), which were obtained by statistcal estimation; κ1 = 0.0824, γ0 = X̄ε(1) =
0.06, ε = 0.03637, κ2 = 0.6950, X̄ε(2) = 0.0871, σ2 = 0.21/0.03637, θ0 = 0.1,
σ = 0.2.

The benchmark value of each component in the optimal portfolios is obtained
by naive Monte Carlo simulations based on the Euler-Maruyama approximation;
the number of time steps n is 365 and the number of trials N is 1,000,000 in
each Monte Carlo simulation.

The percentage-shares in total wealth of Mean variance, IR-hedge, MPR-
hedge and the total demand which are sum of those three components are listed
in Tables 1–4; the results for the asymptotic method are listed in Tables 1 and 3
while the results for the Monte Carlo simulation are listed in Tables 2 and 4. In
addition, Tables 1 and 2 show the results for investment horizons T = 1, 2, 3, 4, 5
when the Arrow-Pratt measure of relative risk aversion R(≡ 1 − δ) is fixed at 2,
and Tables 3 and 4 show the results for R = 0.5, 1, 1.5, 4, 5 when T = 1.

We remark that total demand refers to the demand for risky assets and this
may not be 100% because the remaining shares (100%-total demand) are invested
into riskless assets. We also note that it may exceed 100% since selling (borrow-
ing) riskless assets is admitted. We observe that the results of the asymptotic
method and of Monte carlo simulations are very close for the IR-hedge while

Table 1. Asymptotic expansion (R = 2.0).

T (Investment horizon) 1 2 3 4 5

Total demand 25.31 26.41 27.80 29.26 30.70

Mean variance 25.00 25.00 25.00 25.00 25.00

IR-hedge 2.14 4.11 5.92 7.59 9.13

MPR-hedge −1.83 −2.70 −3.12 −3.33 −3.43

Table 2. Monte Carlo simulation (R = 2.0).

T (Investment horizon) 1 2 3 4 5

Total demand 25.37 26.49 27.79 29.10 30.41

Mean variance 25.00 25.00 25.00 25.00 25.00

IR-hedge 2.14 4.12 5.95 7.63 9.19

MPR-hedge −1.77 −2.63 −3.16 −3.53 −3.78
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Table 3. Asymptotic expansion (T = 1.0).

R(≡ 1 − δ) 0.5 1 1.5 4 5

Total demand 110.37 50 33.13 14.34 12.25

Mean variance 100.00 50.00 33.33 12.50 10.00

IR-hedge −4.28 0 1.43 3.21 3.42

MPR-hedge 14.65 0 −1.63 −1.37 −1.17

Table 4. Monte Carlo simulation (T = 1.0).

R(≡ 1 − δ) 0.5 1 1.5 4 5

Total demand 113.07 50.00 33.18 14.35 12.22

Mean variance 100.00 50.00 33.33 12.50 10.00

IR-hedge −4.26 0.00 1.43 3.22 3.43

MPR-hedge 17.33 0.00 −1.58 −1.37 −1.22

there is some difference for the MPR-hedge, although small relative to the total
demand. We also notice that the second order scheme gives substantial improve-
ment compared with the first order scheme which is equivalent to the case that
we ignore the MPR-hedge and IR-hedge components. (Note that the first orders
of MPR-hedge and IR-hedge components are zero.)

To show that our new method to increase the efficiency of Monte Carlo
simulations is effective, we take the case of MPR-hedge with T = 1, and R = 0.5,
in which the diviation of the value based on the asymptotic method from the
benchmark value is the largest. We follow the method illustrated in the previous
section.

Figure 1 shows the comparison of the convergence between our modified
estimator and a naive one for the MPR-hedge (3.7): hybrid denotes the modified
estimator expressed as the equation (3.16) divided by (3.14), that is (3.16)/(3.14)
while mc denotes the naive estimator expressed as the equation (3.13) divided by
(3.11), that is (3.13)/(3.11). In Fig. 1, the horizontal axis is the number of trials
N which varies from 1000 to 100,000, and the vertical axis is the errors (%) of mc
and hybrid relative to their benchmark values. We observe that hybrid provides
much faster convergence than mc. To examine our method more closely, we
compare the covergence of three estimators for numerator of MPR-hedge; num-
hybrid denotes the modified estimator, num0-mc denotes the estimator for ε = 0

in (3.16) that is, 1
N

∑N
j=1[h̄

[0]
T × η̄

[0]
T ]j , and num-mc denotes the naive estimator

(3.13). Figure 2 clarifies that the errors of num-mc and num0-mc are canceled
with each other, which results in the faster convergence of the modified estimator
num-hybrid .
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Figure 1. MPR-hedge convergence of Monte Carlo simulation.
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Figure 2. MPR-hedge (-Numerator-) convergence of Monte Carlo simulation.
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4.2. Example 2: An average call option
On the second example, we take so called square-root process as the price

process of the underlying asset:

{
dSε

t = γSε
tdt + ε

√
Sε
tdwt, Sε

0 = S0

dZε
t = Sε

tdt, Zε
0 = 0.

(4.3)

Then, the normalized price processes, Xε
it, i = 1, 2 are expressed as

{
dXε

1t = γXε
1tdt +

√
εXε

1t + eγtS0dwt, Xε
10 = 0

dXε
2t = Xε

1tdt, Xε
20 = 0,

(4.4)

and Σ is given by

Σ =
S0

γ3T 2
(e2γT − 2γeγT − 1).(4.5)

Finally, X
[0]
it , i = 1, 2 (ε = 0) are obtained by
 dX

[0]
1t = γX

[0]
1t dt + e

γt
2
√
S0dwt, X

[0]
10 = 0

dX
[0]
2t = X

[0]
1t dt, X

[0]
20 = 0.

(4.6)

Table 5 shows the parameters’ values and the computational results in a
numerical example; S0 = 5.00. ε = 0.671 which is determined such that the
coefficient of the diffusion term is equivalent to that of log-normal process at
time 0 where the volatility is 30% that is,

ε
√

S0 = σS0, σ = 0.3.

Table 5. Average call option (square-root process).

S0 5

ε 0.671 (the volatility is 30%)

γ 0.05

T 1

K 5.65

V [0] 0.145 (the error is −5.2%)

V 0.153 (a value obtained by 10,000,000 trials)

Table 6. % error (1000 trials, 100 cases).

hybrid mc mc asymp

avg −0.1% −0.9% −0.9%

rmse 0.8% 6.7% 6.7%

max 1.6% 16.2% 16.2%

min −1.6% −14.3% −14.3%
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Figure 3. Average call options (square-root process) 1000 trials (100 cases).
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γ = 0.05 (5%), T = 1.0 (1 year), and K = 5.65 (7.5% OTM). V denotes the
benchmark value obtained by 107 trials of Monte Carlo simulation while V [0]

denotes the value obtained by the asymptotics expansion upto ε-order, that is
the equation (3.25), and it deviates from the benchmark value by −5.2%.

Table 6 shows average (avg), root-mean-square-error (rmse), maximum
(max), and minimum (min) of error (%) of three estimators relative to their
benchmark values for 100 cases; hybrid denotes the modified estimator given by
the equation (3.24), mc denotes the estimator by naive Monte Carlo for (3.21),
that is

e−γT


 1

N

N∑
j=1

[(
1

T
X̄ε

2T + y +
1

n
ŵT

)
+

]
j


 ,

and mc-asymp denotes the estimator by naive Monte Carlo for (3.25), that is

e−γT


 1

N

N∑
j=1

[(
1

T
X̄

[0]
2T + y +

1

n
ŵT

)
+

]
j


 .

Figure 3 shows the errors of three estimators for each 100 cases; the horizontal
axis is the case number from 1 to 100 while the vertical axis is the error (%) of
those estimators relative to their benchmark values. Clearly, we observe that our
estimator is much better than the naive one for each case, and the figure clarifies
that the errors of the estimators mc and mc-asymp are canceled with each other,
which contributes to the better performance of our modified estimator hybrid
for each case. Finally, Fig. 4 shows the comparison of the convergence of three
estimators, and the same observation also holds in this case as in Fig. 3.

5. Proofs of Theorems 1 and 2

5.1. Proof of Theorem 1
Since we will need the same notations in the proof of our main results in

later sections, we will present a proof of Theorem 1 for completeness. We only
prove (i) because (ii) and (iii) are easy. Let

uε
i(x) = E [f(Xε

T (ti, x))] ,(5.1)

where ti = iT/n, i = 0, 1, 2, . . . , n. Obviously, uε
n(x) = f(x), and

uε
n(X̄ε

tn) = uε
n(X̄ε

T ) = f(X̄ε
T ),

uε
0(X̄

ε
t0) = uε

0(x) = E [f(X̄ε
T (0, x))].

Define ∆ε
i as

∆ε
i := E [uε

i+1(X̄
ε
ti+1

)] −E [uε
i(X̄

ε
ti)].(5.2)

Then

E [f(X̄ε
T )] −E [f(Xε

T (0, x))] =
n−1∑
i=0

∆ε
i .
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Next, define an operator Lε
y by

Lε
yu

ε
i(x) =

D∑
k=1

V
(k)
0 (y, ε)∂ku

ε
i(x) +

1

2

D∑
k,j=1

r∑
α=1

V (k)
α (y, ε)V (j)

α (y, ε)∂k∂ju
ε
i(x),

where ∂ku
ε
i(x) =

∂uε
i(x)

∂xk
, and ∂k∂ju

ε
i(x) =

∂2uε
i(x)

∂xk∂xj
. Here, xk(xj) denotes the k(j)-

th element of x = (x1, . . . , xD). Similarly, define Lε by

Lεuε
i(x) = Lε

xu
ε
i(x)

=
D∑

k=1

V
(k)
0 (x, ε)∂ku

ε
i(x) +

1

2

D∑
k,j=1

r∑
α=1

V (k)
α (x, ε)V (j)

α (x, ε)∂k∂ju
ε
i(x).

We know the Lp estimates for the derivatives of Xε
T (t, x): for any p ≥ 1 and

l ∈ Z+, there exsits a constant C ∈ R+ such that

sup
t∈[0,T ]
ε∈(0,1]

E
[
|∂l

xX
ε
T (t, x)|p

]
≤ C(1 + |x|)C (x ∈ RD)

because ∂l
xX

ε
T (t, x) satisfies a graded stochastic differential equation; see Theo-

rems 5–10 and 5–24 of Bichteler et al. (1987). Therefore Lεuε
i(x) and Lε

yu
ε
i(x)

are of at most polynomial growth in x and in (x, y), respectively. Since X̄ε
t is Lp-

bounded uniformly in (t, ε), we have the Lp-boundedness of Lεuε
i+1(X

ε
t (ti, X̄

ε
ti))

and Lε
X̄ε

ti

uε
i+1(X̄

ε
t ).

By the definition of the flow, applying Itô’s formula and by the measurability
of X̄ε

ti , we obtain:

∆ε
i = E [uε

i+1(X̄
ε
ti+1

)] −E [uε
i+1(X

ε
ti+1

(ti, X̄
ε
ti))]

= E

[∫ ti+1

ti

Lε
X̄ε

ti

uε
i+1(X̄

ε
t )dt−

∫ ti+1

ti

Lεuε
i+1(X

ε
t (ti, X̄

ε
ti))dt

]

= E

[∫ ti+1

ti

{Lεuε
i+1(X̄

ε
ti) − Lεuε

i+1(X
ε
t (ti, X̄

ε
ti))}dt

]

+ E

[∫ ti+1

ti

{Lε
X̄ε

ti

uε
i+1(X̄

ε
t ) − Lε

X̄ε
ti

uε
i+1(X̄

ε
ti)}dt

]

= −
∫ ti+1

ti

E [Lεuε
i+1(X

ε
t (ti, X̄

ε
ti)) − Lεui+1(X̄

ε
ti)]dt

+

∫ ti+1

ti

E [Lε
X̄ε

ti

uε
i+1(X̄

ε
t ) − Lε

X̄ε
ti

uε
i+1(X̄

ε
ti)]dt.

Hence

∆ε
i = −

∫ ti+1

ti

∫ t

ti

E [aε
i+1(X

ε
s(ti, X̄

ε
ti))]dsdt(5.3)

+

∫ ti+1

ti

∫ t

ti

E [bεi+1(X̄ti ; X̄
ε
s)]dsdt,
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where

aε
i+1(x) := Lε(Lεuε

i+1(x))

and
bεi+1(y;x) := Lε

y(L
ε
yu

ε
i+1(x))(x).

The function aε
i+1(x) is expressed as

aε
i+1(x) =

D∑
k′=1

V
(k′)
0 (x, ε)∂k′(5.4)

×
{

D∑
k=1

V
(k)
0 (x, ε)∂ku

ε
i+1(x)

+
1

2

D∑
k,l=1

r∑
α=1

V (k)
α (x, ε)V (l)

α (x, ε)∂k∂lu
ε
i+1(x)

}

+
1

2

D∑
k′,l′=1

r∑
α=1

V (k′)
α (x, ε)V (l′)

α (x, ε)∂k′∂l′

×
{

D∑
k=1

V
(k)
0 (x)∂ku

ε
i+1(x)

+
1

2

D∑
k,l=1

r∑
α=1

V (k)
α (x, ε)V (l)

α (x, ε)∂k∂lu
ε
i+1(x)

}
.

Similarly, bεi+1(y;x) is expressed as

bεi+1(y;x) =
D∑

k′=1

V
(k′)
0 (y, ε)(5.5)

×
{

D∑
k=1

V
(k)
0 (y, ε)∂k′∂ku

ε
i+1(x)

+
1

2

D∑
k,l=1

r∑
α=1

V (k)
α (y, ε)V (l)

α (y, ε)∂k′∂k∂lu
ε
i+1(x)

}

+
1

2

D∑
k′,l′=1

r∑
α=1

V (k′)
α (y)V (l′)

α (y)

×
{

D∑
k=1

V
(k)
0 (y, ε)∂k′∂l′∂ku

ε
i+1(x)

+
1

2

D∑
k,l=1

r∑
α=1

V (k)
α (y, ε)V (l)

α (y, ε)∂k′∂l′∂k∂lu
ε
i+1(x)

}
.

Note that aε
i+1(x) is a ploynomial in

V
(k1)
0 , ∂k2V

(k1)
0 , ∂k2∂l2V

(k1)
0 ,
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V (k2)
α , ∂k2V

(k1)
α , ∂k2∂l2V

(k1)
α ,

∂k1u
ε
i+1, ∂k1∂k2u

ε
i+1, ∂k1∂k2∂lu

ε
i+1, and ∂k1∂k2∂l1∂l2u

ε
i+1

for k1, k2, l1, l2 = 1, 2, . . . , D and α = 1, 2, . . . , r. Note also that Vα(x) ∈
C∞
↑ (RD), α = 0, 1, . . . , r and f ∈ C∞

↑ (RD).
Further, it is well known (see e.g. Chapter II-5 of Bichteler et al. (1987)) that{

supε supn sup0≤s≤T E [|X̄ε
s|p] < ∞

supε supn supti≤s≤ti+1
E [|Xε

s(ti, X̄
ε
ti)|p] < ∞

(5.6)

for all p ≥ 1. Then, by using the Hölder inequaility, we have

sup
ε

sup
n

sup
i∈{1,2,···,n}

sup
ti≤s≤ti+1

E [|aε
i+1(X

ε
s(ti, X̄

ε
ti))|] < ∞.(5.7)

Similarly,

sup
ε

sup
n

sup
i∈{1,2,···,n}

sup
ti≤s≤ti+1

E [|bεi+1(X̄ti+1 ; X̄
ε
s)|] < ∞.(5.8)

Thus, we conclude that

E [f(X̄ε
T )] −E [f(Xε

T (0, x))](5.9)

=
n−1∑
i=0

∆ε
i =

n−1∑
i=0

{
−
∫ ti+1

ti

∫ t

ti

E [aε
i+1(X

ε
s(ti, X̄

ε
ti))]dsdt

+

∫ ti+1

ti

∫ t

ti

E [bεi+1(X̄ti+1 ; X̄
ε
s)]dsdt

}

= O

(
1

n

)
.

5.2. Proof of Theorem 2
We follow a relatively standard argument in the proofs of Theorems 2 and

3. We only prove (i). Others are easy to show and we omit the proof.
First, we claim that

sup
s,i,n

|E [aε
i+1(X

ε
s(ti, X̄

ε
ti))] −E [a0

i+1(X
0
s (ti, X̄

0
ti))]| = O(ε) (ε ↓ 0)(5.10)

and that

sup
s,i,n

|E [bεi+1(X̄
ε
ti ; X̄

ε
s)] −E [b0i+1(X̄

0
ti ; X̄

0
s )]| = O(ε) (ε ↓ 0).(5.11)

We will show only the first one, and the second one can be obtained in a similar
way.

We need to show that

lim
ε↓0

1

ε
sup
n

sup
i∈{1,2,...,n}

sup
ti≤s≤ti+1

|E [aε
i+1(X

ε
s(ti, X̄

ε
ti))](5.12)

−E [a0
i+1(X

0
s (ti, X̄

0
ti))]| < ∞.
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Notice that

aε
i+1(X

ε
s(ti, X̄

ε
ti)) = a0

i+1(X
0
s (ti, X̄

0
ti)) + ε

∫ 1

0
∂ε |ε=uε a

ε
i+1(X

ε
s(ti, X̄

ε
ti))du,

where

∂ε |ε=uε a
ε
i+1(X

ε
s(ti, X̄

ε
ti)) ≡

∂aε
i+1(X

ε
s(ti, X̄

ε
ti))

∂ε

∣∣∣∣
ε=uε

.

Then

1

ε
sup
s,i,n

|E [aε
i+1(X

ε
s(ti, X̄

ε
ti)) − a0

i+1(X
0
s (ti, X̄

0
ti))]|

= sup
s,i,n

∣∣∣∣
∫ 1

0
E [∂ε |ε=uε a

ε
i+1(X

ε
s(ti, X̄

ε
ti))]du

∣∣∣∣
≤ sup

s,i,n

∫ 1

0
E [|∂ε |ε=uε a

ε
i+1(X

ε
s(ti, X̄

ε
ti))|]du

≤ sup
s,i,n

sup
0<ε1<ε

‖∂ε1a
ε1
i+1(X

ε1
s (ti, X̄

ε1
ti ))‖1,

where ‖·‖1 denotes L1(P )-norm. Note that ∂ε1a
ε1
i+1(X

ε1
s (ti, X̄

ε1
ti )), is a polynomial

in partial derivatives of each term of (5.4) with respect to the parameter ε at
ε = ε1, and

∂Xε1
s (ti, X̄

ε1
ti )

∂ε1
,

V
(k1)
0 , ∂k2V

(k1)
0 , ∂k2∂l2V

(k1)
0 , ∂k1∂k2∂l2V

(k1)
0 ,

V (k2)
α , ∂k2V

(k1)
α , ∂k2∂l2V

(k1)
α , ∂k1∂k2∂l2V

(k1)
α ,

∂k1u
ε1
i+1, ∂k1∂k2u

ε1
i+1, ∂k1∂k2∂lu

ε1
i+1, and ∂k1∂k2∂l1∂l2∂muε1

i+1

for k1, k2, l1, l2,m = 1, 2, . . . , D and α = 1, 2, . . . , r. Those are evaluated at
x = Xε1

s (ti, X̄
ε1
ti ), 0 < ε1 < ε.

We apply a similar argument in Chapter II-5 of Bichteler et al. (1987) to the
system of equations:



X̄ε1
s = x +

∫ s
0 V0(X̄

ε1
η(u), ε1)du +

∫ s
0 V (X̄ε1

η(u), ε1)dwu, s ∈ [0, T ],

Xε1
s (ti, X̄

ε1
ti ) = X̄ε1

ti +
∫ s
ti
V0(X

ε1
u (ti, X̄

ε1
ti ), ε1)du

+
∫ s
ti
V (Xε1

u (ti, X̄
ε1
ti ), ε1)dwu, s ∈ [ti, ti+1),

∂X̄
ε1
s

∂ε1
= {
∫ s
0 ∂ε1V0(X̄

ε1
η(u), ε1)du +

∫ s
0 ∂ε1V (X̄ε1

η(u), ε1)dwu}

+
∫ s
0 ∂V0(X̄η(u), ε1){

∂X̄
ε1
η(u)

∂ε1
}du

+
∑r

α=1

∫ s
0 ∂Vα(X̄ε1

η(u), ε1){
∂X̄

ε1
η(u)

∂ε1
}dwα

u ,
∂X

ε1
s (ti,X̄

ε1
ti

)

∂ε1
=

∂X̄
ε1
ti

∂ε1
+ {
∫ s
ti
∂ε1V0(X

ε1
u (ti, X̄

ε1
ti ))du

+
∫ s
ti
∂ε1V (Xε1

u (ti, X̄
ε1
ti ), ε1)dwu}

+
∫ s
ti
∂V0(X

ε1
u (ti, X̄

ε1
ti )){∂X

ε1
u (ti,X̄

ε1
ti

)

∂ε1
}du

+
∑r

α=1

∫ s
ti
∂Vα(Xε1

u (ti, X̄
ε1
ti ), ε1)

× {∂X
ε1
u (ti,X̄

ε1
ti

)

∂ε1
}dwα

u , s ∈ [ti, ti+1),

(5.13)
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where ∂Vα, α = 0, 1, . . . , r denote the partial derivatives with respect to the first
argument. Then, we can also show that




supn sup0≤s≤T sup0<ε1<ε E [|X̄ε1
s |p] < ∞,

supn supi∈{1,2,...,n} supti≤s≤ti+1
sup0<ε1<ε E [|X̄ε1

s (ti, X̄
ε1
ti )|p] < ∞

supn sup0≤s≤T sup0<ε1<ε E [|∂X̄
ε1
s

∂ε1
|p] < ∞

supn supi∈{1,2,...,n} supti≤s≤ti+1
sup0<ε1<ε E [|∂X

ε1
s (ti,X̄

ε1
ti

)

∂ε1
|p] < ∞

(5.14)

for all p ≥ 1.
Thus, ∂ε1a

ε1
i+1(X

ε1
s (ti, X̄

ε1
ti )) is Lp-bounded for any p ≥ 1 uniformly in s, i, n

and 0 < ε1 < ε.
We return to the proof of (i). We see

Bias[V ∗(ε, n,N)]

= E [V ∗(ε, n,N)] − V

= {E [f(X̄ε
T )] −E [f(Xε

T (0, x))]} − {E [f(X̄
[0]
T )] −E [f(X

[0]
T (0, x))]}

=
n−1∑
i=0

∫ ti+1

ti

∫ s

ti

{−E [aε
i+1(X

ε
s(ti, X̄

ε
ti))] + E [bεi+1(X̄

ε
ti ; X̄

ε
s)]}dsdt

−
n−1∑
i=0

∫ ti+1

ti

∫ s

ti

{−E [a0
i+1(X

0
s (ti, X̄

0
ti))] + E [b0i+1(X̄

0
ti ; X̄

0
s )]}dsdt

=
n−1∑
i=0

∫ ti+1

ti

∫ s

ti

−{E [aε
i+1(X

ε
s(ti, X̄

ε
ti))] −E [a0

i+1(X
0
s (ti, X̄

0
ti))]}dsdt

+
n−1∑
i=0

∫ ti+1

ti

∫ s

ti

{E [bεi+1(X̄
ε
ti ; X̄

ε
s)]}] −E [b0i+1(X̄

0
ti ; X̄

0
s )]}dsdt.

Hence, using the estimate already obtained, we conclude that

E [f(X̄ε
T )] −E [f(Xε

T (0, x))] −E [f(X̄0
T )] + E [f(X0

T (0, x))] = O

(
ε

n

)
.

6. Proof of Theorems 3

We only prove (i) again. The others are easy. Let A = 1+|x|2− 1
2∆, and then

A−1 is an integral operator. (See Ikeda and Watanabe (1989) or Sakamoto and
Yoshida (1996) for the detail.) Then, under [A1] for a sufficiently large integer
m depending on f , we obtain

E

[
f

(
Xε

T (0, x) +
1

n
ŵT

)]
−E [f(Xε

T (0, x))](6.1)

= E

[
(A−mf)

(
Xε

T (0, x) +
1

n
ŵT

)
Ψ

(ε)
1

]

−E [(A−mf)(Xε
T (0, x))Ψ

(ε)
2 ]
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for some Wiener functionals Ψ
(ε)
1 and Ψ

(ε)
2 which correspond to the partial shifts

only in the direction of w. Under [A1], the integration-by-parts formulas (6.1)
(for ε and ε = 0) and easy calculus with the Taylor formula yield

{
E

[
f

(
Xε

T (0, x) +
1

n
ŵT

)]
−E [f(Xε

T (0, x)]

}
(6.2)

−
{
E

[
f

(
X

[0]
T (0, x) +

1

n
ŵT

)]
−E [f(X

[0]
T (0, x)]

}

= O

(
ε

n

)
.

On the other hand, obviously,

E

[
f

(
Xε

T (0, x) +
1

n
ŵT

)]
−E [f(Xε

T (0, x))](6.3)

=

(
E

[
f

(
Xε

T (0, x) +
1

n
ŵT

)
ψ(|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|)

]

−E [f(Xε
T (0, x))ψ(|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|)]

)

+

(
E

[
f

(
Xε

T (0, x) +
1

n
ŵT

)
{1 − ψ(|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|)}

]

−E [f(Xε
T (0, x)){1 − ψ(|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|)}]

)
,

where ψ : R → [0, 1] is a smooth function such that

ψ(x) =

{
1 if |x| ≤ 1

2

0 if |x| ≥ 1.

For the second parenthesis,

E

[
f

(
Xε

T (0, x) +
1

n
ŵT

)
{1 − ψ(|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|)}

]
(6.4)

−E [f(Xε
T (0, x)){1 − ψ(|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|)}]

≤ C‖1 − ψ(|σ
X

[0]
T (0,x)

|/|4σXε
T (0,x)|)‖q (by the Hölder inequality)

≤ C × P ({|σ
X

[0]
T (0,x)

|/|σXε
T (0,x)| > 2})1/q

≤ C × 2KE




 |σXε

T (0,x) − σ
X

[0]
T (0,x)

|
|σ

X
[0]
T (0,x)

|




K



(by Markov’s inequality)

= O(εK)

for any K > 0. Here C is some positive costant, q > 1, and ‖ · ‖q denotes
the Lq(Pw ⊗ P ŵ)-norm. It is also easy to obtain an estimate similar to (6.4)
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replacing Xε
T (0, x) in f by X0

T (0, x). Hence under [A2], by the same argument
as we obtained (6.2), we can estimate the gap(

E

[
f

(
Xε

T (0, x) +
1

n
ŵT

)
ψ(|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|)

]

−E [f(Xε
T (0, x))ψ(|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|)]

)

−
(
E

[
f

(
X0

T (0, x) +
1

n
ŵT

)
ψ(|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|)

]

−E [f(X0
T (0, x))ψ(|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|)]

)
,

and obtain{
E

[
f

(
Xε

T (0, x) +
1

n
wT

)]
−E [f(Xε

T (0, x)]

}
(6.5)

−
{
E

[
f

(
X

[0]
T (0, x) +

1

n
wT

)]
−E [f(X

[0]
T (0, x))]

}

= O

(
ε

n

)
+ O(εK)

for every K > 0.
The Bias of V ∗(ε, n,N) is expressed as

Bias[V ∗(ε, n,N)](6.6)

=

[{
E

[
f

(
X̄ε

T +
1

n
ŵT

)]
−E

[
f

(
Xε

T (0, x) +
1

n
ŵT

)]}

−
{
E

[
f

(
X̄

[0]
T +

1

n
ŵT

)]
−E

[
f

(
X

[0]
T (0, x) +

1

n
ŵT

)]}]

+

[{
E

[
f

(
Xε

T (0, x) +
1

n
ŵT

)]
−E [f(Xε

T (0, x)]

}

−
{
E

[
f

(
X

[0]
T (0, x) +

1

n
ŵT

)]
−E [f(X

[0]
T (0, x)]

}]
.

From (6.2), the second square bracket on the right-hand side is O( ε
n) under

Condition [A1]. Hence if we show that the first square bracket is O( ε
n), then

Bias[V ∗(ε, n,N)] turns out to be O( ε
n) under [A1]. Similarly, because under

Condition [A2] the second square bracket is O( ε
n) + O(εK) for every K > 0 by

(6.5), if we show that the first square bracket is O( ε
n), then we can conclude

that Bias[V ∗(ε, n,N)] is O( ε
n) + O(εK) for every K > 0 under [A2]. Because

O(εK) is the smaller order than the order of ε
n for large K by the assumption

that ε = o(n−ω) for some positive constant ω as n → ∞, Bias[V ∗(ε, n,N)] is
O( ε

n) under [A2].
Hence, in order to complete the proof, we will evaluate the first square bracket

on the right-hand side of (6.6). First, define uε
i by

uε
i(x) = E

[
f

(
Xε

T (ti, x) +
1

n
ŵT

)]
.(6.7)
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We can write

E

[
f

(
X̄ε

T +
1

n
ŵT

)]
−E

[
f

(
Xε

T (0, x) +
1

n
ŵT

)]
=

n−1∑
i=0

∆ε
i ,

where

∆ε
i := E [uε

i+1(X̄
ε
ti+1

)] −E [uε
i(X̄

ε
ti)],(6.8)

and also

E [uε
i(X̄

ε
ti)] = E

[
f

(
Xε

T (ti, X̄
ε
ti) +

1

n
ŵT

)]

= E

[
f

(
Xε

T (ti+1, X
ε
ti+1

(ti, X̄
ε
ti)) +

1

n
ŵT

)]
= E [uε

i+1(X
ε
ti+1

(ti, X̄
ε
ti))].

The gaps ∆ε
i are expressed in exactly the same form (5.3) as in the smooth

case (i.e., f ∈ C∞
↑ (RD)). That is, aε

i+1 and bεi+1 are defined as equations (5.4) and
(5.5), respectively, and they include partial derivatives of uε

i+1(x) with respect
to x. Even in the irregular case (i.e., where f is not necessarily differentiable
nor continuous), these derivatives are justified by the (full) Malliavin calculus in
which the shift operation is done in both directions of w and ŵ. (However, only
for this purpose, the nondegeneracy of ŵ-terms is essential.)

In order to follow the same procedure as the proof of Theorem 2, we need to
show the uniform boundedness

lim
n→∞,ε↓0

sup
i,s

|E [∂ε{aε
i+1(X

ε
s(ti, X̄

ε
ti))}]| < ∞,(6.9)

for example. Here s moves over [ti, ti+1]. If we write out E [∂ε{aε
i+1(X

ε
s(ti, X̄

ε
ti))}],

there appear several terms. Among them, we have for example the following type
of terms

I(f ; i, s, ε, n) := E


{B(x)∂ε∂

j
xE

[
f

(
Xε

T (ti+1, x) +
1

n
ŵT

)]} ∣∣∣∣
x=Xε

s(ti,X̄
ε
ti

)


 ,

where B is a smooth function of at most polynomial growth. Roughly speaking,
it follows from the IBP-fomula that the functions ∂ε∂

j
xE [f(Xε

T (ti+1, x) + 1
n ŵT )]

are nice functions of x, so that the functionals with Xε
s(ti, X̄

ε
ti) substituted for x

are also nice and have uniformly bounded norms. We will show this fact more
rigorously.

Just for notational simplicity, we only consider one-dimensional Xε. Let S
denote the set of Schwartz test functions. For f ∈ S,

I(f ; i, s, ε, n)(6.10)

= E

[
B(Xε

s(ti, X̄
ε
ti))

j+1∑
k=1

E

[
(∂kf)

(
Xε

T (ti+1, x) +
1

n
ŵT

)
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· Pk(∂
α
x ∂εX

ε
T (ti+1, x);α = 0, 1, . . . , j + 1 − k)

] ∣∣∣∣
x=Xε

s(ti,X̄
ε
ti

)

]

= E

[
B(Xε

s(ti, X̄
ε
ti))

j+1∑
k=1

(∂kf)

(
Xε

T (ti+1, X
ε
s(ti, X̄

ε
ti)) +

1

n
ŵT

)

· Pk(∂
α
x ∂εX

ε
T (ti+1, x) |x=Xε

s(ti,X̄
ε
ti

);α = 0, 1, . . . , j + 1 − k)

]
,

where Pk are polynomials, and we used independency.
Set

X̌(i, s, ε, n) = Xε
T (ti+1, X

ε
s(ti, X̄

ε
ti)) +

1

n
ŵT .

We denote by σX̌(i,s,ε,n) the (full) Malliavin covariance of X̌(i, s, ε, n). We write
the IBP-formula as

E [(∂kf)(X̌(i, s, ε, n))ψ] = E [f(X̌(i, s, ε, n))Φk(ψ; X̌(i, s, ε, n))]

for f ∈ S and smooth functional ψ. The functional Φ1(ψ; X̌(i, s, ε, n)) is given
by

Φ1(ψ; X̌(i, s, ε, n)) = D∗[σ−1
X̌(i,s,ε,n)

ψDX̌(i, s, ε, n)]

with H-derivative D and its adjoint D∗, and Φk(ψ; X̌(i, s, ε, n)) are determined
by repeated use of this expression. A similar formula exists for multi-dimensional
case. Applying this IBP-formula, we obtain

I(f ; i, s, ε, n) =
j+1∑
k=1

E [(A−mf)(X̌(i, s, ε, n))Ψ̌k+2m](6.11)

for a sufficiently large integer m. Functional Ψ̌k+2m has an expression similar to
that of Φk(ψ; X̌(i, s, ε, n)). The L1-norm of Ψ̌k+2m is dominated by a polynomial
of Lp-norms of σ−1

X̌(i,s,ε,n)
and Dp,s-norms of

(∂α1
x ∂α2

ε Xε
T (ti+1, x)) |x=Xε

s(ti,X̄
ε
ti

) (α1, α2 ∈ Z+)(6.12)

as well as ŵT . The H-derivative of (6.12) is decomposed into the derivative
component for (wt)t∈[0,ti+1] and that for (wt)t∈[ti+1,T ]; therefore, estimation of
its Dp,s-norms results in estimation of Lp-norms of Dp,s-norms of solutions of
certain stochastic differential equations. It is just a routine job to show that
those Dp,s-norms are bounded uniformly in i, s, ε, n.

Under Condition [A2] ([A1] in force), by Lemma 1 below, we know that
X̌(i, s, ε, n) is uniformly nondegenerate:

lim
n→∞,ε↓0

sup
i

sup
s∈[ti,ti+1]

E [σ−p

X̌(i,s,ε,n)
] < ∞

for all p > 1 (det should be put in multi-dimensional case). After all, we obtain

|I(f ; i, s, ε, n)| ≤ C‖f‖−2m (f ∈ S)(6.13)
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for any i, s and sufficiently large n and sufficiently small ε. Here C is a constant
independent of i, s, ε, n, and ‖ ·‖−2m is the norm attached to the space C−2m (see
Ikeda and Watanabe (1989), Sakamoto and Yoshida (1996)).

Let φn be the density of the normal distribution N(0, T/n2). From (6.10),
It is easy to see that I(·; i, s, ε, n) is a signed-measure: for measurable functions
f of at most polynomial growth,

I(f ; i, s, ε, n) =

∫
f(z)p(z)dz(6.14)

with

p(z) =
j+1∑
k=1

E [B(Xε
s(ti, X̄

ε
ti))(−∂)kφn(z − X̌(i, s, ε, n))

· Pk(∂
α
x ∂εX

ε
T (ti+1, x) |x=Xε

s(ti,X̄
ε
ti

);α = 0, 1, . . . , j + 1 − k)].

Obviously, p ∈ S. It follows from a slight modification of Lemma 4 of Sakamoto
and Yoshida (1996) that for fixed measurable f , there exists a sequence fν ∈ S
such that for some large L, fν → f in L1((1 + |z|)−Ldz), and that for some large
m, fν → f in C−2m. Therefore I(fν ; i, s, ε, n) → I(f ; i, s, ε, n) as ν → ∞ due to
(6.14), and hence Inequality (6.13) holds for that measurable function f . In this
way, we can obtain (6.9). It is possible to obtain a similar estimate for terms
involving bεi+1. Consequently, following the same procedure as in the smooth
case, the proof is finished.

D∞(Rd) = ∩p>1 ∩s>0 Dp,s(R
d), and Dp,s(R

d) denotes the Sobolev space of
Rd-valued Wiener functionals. (See Ikeda and Watanabe (1989) for the details
of the Sobolev space Dp,s.) Here is a simple but useful lemma originated by R.
Leandre (cf. Kohatsu-Higa (1997)).

Lemma 1. Let F θ
n,ε and F θ be in D∞(Rd) where θ is a parameter and

(n, ε) ∈ N × (0, 1]. Suppose that for some positive constant ω, ε = o(n−ω)
as n → ∞. Suppose also the followings:

(i) There exists γ > 0 such that

sup
θ

‖F θ
n,ε − F θ‖1,p = O

(
1

nγ
+ εγ

)

as n → ∞ and ε ↓ 0 for every p > 1.
(ii) For every p > 1,

sup
θ

‖detσ−1
F θ ‖p < ∞.

(iii) For every p > 1, there exists cp > 0 such that

sup
ε′∈(0,1],θ

‖detσ−1
F θ
n,ε′

‖p = O(ncp).

Then
lim

n→∞,ε↓0
sup
θ

‖detσ−1
F θ
n,ε

‖p < ∞

for every p > 1.
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Proof. Set a = detσF θ and b = detσF θ
n,ε

. Then E [b−p, b < 2−1a] ≤
E [b−p, |a − b| > 2−1a] ≤ 2ME [b−p|a − b|Ma−M ] ≤ const. npc3p( 1

nγ + εγ)M , and
take a sufficiently large M .

Appendix: On the validity of square-root processes in the asymptotic method
Let processes {Xε

t ; 0 ≤ t ≤ T} and {X̃ε
t ; 0 ≤ t ≤ T} defined as follows:

{
dXε

t = (cXε
t + d)dt + ε

√
Xε

t dwt, Xε
0 = x0

dX̃ε
t = (cX̃ε

t + d)dt + εg(X̃ε
t )dwt, X̃ε

0 = x0

(A.1)

where T < ∞, c, d are some constants with d ≥ 0, x0 > 0, and ε ∈ (0, 1]. g(x) is
a smooth modification of

√
x such that g(x) =

√
x for x ≥ a′ where a′ < a, and

a ≡ 1
2 mint∈[0,T ] X

0
t . The process Xε

t is a so called square-root process, and the

process X̃ε
t is a modified process of Xε

t .
Suppose that for a R-valued functional F , F (Xε) and F (X̃ε) are L2(P )-

finite. Then, we have

E [|F (Xε) − F (X̃ε)|1{Xε �=X̃ε}] ≤ (‖F (Xε)‖2 + ‖F (X̃ε)‖2)P ({Xε �= X̃ε})1/2

where ‖ · ‖2 denotes the L2(P )-norm. It also holds that

P ({Xε �= X̃ε})
= P ({Xε

t ≤ a′ for some t ∈ [0, T ]})

≤ P

({
sup

0≤t≤T
|Xε

t −X0
t | > a

})

+ P

(
{Xε

t ≤ a′ for some t ∈ [0, T ]} ∩
{

sup
0≤t≤T

|Xε
t −X0

t | ≤ a

})
.

We can easily see that the second term after the last inequality is 0. The first
term is smaller than any εn for n = 1, 2, · · · by the following lemma of a large
deviation inequality:

Lemma 2. Suppose that Zε
t , t ∈ [0, T ] follows a SDE :

dZε
t = µ(Zε

t )dt + εσ(Zε
t )dwt,

where µ(z) satisfies Lipschitz and linear growth conditions, and σ(z) satisfies the
linear growth condition. We assume that a unique strong solution exists. Then,
there exists positive constants a1 and a2 independent of ε such that

P

({
sup

0≤s≤T
|Zε

s − Z0
s | > a

})
≤ a1 exp(−a2ε

−2)(A.2)

for all a > 0.
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The lemma can be proved by slight modification of lemma 5.3 in Yoshida
(1992b), or lemma 7.1 in Kunitomo and Takahashi (2003a). Note also that Xε

and X̃ε satisfy the conditions in Lemma 2.
Hence, if ‖F (Xε)‖2 < ∞ and ‖F (X̃ε)‖2 < ∞, then

E [|F (Xε) − F (X̃ε)|] = o(εn), n = 1, 2, . . . .(A.3)

Therefore, the difference between F (Xε) and F (X̃ε) is negligible in the small
disturbance asymptotic theory . Finally, we remark that functionals corresponding
to F in the examples of Section 4 are L2(P ) bounded, because F (x) = γ(x) is
bounded in example 1, and for F (x) = ( 1

T

∫ T
0 xtdt−K)+ with K > 0 in example

2,

‖F (Xε)‖2 ≤
∥∥∥∥∥ 1

T

∫ T

0
Xε

t dt

∥∥∥∥∥
2

≤ 1

T

∫ T

0
‖Xε

t ‖2dt < ∞

and

‖F (X̃ε)‖2 ≤
∥∥∥∥∥ 1

T

∫ T

0
X̃ε

t dt

∥∥∥∥∥
2

≤ 1

T

∫ T

0
‖X̃ε

t ‖2dt < ∞.
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