Chinese J. Chem. Eng., 10 (3) 286 — 289 (2002)

Prediction of Process Trends Based on Neural Networks
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Abstract In order to catch more process details in chemical processes, a dynamic model for prediction of process
trends is proposed by modifying traditional time-series ANN (artificial neural networks) model with impulse response
identification means. The application result of the model is briefly discussed.
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1 INTRODUCTION

In order to understand a process in more detail
several means have been put forward. Stephanopou-
los and Han(!l gave a precise mathematical frame-
work in which a trend is stipulated as the “sequence
of maximal scaling episodes, defined over time inter-
vals, whose distinguished points are strictly ordered in
time”. Cheung and Stephanopoulos!??®! gave a concise
describing method, the episodic representation, for
process trends at a qualitative, semiquantitative and
quantitative level. Janusz and Venkatasubramanian(4l
developed an analogous method. They presented four
major elements to capture the important informa-
tion in process trends: primitives, episodes, trends
and profiles. Mah et all5] put forward a piecewise
linear smoothing means for process trends. Bakshi
and Stephanopoulos(® adopted wavelet analysis into
process data feature extraction. Stephanopoulos and
Han!!! also pointed out that, “the key skill is the for-
mation of a ‘mental’ model of the process operations
that fits the current facts about the process and en-
ables the operators to assess process behavior and pre-
dict the effects of possible control actions.”

In this study, an improved ANN and time series
based means is put forward to predict process trends
quantitatively. It includes two parts: describe dy-
namic process and predict process trends.

2 DYNAMIC PROCESS MODEL BASED
ON ANN
2.1 Review

The best representation of a dynamic process is
from its mechanism. However, in many cases it
is not easy to obtain and solve a dynamic mecha-
nism model. Under such circumstances some non-
mechanism models means have been put forward, and
artificial neural network is one of them. Due to its
nonlinear approximate capability, ANN is suitable for
chemical process modelling!”=11). For a given dynamic
process, the most prominent feature is that the vari-
ables vary with time. However, for an ANN model
it 1s difficult to introduce time t into the model as a
variable. In order to use ANN to model a dynamic

Received 2001-05-11, accepted 2001-11-05.
* To whom correspondence should be addressed.

process, discrete time-series data are adopted in the
model(12-14] At time ¢, the input consists of X;(¢),
X;(t—At), ---, X;(t— NAt), where X;(t) is the value
of the jth process variable at time t, At is the time in-
terval, and N is the number of successive data points
of the process variable, which is given empirically.
Its structure is illustrated in Fig.1 (without impulse
response coefficient). However, in previous research
works(12~14] | determination of the time-series length
is mainly empirical. This makes the denotative appli-
cation of time-series neural networks without guaran-
tee.
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Figure 1 Structure of a modified ANN

2.2 Process characteristics

For a given controllable process, responding to the
input impulse, the output has such a response curve
as shown in Fig. 2. An impulse is at the process input
side at time ¢y and a response can be detected at the
output side at time t4. After a period of t; the system
output returns to steady status. Thus in the period
between t4 and t, a series of discrete value of h(t) can
be detected. If sampling period is AT, the system re-
habilitating period N; is (t, — tq)/A7. As illustrated
in Fig. 2, for a single in single out (SISO) system, the
output at time ¢ can be written as the following form

N
Yt—Uo= Zhjxt—j (1)
i=1

where y; is the measured value at time ¢ and y, is
the initial value. Eq. (1) indicates that to calculate
the output value exactly it is necessary to add up all
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the inputs in N synchronously. In view of process
causality, if time-series values of the input variable are
adopted as ANN inputs, the time-series length should
cover the rehabilitating period. However the previous
researchers did not notice this fact!12=14,
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Figure 2 Impulse response curve

2.3 Dynamic process modeling based on mod-
ified ANN

For a process with m inputs and n outputs, the
traditional ANN dynamic model can be written as

n T1,1, T2, TLN,
Y2 T2,1y 2,2y 3 T2 N,

=F| . (2)
Un T, 1y Tm,2," "y Tm, N,

where F(.) is the mapping function between process
inputs and outputs, z; ;(i = 1,-++,m,j = 1,-++,Ng)
is the jth time-series value of the ith input variable,
yi(i = 1,---,n) is the ¢th output variable, and Nj is
the chosen time-series length. With process causal-
ity, N; equals to system rehabilitating period N;. In
general, V; is not a small value. If all the time-series
values N, were adopted in an ANN model, the ANN
structure would become very complicated. To avoid
the problem the system impulse response coefficients
are introduced into the time-series ANN model. It is

n z1ahia, w12k, TN R,
Y2 T21h2 1, T22h22, T2, N o,
=F
Yn xm,lh'm,l: xru,2h1n,2v oy EmN,, hvn.;'\rm

(3)
where h; j(i = 1,---,m;j = 1,---, N;) is the jth im-
pulse response coefficient of the ith variable, N; is
the impulse response period of the ith variable, and
F(.) represents the neural network. The structure
of the modified ANN is illustrated in Fig.1. The
weights, which connect the first hidden layer and the
time-series input layer, are replaced by impulse re-
sponse coefficients that can be detected online or off-
line. Thus the need-to-trained unknown parameters
decrease greatly without process information lost.

3 TRENDS PREDICTION

3.1 Trends predictive model based on ANN
There exists high causality among the process vari-

ables that provide proper circumstance for causal pre-

diction. This new means for trends prediction is based

on the process causality. Generally the system status
is denoted by one of the process variables, the eigen-
vector, and its trend represents the changing direc-
tion. So the multi-input single-output (MISO) pro-
cess is discussed here only. In this paper, an ANN
based modeling means is put forward to deal with the
MISO process. If the relationship among variables is
nonlinear, its one-step predicting output model can be
written as

Yk-i—l = F(yk+-1,l: Yk4+1,2,° " vyk+1,vn)
N

Yr+1,i = Yo,i + E hjith—ji1: i=1,---,m
7=1

(4)

where F(.) is the ANN mapping function between pro-
cess output and input; Y% is the one-step predicting
value at time k, yr41.:(¢ = 1,---,m) is the output
variation caused by the ith input variable, and m is
the number of the relative input variables. Eq. (4) rep-
resents that the gross output is the combination of the
output caused by all inputs. On the basis of Eq. (4)
the process output value of the ith step is

Yitt = F(Yrsi,1, Una1,207 " Ykttm)

l=1,2,--- Ny
! N
Yerti = Yoi + I hjBkri—git Y hiitkiioj
i=1 j=i+1
i=1,---,m

(5)
where I;; is the ith step predicting value of the jth
input variable, which is given by the next equation

Thji =Fm(Thaj—1,0 Thaj—2,ir" s Thtlyir Thyjs " " s
$k+f—4'\"i—-1.a) (6)

Equation (6) indicates that Zy4;; is the function
F.(.) which is the mapping function of the mth in-
put variable and is obtained by ANN learning, of
the last N; time-series of the mth input variable,
which comprises two segments: the predicted seg-
ment (Zg4;—1,i, > Tk1,i) and the measured segment
(Thyiy s+ s Tht Ny )

3.2 Input variable prediction

Because it is difficult to obtain input variable val-
ues based on process causality, the usual way is using
time-series model to calculate the unknown values.

There are two ways to calculate the future input
values. One is keeping the future values equal to the
last measured value but the error of prediction will be-
come larger with the increase of the predicting step.
Another way is using the history data to predict the
future values. (The later way is adopted in this paper.)
The time-series model is replaced by ANN model,
which means that the ANN inputs are the time-series
values of process inputs. The future value of input
variables is calculated by one- step ANN predictive
model. The disposing steps are: (1) Calculate the one
step predictive data; (2) Replace the oldest data with

Chinese J. Ch. E. 10 (3) 288 (2002)



288 Chinese J. Ch. E. (Vol. 10, No. 3)

the calculated predictive data to constitute a new in-
put time-series; (3) Use the new time- series to predict
the next input future value; (4) Repeat Step (1) to (3)
under the pre-set predicting steps.
3.3 Computational procedure

The application of the predictive model follows the
next steps (the current time is k):

(1) Predict the input variable value of the next
step using trained ANN Fj(.);

(2) Combine the new computed input value with
the previous N; — 1 input time-series values to form a
new time-series;

(3) Introduce the new input time-series to the
time-series input layer, and the weights of the first
hidden layer are the impulse response coefficients;

(4) Predict the output value of the next step
through Eq. (5);

(5) Repeat Step (1) to (4) according to the pre-set
predicting step.

4 CASE STUDY
4.1 Case description

The stripper of Tennessee Eastman problem(!%:16]
is treated to illustrate the above predictive method.
Fig. 3 shows a diagram of its basic control system.
Stripper temperature is chosen as the system eigen-
vector, viz. the trends prediction parameter. There
are four control variables in the process: flowrates
of Stream 4 and Stream 10, reboiler steam and bot-
tom stream. Because the steam flow is controlled by
the temperature, it can not be an input variable of
the model. The bottom stream has little influence on
stripper temperature. As a result, there are two input
variables in the predictive model: flows of Stream 4
and Stream 10.
4.2 Computational procedure and results

Process disturbances were added to Stream 4 and
Stream 10 to generate the process dynamic data. Pro-
cess signal noise still exists in the measured data.

First, the impulse response is detected. The im-
pulse response curves corresponding to the two input
variables are shown in Fig.4. The rehabilitating pe-
riod caused by Stream 4 is set as 330 s and that caused
by Stream 10 is 125s. The time-delay periods of the
two input variables are 3s.

Second, the dynamic process model is constructed.
To model the process with Eq. (3), flowrates of stream
4 and stream 10 are taken as the ANN inputs and
stripper temperature is the ANN output. The train-
ing and testing samples are both 200 groups. After
optimization the ANN structure is chosen as follows:
input time-series points are 330 and 125, the two hid-
den layer nets are 2 and 4 respectively, and the transfer
functions are all linear. The testing results are shown
in Fig.5. The training and testing average variance
are 2.696x107° and 4.32x107°.

The two input variables in the one-step ANN based
predictive model are also trained. The ANN structure
is shown in Table 1.
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Figure 5 Testing result of dynamic process
ANN model
l—calculated data; 2-—measured data

Table 1 ANN structure
ANN Nets Transfer function
1 10-2-1 sigmoid-linear
2 10-3-1 sigmoid-linear

where ANN 1 is corresponding to input variable
Stream 4 and ANN 2 is corresponding to Stream 10.

Third, the trained ANN model is need to predict
the process trends according to Section 3.3. In this
case 100 samples and 100 predictive steps per sample
are inspected. The predicted result is shown in Figs. 6
and 7. Fig. 6 illustrates the total predicted error var-
ied with predicted steps. Fig. 7 shows the comparison
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of the predicted curve and measured curve for three
variables (flowrate of Stream 4, flowrate of Stream
10 and the stripper temperature} while the samples
are stochastically cited. Fig. 7 shows that, though the
measured data mix with signal noise, the model can
still predict the overall process trends.

L0041
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Figure 8 Distribution of total predicted error

5 CONCLUSIONS

A modified time-series ANN model is put forward
based on the process characteristics. Compared with
traditional ANN dynamic model, this model has a sim-
pler structure but express the process without infor-
mation loss. Based on the above ANN model, a dy-
namic model is put forward. This model includes two
parts: the predictive model of input variables and the
predictive model of output variables. The case study
shows that the predictive model bears the capability
to predict the overall process trends under a relative
long predictive time steps. This makes it possible to
evaluate the process status and the effect of the oper-
ator’s action.
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Figure 7 Comparison of predict value and
measured value
1—predicted; 2—measured

NOMENCLATURE
F(.) ANN mapping function

Fre(.)  ANN mapping function of variable m

h; jth impulse response coefficient of the ith variable

Ny impulse response rehabilitating period

A time-series length

to initial time

ta time-delay period

ts system rehabilitating time

X;(t) value of the jth process variable at time ¢

i measured value of the ith step of the jth input
variable

=i predicted value of the ith step of the jth input
variable

Y predict value of the jth step

Yo initial output value

Yt measured output value at time ¢

Yij output variation caused by the jth input variable
at time @

AT sample period
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