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ESTIMATION OF BOUNDED LOCATION AND SCALE
PARAMETERS

Tatsuya Kubokawa*

This paper addresses the issue of deriving estimators improving on the best loca-
tion equivariant (or Pitman) estimator under the squared error loss when a location
parameter is restricted to a bounded interval. A class of improved estimators is
constructed, and it is verified that the Bayes estimator for the uniform prior over
the bounded interval and the truncated estimator belong to the class. This paper
also obtains the sufficient conditions for the density under which the class includes
the Bayes estimators with respect to the two-point boundary symmetric prior and
general continuous prior distributions when a symmetric density is considered for
the location family. It is demonstrated that the conditions on the symmetric density
can be applied to logistic, double exponential and t-distributions as well as to a nor-
mal distribution. These conditions can be also applied to scale mixtures of normal
distributions. Finally, some similar results are developed in the scale family.

Key words and phrases: Bayes estimator, bounded mean, decision theory, improved
estimator, location family, minimaxity, monotone likelihood ratio, Pitman estimator,
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1. Introduction

The problem of estimating a parameter restricted to a bounded subset has
received theoretical attentions in the field of statistical decision theory. In the
estimation of mean µ of a normal distribution N (µ, 1) under the restriction A =
{µ | |µ| ≤ m} for m > 0, Casella and Strawderman (1981) established that the
nonrestricted estimator X, having N (µ, 1), is not minimax and showed that the
Bayes estimator against the two-point symmetric prior distribution putting mass
on the endpoints {−m,m}, given by

µ̂BU = (meX −me−X)/(eX + e−X) = m tanhX,

is minimax under the squared error loss if the boundary m satisfies the condi-
tion m ≤ 1.0567. This result was extended by Berry (1990) and Marchand and
Perron (2002) to a multivariate normal distribution and by DasGupta (1985) to
a general parametric model. Marchand and Perron (2001) demonstrated that
µ̂BU dominates the maximum likelihood estimator µ̂TR = (X/|X|) min(|X|,m)
if m ≤ 1, and Marchand and Perron (2005) recently extended this result to a
multivariate t-distribution. Although the estimator µ̂BU is minimax, the condi-
tion on the boundary m for the minimaxity is restrictive. An alternative is the
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Bayes estimator against the fully uniform prior over A, given by

µ̂FU =

∫ m

−m
µ exp{−(X − µ)2/2}dµ

/ ∫ m

−m
exp{−(X − µ)2/2}dµ.

Gatsonis et al. (1987) proved the dominance result of µ̂FU over X, and illustrated
that it has a favorable risk behavior in comparison with µ̂BU : the risk is slightly
higher near zero, but quite a bit smaller near the boundary. Hartigan (2004)
provided an interesting method for establishing the dominance based on the
Stein identity.

Using the IERD method given by Kubokawa (1994a, 1994b, 1998, 1999),
Marchand and Strawderman (2005) recently constructed a broad class of estima-
tors improving on X in the general location family, and demonstrated that the
Bayes estimator µ̂FU against the fully uniform prior over A belongs to the class.
These results inspired me to develop further studies about the following queries:

(i) Does the Bayes estimator µ̂BU against the two-point prior belong to the
class of improved estimators given by Marchand and Strawderman (2005)?

(ii) What types of prior distributions of µ produce the Bayes estimators
belonging to the class?

(iii) What kinds of conditions on the density in the location family are re-
quired to establish the dominance properties of the Bayes estimators over X? Do
similar kinds of dominance properties hold in the scale family?

The objective of this paper is to investigate and answer the above queries.
In Section 2, the class of estimators improving on the best location-equivariant
estimator µ̂0 based on a sample with size n in the general location family is given.
This is an extension of the result of Marchand and Strawderman (2005) who
dealt with the case of a single observation. It is shown that the class includes the
Bayes estimator against the fully uniform prior over A and a truncated estimator
which corresponds to the maximum likelihood estimator in the case of the single
observation. A new and simple estimator shrinking µ̂0 towards the center of the
restricted interval is also derived in the general setup, and it is verified to be
superior to µ̂0.

When we focus on a simple setup, some further studies can be developed
and several interesting dominance results can be obtained. In Section 3, we treat
the estimation of the location parameter based on a single observation from a
symmetric distribution whose density is described by f(x − µ). Related to the
query (ii), we consider the prior distribution with the symmetric density

πU
h (µ) = h(µ)I(|µ| ≤ m),

where h(·) is a nonnegative function defined on the real numbers and I(|µ| ≤ m)
is the indicator function, namely, I(|µ| ≤ m) = 1 for |µ| ≤ m and I(|µ| ≤ m) = 0
for |µ| > m. Then it is proved that the resulting Bayes estimator µ̂U

h belongs to
the class of improved estimators under the following conditions on the prior h(µ)
and the density f(x− µ): The conditions on h(µ) are given as

(a) h(µ) is nondecreasing in µ for µ > 0 and
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(b) log h(µ) is symmetric and concave in µ;
The conditions on f(x− µ) are described as

(A.1) f(u) is nonincreasing in u > 0,
(A.2) f ′(x − µ)/f(x − µ) + f ′(x + µ)/f(x + µ) ≤ 0 for nonnegative x and

µ ∈ [0,m].
The assumption (A.1) means that the density function is unimodal, and (A.2) is
guaranteed if the density has the monotone likelihood ratio property.

As an answer to the query (i), we shall show that the Bayes estimator µ̂BU

against the two-point prior belongs to the class of improved estimators when we
assume (A.1), (A.2) and the additional condition that

(A.3) f ′(x−m)/f(x−m) − f ′(x+m)/f(x+m) ≤ 2/m for x > 0.
As illustrated in some examples, the condition (A.3) seems to require the re-
strictive condition on m such that the boundary m is bounded above. Some
distributional examples satisfying the assumptions (A.1), (A.2) and (A.3) are
presented in Section 3, including logistic, double exponential and t-distributions
as well as the normal distribution. We also derive conditions for general nor-
mal mixture distributions to satisfy the assumptions. Finally, Section 4 studies
some similar dominance results in the scale family and provides an example of a
gamma distribution. These answer the query (iii).

It is noted that the same notations are repeatedly used in the paper as long as
they are not confusing. Throughout the paper, the notations µ̂0, µ̂

FU and µ̂BU ,
respectively, denote the best location-equivariant estimator, the Bayes estimator
against the fully uniform prior over the bounded interval, and the Bayes estimator
against the boundary uniform prior putting mass on the endpoints.

Finally, we conclude this section with remarks on the dominance problem
studied in this paper. Although the paper will derive the conditions for estimators
to dominate the best location- or scale-equivariant estimator, it is more important
to address the problem of finding Bayes estimators dominating the truncated
or maximum likelihood estimator (MLE). This problem was investigated by
Marchand and Perron (2001, 2005) for multivariate normal and t-distributions,
and general conditions for the dominance over the MLE were derived. In the
univariate normal distribution N (µ, 1) under the restriction |µ| ≤ m, Table 1
of Marchand and Perron (2001) demonstrates that the dominance properties of
the Bayes estimators over the MLE are guaranteed restrictively for small m.
For example, µ̂FU has the dominance property for m ≤ 0.523. Although the
dominance of µ̂FU over the MLE is not guaranteed for m > 0.523, µ̂FU dominates
µ̂0 for any m and has a favorable risk behavior in large part of µ as illustrated
in Gatsonis et al. (1987). On the other hand, it seems very hard to derive a
Bayes estimator dominating the MLE for any m, and such a Bayes estimator
has not been developed so far. Taking these facts into account, we consider it
meaningful to begin with constructing classes of estimators improving on µ̂0 for
any m, which is the aim of this paper. Based on the results obtained in the
paper, we can search for Bayes estimators having good risk behaviors within the
calsses of the improved estimators. We plan to consider the more difficult issue
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of finding the Bayes estimators dominating the truncated ones in a future study.

2. Estimation in the location family

2.1. A class of improved estimators
We consider the estimation of the bounded location parameter in the general

location family. Let X = (X1, . . . , Xn) be a set of random variables having the
density function f(x − µ) where x − µ means (x1 − µ, . . . , xn − µ) for scalar µ.
Suppose that the location parameter µ is restricted to the bounded interval

A = {µ | a ≤ µ ≤ b} for known real a and b.

Estimator µ̂ of µ is evaluated by the risk function R(µ, µ̂) = E[L
(µ̂, µ)] relative
to the squared error loss

L
(µ̂, µ) = (µ̂− µ)2.

The best location-equivariant estimator, called the Pitman estimator, of µ
is given by

µ̂0 = µ̂0(X ) =

∫ ∞

−∞
ξf(X − ξ)dξ

/ ∫ ∞

−∞
f(X − ξ)dξ,(2.1)

which is the generalized Bayes estimator against the Lebesgue measure dξ over
real line. To improve the best location-equivariant estimator µ̂0 by using the
restriction A, consider a class of the estimators

µ̂φ = µ̂0(X ) − φ(µ̂0(X ),y),(2.2)

where y = X − µ̂0(X ), and φ(w,y) is an absolutely continuous function. In
this general location family, a class of estimators improving on µ̂0 is constructed
in the following theorem, which is an extension of the result of Marchand and
Strawderman (2005) who addressed the case n = 1 and gave a class of estimators
improving on µ̂0 = X1. The following theorem provides the result in the case of
size n and the proof is instructively stated below.

Theorem 2.1. Assume that φ(w,y) is an absolutely continuous function
satisfying the following conditions:

(a) There exists a function c(y) such that φ(c(y),y) = 0,
(b) φ(w,y) is nondecreasing in w,
(c) φ(w,y) is bounded as

φ(w,y)

{
≤ φw−b,∞(w,y) if w ≥ c(y),

≥ φ−∞,w−a(w,y) if w < c(y),

where

φw−b,∞(w,y) =

∫∞
w−b uf(y + u)du∫∞
w−b f(y + u)du

, φ−∞,w−a(w,y) =

∫ w−a
−∞ uf(y + u)du∫ w−a
−∞ f(y + u)du

.

Then µ̂φ given by (2.2) dominates the best location-equivariant estimator µ̂0 rel-
ative to the L
-loss.
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Proof. The IERD method provided by Kubokawa (1994a, 1994b, 1998,
1999) is useful for the proof. The risk difference of the two estimators µ̂0 and µ̂φ

is written by

∆ = R(µ, µ̂0) −R(µ, µ̂φ)

= E[{µ̂0 − µ}2 − {µ̂0 − φ(µ̂0,y) − µ}2]

which is, from the condition (a), expressed as

E[{µ̂0 − φ(µ̂0 + t,y) − µ}2 |c(y)−µ̂0

t=0 ]

= E

[∫ c(y)−µ̂0

0

d

dt
{µ̂0 − φ(µ̂0 + t,y) − µ}2dt

]

= −2

∫∫ c(y)−µ̂0

0
{µ̂0 − φ(µ̂0 + t,y) − µ}φ′(µ̂0 + t,y)f(x − µ)dtdx ,

where φ′(t,y) = (∂/∂t)φ(t,y). By partitioning the space of x into the two
subsets {x | µ̂0(x ) > c(y)} and {x | µ̂0(x ) ≤ c(y)}, the risk difference ∆ is
written as

∆ = −2

{∫
µ̂0>c(y)

+

∫
µ̂0≤c(y)

}∫ c(y)−µ̂0

0
{µ̂0 − φ(µ̂0 + t,y) − µ}

× φ′(µ̂0 + t,y)f(x − µ)dtdx

= 2

∫
µ̂0>c(y)

∫ 0

c(y)−µ̂0

{µ̂0 − φ(µ̂0 + t,y) − µ}φ′(µ̂0 + t,y)f(x − µ)dtdx

− 2

∫
µ̂0≤c(y)

∫ c(y)−µ̂0

0
{µ̂0 − φ(µ̂0 + t,y) − µ}φ′(µ̂0 + t,y)f(x − µ)dtdx

= ∆1 + ∆2. (say).

We first show that ∆1 ≥ 0. Since the conditions that c(y) − µ̂0(x ) < t < 0
and c(y) − µ̂0(x ) < 0 are equivalent to the conditions that −∞ < t < 0 and
µ̂0(x ) − c(y) > −t, the quantity ∆1 is expressed by

∆1 = 2

∫ 0

−∞

∫
µ̂0−c(y)>−t

{µ̂0 − φ(µ̂0 + t,y) − µ}φ′(µ̂0 + t,y)f(x − µ)dxdt.

Note that the estimator µ̂0(x ) is location-equivariant, that is, µ̂0(x )+t = µ̂0(x +
t). Making the transformations v = x + t and u = µ̂0(v) − t − µ in turn with
dv = dx and du = −dt, we can rewrite ∆1 as

∆1 = 2

∫ 0

−∞

∫
µ̂0(x+t)−c(y)>0

{µ̂0(x ) − φ(µ̂0(x + t),y) − µ}(2.3)

× φ′(µ̂0(x + t),y)f(x − µ)dxdt

= 2

∫ 0

−∞

∫
µ̂0(v)−c(y)>0

{µ̂0(v) − t− φ(µ̂0(v),y) − µ}

× φ′(µ̂0(v),y)f(v − t− µ)dvdt
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= 2

∫
µ̂0(v)−c(y)>0

∫ 0

−∞
{µ̂0(v) − t− φ(µ̂0(v),y) − µ}

× φ′(µ̂0(v),y)f(v − t− µ)dtdv

= 2

∫
µ̂0(v)−c(y)>0

∫ ∞

µ̂0(v)−µ
{u− φ(µ̂0(v),y)}

× φ′(µ̂0(v),y)f(v − µ̂0(v) + u)dudv ,

where y = x − µ̂0(x ) = v − µ̂0(v) since µ̂0 is equivariant. From the condition
(b), φ′(w,y) ≥ 0, so that ∆1 is nonnegative if the function φ(w,y) is bounded
above by

φ(w,y) ≤
∫ ∞

w−µ
uf(y + u)du

/ ∫ ∞

w−µ
f(y + u)du for any a ≤ µ ≤ b,

which is equivalent to

φ(w∗ + µ,y) ≤
∫ ∞

w∗
uf(y + u)du

/ ∫ ∞

w∗
f(y + u)du for any a ≤ µ ≤ b,

for w∗ = w−µ. Since φ(w,y) is nondecreasing in w, it follows that φ(w∗+µ,y) ≤
φ(w∗ + b,y) for a ≤ µ ≤ b, so that we get the sufficient condition that

φ(w∗ + b,y) ≤
∫ ∞

w∗
uf(y + u)du

/ ∫ ∞

w∗
f(y + u)du,

which is rewritten by

φ(w,y) ≤
∫ ∞

w−b
uf(y + u)du

/ ∫ ∞

w−b
f(y + u)du.

This condition is guaranteed by the condition (c), and the requirement that
∆1 ≥ 0 is proved.

We next show that ∆2 ≥ 0. By the same arguments as in (2.3), we observe
that

∆2 = −2

∫
µ̂0≤c(y)

∫ c(y)−µ̂0

0
{µ̂0 − φ(µ̂0 + t,y) − µ}φ′(µ̂0 + t,y)f(x − µ)dtdx

= −2

∫ ∞

0

∫
µ̂0(x )−c(y)≤−t

{µ̂0(x ) − φ(µ̂0(x ) + t,y) − µ}

× φ′(µ̂0(x ) + t,y)f(x − µ)dxdt

= −2

∫ ∞

0

∫
µ̂0(v)−c(y)≤0

{µ̂0(v) − t− µ− φ(µ̂0(v),y)}

× φ′(µ̂0(v),y)f(v − t− µ)dvdt

= −2

∫
µ̂0(v)−c(y)≤0

∫ µ̂0(v)−µ

−∞
{u− φ(µ̂0(v),y)}φ′(µ̂0(v),y)f(y + u)dudv .

Since φ′(w,y) ≥ 0, it is sufficient to show that

φ(w,y) ≥
∫ w−µ

−∞
uf(y + u)du

/ ∫ w−µ

−∞
f(y + u)du,
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which is guaranteed by the condition (c) as verified by the same way as in the
case that ∆1 ≥ 0. Therefore, the proof of Theorem 2.1 is complete.

The following theorem is useful for showing the dominance property of the
typical Bayes estimators introduced in Section 1.

Theorem 2.2. Assume that φ(w,y) is an absolutely continuous function
satisfying the following conditions:

(a) There exists a function c(y) such that φ(c(y),y) = 0,
(b) φ(w,y) is nondecreasing in w,
(c) φ(w,y) is bounded as

φ(w,y)

{
≤ φU (w,y) if w ≥ c(y),

≥ φU (w,y) if w < c(y),

where

φU (w,y) =

∫ w−a

w−b
uf(y + u)du

/ ∫ w−a

w−b
f(y + u)du.(2.4)

Then µ̂φ given by (2.2) dominates the best location-equivariant estimator µ̂0 rel-
ative to the L
-loss.

Proof. From Theorem 2.1, we need to show that

φU (w,y) ≤
∫∞
w−b uf(y + u)du∫∞
w−b f(y + u)du

for w ≥ c(y),(2.5)

and

φU (w,y) ≥
∫ w−a
−∞ uf(y + u)du∫ w−a
−∞ f(y + u)du

for w < c(y).(2.6)

To check the inequality (2.5), it is sufficient to show that the function

h(s) =

∫ s

w−b
uf(y + u)du

/ ∫ s

w−b
f(y + u)du

is increasing in s. The derivative of h(s) with respect to s is proportional to the
quantity that

sf(y + s)

∫ s

w−b
f(y + u)du−

∫ s

w−b
uf(y + u)duf(y + s)

= f(y + s)

∫ s

w−b
(s− u)f(y + u)du,

which is nonnegative, so that h(s) is increasing. Hence, h(w− a) ≤ h(∞), which
shows the inequality (2.5). Similarly, we can show the inequality (2.6).
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2.2. Derivation of improved estimators
Now we derive some estimators improving the best location-equivariant es-

timator µ̂0.
[1] Fully uniform prior Bayes estimator. Consider the fully uniform

prior distribution over the bounded interval, described by

πU (µ) = (b− a)−1dµI(a ≤ µ ≤ b),

where I(·) denotes the indicator function. The resulting Bayes estimator is given
by

µ̂FU =

∫ b

a
ξf(x − ξ)dξ

/ ∫ b

a
f(x − ξ)dξ(2.7)

= µ̂0 −
∫ b

a
(µ̂0 − ξ)f(x − ξ)dξ

/ ∫ b

a
f(x − ξ)dξ

= µ̂0 − φU (µ̂0,y),

which we here call the fully uniform prior Bayes estimator , where φU (w,y) is
defined by (2.4). We shall show that the Bayes estimator µ̂FU belongs to the class
provided in Theorem 2.2. The condition (c) is trivially satisfied. The derivative
of φU (w,y) with respect to w is proportional to the quantity

{(w − a)f(y + w − a) − (w − b)f(y + w − b)}
∫ w−a

w−b
f(y + u)du(2.8)

−
∫ w−a

w−b
uf(y + u)du{f(y + w − a) − f(y + w − b)}

=

∫ w−a

w−b
f(y + u)[{(w − a) − u}f(y + w − a)

+ {u− (w − b)}f(y + w − b)]du,

which is positive. Thus, φU (w,y) satisfies the condition (b). Noting that
φU (w,y) has one sign change from negative to positive, we see that there ex-
ists a function c(y) such that φU (c(y),y) = 0.

Proposition 2.1. The fully uniform prior Bayes estimator µ̂FU given by
(2.7) dominates the best location-equivariant estimator µ̂0 relative to the L
-loss.

[2] Truncated estimator. Every estimator taking values outside the pa-
rameter space a ≤ µ ≤ b can be improved on by truncating it at the boundary
points a and b. Thus, the estimator µ̂0 is dominated by the truncated estimator

µ̂TR = max{a,min{µ̂0, b}}(2.9)

= µ̂0 − φTR(µ̂0,y),

where
φTR(w,y) = min{w − a,max{w − b, 0}}.
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Noting that c(y) is between a and b, we can see that φTR(w,y) satisfies all the
conditions in Theorem 2.1, that is, µ̂TR belongs to the class given in Theorem
2.1.

[3] Shrinkage estimator. Let R0 = E[(µ̂0 − µ)2] and B0 = E[µ̂0 − µ],
both of which are independent of µ since µ̂0 is equivariant. Based on R0 and B0,
consider a shrinkage estimator of the form

µ̂S = µ̂0 −A0

(
µ̂0 −

a+ b

2

)
,(2.10)

where

A0 =
R0 − |B0(a− b)|/2

R0 − |B0(a− b)| + (a− b)2/4
.

The shrinkage constant A0 satisfies the condition 0 ≤ A0 ≤ 1 when |B0| ≤
min(|a − b|/2, 2R0/|a − b|). Then µ̂S shrinks µ̂0 towards the center (a + b)/2
of the interval. Although it is not sure that µ̂S belongs to the class given in
Theorem 2.1, the dominance of µ̂S over X can be directly verified.

Proposition 2.2. If the bias B0 of the estimator µ̂0 satisfies the condition

|B0| ≤ min(|a− b|/2, 2R0/|a− b|),

then the shrinkage estimator µ̂S given by (2.10) dominates µ̂0 relative to the
L
-loss. If R0 > |B0(a− b)|/2, then the estimator µ̂0 is not minimax.

Proof. The risk function of the estimator µ̂S is written by

R(µ, µ̂S) = E[(µ̂S − µ)2]

= (1 −A0)
2R0 +A2

0

(
µ− a+ b

2

)2

− 2A0(1 −A0)B0

(
µ− a+ b

2

)
.

Noting that −(b−a)/2 ≤ µ−(a+b)/2 ≤ (b−a)/2, we see that {µ−(a+b)/2}2 ≤
(b− a)2/4 and

−2B0

(
µ− a+ b

2

)
≤ |B0(a− b)|,

which implies that

R(µ, µ̂S) ≤ (1 −A0)
2R0 +A2

0(a− b)2/4 +A0(1 −A0)|B0(a− b)|

= R0 −
(R0 − |B0(a− b)|/2)2

R0 − |B0(a− b)| + (a− b)2/4
.

This shows that the risk of the estimator µ̂S is bounded by the constant strictly
smaller than R0 if R0 > |B0(a − b)|/2, that is, the unrestricted estimator µ̂0 is
not minimax.

[4] Two-point boundary prior Bayes estimator. Consider the dis-
crete prior distribution putting mass on the endpoints {a, b}, described by

πB(µ) = pP [µ = a] + (1 − p)P [µ = b],
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where p is a known constant in the interval [0, 1]. The resulting Bayes estimator
is given by

µ̂B =
paf(X − a) + (1 − p)bf(X − b)

pf(X − a) + (1 − p)f(X − b)
= µ̂0 − φB(µ̂0,y),(2.11)

where for y = X − µ̂0,

φB(w,y) =
p(w − a)f(y + w − a) + (1 − p)(w − b)f(y + w − b)

pf(y + w − a) + (1 − p)f(y + w − b)
.

It is too hard to get conditions under which µ̂B belongs to the class of improved
estimators provided by Theorems 2.1 or 2.2. For some specific symmetric distri-
butions, we can obtain such conditions as stated in the next section.

3. Examples in symmetric distributions

The improved procedures and the dominance results given in Section 2.2 can
be applied to the estimation of the bounded location based on random samples
of size n from various distributions, which include non-symmetric distributions
such as an exponential distribution. Instead of stating such examples in detail,
we here focus our attention on symmetric distributions and develop some inter-
esting dominance properties. In particular, characterizations with repect to the
underlying symmetric distributions and prior distributions will be presented to
guarantee the dominance of the Bayes estimators in Section 2.

3.1. Symmetric distributions
Let X be a single random variable having the symmetric density f(x − µ),

namely, f(u) = f(−u) for any u ∈ R, where the location parameter µ is restricted
to the bounded interval A = {µ | |µ| ≤ m} for a positive constant m. When
the estimation of µ is treated under the squared error loss, the best location-
equivariant, the truncated and the shrinkage estimators corresponding to (2.1),
(2.9) and (2.10) are, respectively, given by µ̂0 = X, µ̂TR = (X/|X|) min(|X|,m)
and µ̂S = {m2/(R0 + m2)}X for R0 =

∫∞
−∞ u2f(u)du. Also the fully uniform

prior Bayes estimator (2.7) is written by

µ̂FU =

∫ m

−m
µf(X − µ)dµ

/ ∫ m

−m
f(X − µ)dµ = X − φU (X),

where

φU (x) =

∫ m

−m
(x− µ)f(x− µ)dµ

/ ∫ m

−m
f(x− µ)dµ(3.1)

=

∫m
0 {(x− µ)f(x− µ) + (x+ µ)f(x+ µ)}dµ∫m

0 {f(x− µ) + f(x+ µ)}dµ .

From the results in Section 2, the estimators µ̂TR, µ̂S and µ̂FU dominate µ̂0 = X.
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The dominance property of the Bayes estimator µ̂FU can be extended to
more general priors described by

πU
h (µ) = h(µ)I(|µ| ≤ m),

where h(µ) is nonnegative and symmetric about zero, that is, h(µ) = h(−µ) for
µ > 0. The resulting Bayes estimator is

µ̂U
h =

∫ m

−m
ξh(µ)f(X − µ)dµ

/ ∫ m

−m
h(µ)f(X − µ)dµ = X − φU

h (X),

where

φU
h (x) =

∫ m

−m
(x− µ)h(µ)f(x− µ)dµ

/ ∫ m

−m
h(µ)f(x− µ)dµ(3.2)

=

∫m
0 {(x− µ)h(µ)f(x− µ) + (x+ µ)h(µ)f(x+ µ)}dµ∫m

0 {h(µ)f(x− µ) + h(µ)f(x+ µ)}dµ .

To establish the dominance result, we need the following assumptions for the
density f(x− µ).

(A.1) f(u) is nonincreasing in u > 0.
(A.2) For the derivative f ′(u) = (d/du)f(u) and nonnegative x and µ ∈

[0,m],

f ′(x− µ)/f(x− µ) + f ′(x+ µ)/f(x+ µ) ≤ 0.(3.3)

The assumption (A.1) means that the density is unimodal. The assumption (A.2)
is guaranteed under the assumption (A.1) if

(A.2′) (d/du) log f(u) = f ′(u)/f(u) is nonincreasing in u for 0 < u ≤ 2m,
which is satisfied if the density f(x−µ) has the monotone likelihood ratio prop-
erty. In fact, in the case that x− µ ≥ 0 for x > 0 and µ ∈ [0,m], the inequality
(3.3) follows from the assumption (A.1). In the case that x−µ < 0 or x < µ, on
the other hand, note that 0 < µ − x < x + µ < 2µ ≤ 2m since 0 < x < µ ≤ m.
Also note that

f ′(x− µ)/f(x− µ) = −f ′(µ− x)/f(µ− x),

since f ′(u)/f(u) is an odd function. Then from the monotonicity in (A.2′), it is
seen that −f ′(µ− x)/f(µ− x) + f ′(x+ µ)/f(x+ µ) is not positive.

Under these assumptions, we shall prove the monotonicity of the function

G(t, x) =
(x− t)f(x− t) + (x+ t)f(x+ t)

f(x− t) + f(x+ t)
,(3.4)

which will be very useful for developing dominance results.

Lemma 3.1. Assume that the symmetric density f(x−µ) satisfies the con-
ditions (A.1) and (A.2). Then G(t, x) is nonincreasing in t for 0 < t < m and
x > 0.
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Proof. The derivative (d/dt)G(t, x) is proportional to the quantity

{−f(x− t) + f(x+ t) − (x− t)f ′(x− t) + (x+ t)f ′(x+ t)}
× {f(x− t) + f(x+ t)}
− {(x− t)f(x− t) + (x+ t)f(x+ t)} × {−f ′(x− t) + f ′(x+ t)}

= {f(x+ t) − f(x− t)} × {f(x+ t) + f(x− t)}
+ 2t{f ′(x− t)f(x+ t) + f ′(x+ t)f(x− t)},

which is not positive from the assumptions (A.1) and (A.2). Hence G(t, x) is
nonincreasing in t for 0 < t < m.

Proposition 3.1. Assume that the symmetric density f(x − µ) satisfies
the assumptions (A.1) and (A.2). If the nonnegative function h(t) satisfies the
following conditions:

(a) h(t) is nondecreasing in t for 0 < t < m,
(b) log h(t) is symmetric and concave,

then the Bayes estimator µ̂U
h dominates X under the restriction A relative to the

squared error loss.

Proof. All the conditions in Theorem 2.2 will be checked. The condition
(a) is clearly satisfied since φU

h (0) = 0. Since φU
h (−x) = −φU

h (x) and φU (−x) =
−φU (x) for x > 0, for the condition (c), it is sufficient to show that for x > 0,

φU
h (x) ≤ φU (x),

which is, from (3.2), written by∫m
0 h(t)F2(t, x)dt∫m
0 h(t)F1(t, x)dt

≤
∫m
0 F2(t, x)dt∫m
0 F1(t, x)dt

,(3.5)

where F1(t, x) = f(x−t)+f(x+t) and F2(t, x) = (x−t)f(x−t)+(x+t)f(x+t).
The inequality (3.5) can be expressed by

E#
[
h(t)

F2(t, x)

F1(t, x)

]
≤ E# [h(t)] × E#

[
F2(t, x)

F1(t, x)

]
,(3.6)

where E#[·] denotes the expectation with respect to the probability density func-
tion of t given by F1(t, x)/

∫m
0 F1(t, x)dt. Note that F2(t, x)/F1(t, x) = G(t, x)

for G(t, x) defined by (3.4). From Lemma 3.1, G(t, x) is nonincreasing in t.
Also from the condition (a), the function h(t) is nondecreasing. We thus get the
inequality (3.6), which means the condition (c) is satisfied.

To check the condition (b), we shall show that (d/dx)φU
h (x) ≥ 0. Since φU

h (x)
in (3.2) is rewritten by

φU
h (x) =

∫ x+m

x−m
uh(x− u)f(u)du

/ ∫ x+m

x−m
h(x− u)f(u)du,
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the derivative (d/dx)φU
h (x) is proportional to[

{(x+m)f(x+m) − (x−m)f(x−m)}h(m)

∫ x+m

x−m
h(x− u)f(u)du

− {f(x+m) − f(x−m)}h(m)

∫ x+m

x−m
uh(x− u)f(u)du

]
+

[∫ x+m

x−m
uh′(x− u)f(u)du

∫ x+m

x−m
h(x− u)f(u)du

−
∫ x+m

x−m
uh(x− u)f(u)du

∫ x+m

x−m
h′(x− u)f(u)du

]
= I1 + I2, (say).

The same argument as in (2.8) shows that I1 ≥ 0. On the other hand, the
inequality I2 ≥ 0 is expressed by

E∗∗
[
u
h′(x− u)

h(x− u)

]
≥ E∗∗[u] × E∗∗

[
h′(x− u)

h(x− u)

]
,(3.7)

where E∗∗[·] denotes the expectation with respect to the probability density
function of u on [x − m,x + m] given by h(x − u)f(u)/

∫ x+m
x−m h(x − u)f(u)du.

From the condition (b) of Proposition 3.1, h′(x − u)/h(x − u) is nondecreasing
in u, so that the inequality (3.7) holds, and it is seen that I2 ≥ 0. Therefore, the
condition (b) of Theorem 2.2 is satisfied.

Instead of finding a function h(µ) satisfying the conditions of Proposition
3.1, we can consider the form

h(µ) = exp{−k(µ)},

and the conditions on h(µ) in Proposition 3.1 are replaced with
(a′) k(µ) is nonincreasing for µ > 0,
(b′) k(µ) is symmetric and convex.

For example, let us consider the form k1(µ) = a0/(1+ |µ|)
 for positive constants
a0 and $. It is easily seen that k1(µ) satisfies the conditions (a′) and (b′), so that
the function

h1(µ) = exp

{
− a0

(1 + |µ|)

}

is an example of h(µ) satisfying the conditions of Proposition 3.1. Another
example is given by letting k2(µ) = −$ log{c0(b0 + |µ|)} for $ > 0, b0 ≥ 0 and
c0 > 0, which yields

h2(µ) = {c0(b0 + |µ|)}
.
This satisfies the conditions of Proposition 3.1. Since c0(b0 + |µ|) ≤ c0(b0 +m),
we observe that if c0(b0 +m) = 1, then

lim

→∞

h2(µ)I(|µ| ≤ m) =

{
0 if |µ| < m,

1 if |µ| = m,
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which is a two-point uniform prior putting mass on {−m,m}, and results in the
Bayes estimator (2.11). If m satisfies the inequality m ≤ 1/c0, we can choose
a nonnegative b0 such that c0(b0 + m) = 1. This suggests that the dominance
property of the Bayes estimator (2.11) may be provided under the condition that
m is bounded above. In the distributional assumption of normality, Casella and
Strawderman (1981) proved that the Bayes estimator (2.11) is minimax if m ≤
1.0567, and Marchand and Perron (2001) showed that it dominates the maximum
likelihood estimator µ̂TR if m ≤ 1. For other distributions, similar conditions on
the boundary m are required for guaranteeing the dominance results as discussed
below.

For the general symmetric density f(x−µ), the Bayes estimator µ̂BU against
the two-point boundary uniform prior putting mass on the endpoints {−m,m}
is expressed as

µ̂BU =
mf(X −m) −mf(X +m)

f(X −m) + f(X +m)
= X − φB(X),

which we call here the boundary uniform prior Bayes estimator , where

φB(x) =
(x−m)f(x−m) + (x+m)f(x+m)

f(x−m) + f(x+m)
.

The following assumption for the density f(x− µ) guarantees the monotonicity
of φB(x):

(A.3) For nonnegative x,

f ′(x−m)/f(x−m) − f ′(x+m)/f(x+m) ≤ 2/m.

Under the assumption (A.2), the inequality in the assumption (A.3) can be guar-
anteed by the following.

(A.3′) The boundary m satisfies the inequality

1 +m inf
x>0

f ′(x+m)/f(x+m) ≥ 0.(3.8)

Proposition 3.2. Assume that the symmetric density f(x−µ) satisfies the
assumptions (A.1), (A.2) and (A.3). Then the boundary uniform prior Bayes
estimator µ̂BU belongs to the class provided by Theorem 2.2, namely , µ̂BU dom-
inates X under the restriction A relative to the squared error loss.

Proof. The condition (a) is clearly satisfied since φB(0) = 0. From Lemma
3.1 and (3.1), we observe that for x > 0,

φU (x) ≥ inf
0<t<m

G(t, x) = G(m,x),

where G(t, x) is defined by (3.4). This inequality also implies that for x < 0,
φU (x) ≤ G(m,x) since G(m,x) = −G(m,−x) and φU (x) = −φU (−x). Thus,
the condition (c) is verified.
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For checking the condition (b) for φB(x), we need to evaluate the derivative
(d/dx)φB(x), which is proportional to the quantity

{f(x−m) + f(x+m) + (x−m)f ′(x−m) + (x+m)f ′(x+m)}(3.9)

× {f(x−m) + f(x+m)}
− {(x−m)f(x−m) + (x+m)f(x+m)}
× {f ′(x−m) + f ′(x+m)}

= {f(x−m) + f(x+m)}2

+ 2m{f ′(x+m)f(x−m) − f ′(x−m)f(x+m)}.

Since {f(x − m) + f(x + m)}2 ≥ 4f(x − m)f(x + m), from (3.9), we see that
(d/dx)φB(x) ≥ 0 if

2 +mf ′(x+m)/f(x+m) −mf ′(x−m)/f(x−m) ≥ 0,

which is guaranteed by the assumption (A.3), and the condition (b) is satis-
fied.

To establish the dominance result provided in Proposition 3.2, the density
function f(u) is required to satisfy the assumptions (A.1), (A.2) and (A.3), which
can be applied to logistic and double exponential distributions.

Example 3.1 (Logistic distribution). Let X be a random variable having a
logistic distribution whose density is

fL(x− µ) = e−(x−µ)/{1 + e−(x−µ)}2.

The assumption (A.1) is satisfied since f ′L(u) ≤ 0 for u > 0. The assumption
(A.2) follows from the fact that f ′L(u)/fL(u) = −1 + 2/(eu + 1) is decreasing in
u. The inequality in the assumption (A.3) is written by

(ex−m + 1)−1 − (ex+m + 1)−1 ≤ 1/m,

equivalently expressed as

y2 + {(1 −m)em + (1 +m)e−m}y + 1 ≥ 0,

where y = ex ≥ 1 for nonnegative x. This inequality is guaranteed if m satisfies
the inequality

(1 −m)em + (1 +m)e−m + 2 ≥ 0.(3.10)

Let m0 be the unique solution to the equation

(1 −m0)e
m0 + (1 +m0)e

−m0 + 2 = 0.
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The constant m0 is evaluated numerically as about 1.5434. Then it can be seen
that the inequality (3.10) holds for m ≤ m0. Hence the boundary uniform prior
Bayes estimator µ̂BU , given by

µ̂BU = m
em(1 + e−X−m)2 − e−m(1 + e−X+m)2

em(1 + e−X−m)2 + e−m(1 + e−X+m)2
,(3.11)

dominates X if m ≤ m0 from Proposition 3.2.

Corollary 3.1. For the logistic distribution fL(x− µ), the boundary uni-
form prior Bayes estimator µ̂BU given by (3.11) belongs to the class of improved
estimators provided by Theorem 2.2 if m ≤ m0.

Example 3.2 (Double exponential distribution). Another example of satis-
fying the assumptions (A.1), (A.2) and (A.3) is a double exponential distribution
whose density is given by

fDE(x− µ) = (2σ0)
−1 exp{−σ−1

0 |x− µ|}

for known σ0 > 0. The assumption (A.1) is satisfied since f ′DE(u) ≤ 0 for u > 0.
The assumption (A.2) follows since f ′DE(u)/fDE(u) = σ−1

0 I(u < 0)−σ−1
0 I(u > 0)

is nonincreasing in u. The inequality in (A.3) is written by

2 − m

σ0
+
m

σ0
{I(x−m > 0) − I(x−m ≤ 0)} ≥ 0,

which holds for m ≤ σ0. Hence the assumption (A.3) is satisfied when m ≤ σ0.
The boundary uniform prior Bayes estimator µ̂BU has the form

µ̂BU = {me−|X−m|/σ0 −me−|X+m|/σ0}/{e−|X−m|/σ0 + e−|X+m|/σ0}(3.12)

=


mH(−m) if X < −m,
mH(X) if |X| ≤ m,

mH(m) if X > m,

where H(x) = tanh(x/σ0) = {ex/σ0 − e−x/σ0}/{ex/σ0 + e−x/σ0}.

Corollary 3.2. For the double exponential distribution fDE(x − µ), the
boundary uniform prior Bayes estimator µ̂BU given by (3.12) belongs to the class
of improved estimators provided by Theorem 2.2 if m ≤ σ0.

3.2. Scale mixtures of normal distributions
The scale mixtures of normal distributions are important examples of the

symmetric distributions. Let X be a single random variable having a scale mix-
ture of normal distributions whose density is given by

fNM (x− µ) =

∫ √
v/2π exp

{
−v

2
(x− µ)2

}
dΛ(v),(3.13)
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where Λ(v) denotes a continuous or discrete distribution. The scale mixtures of
normal distributions can be decomposed into two parts: a conditional distribu-
tion of X given V = v and a marginal distribution of the scaling random variable
V , described as

X | V = v ∼ N (µ, 1/v),(3.14)

V ∼ Λ(v).

When the mean µ is restricted to the bounded interval A = {µ | |µ| ≤ m},
the simple estimator X is improved on by the truncated, the shrinkage and the
fully uniform prior Bayes estimators corresponding to (2.9), (2.10) and (2.7),
respectively, given by µ̂TR = (X/|X|) min(|X|,m), µ̂S = {m2/(R0 +m2)}X for
R0 = E[V −1], and

µ̂FU =

∫ m

−m
µfNM (X − µ)dµ

/ ∫ m

−m
fNM (X − µ)dµ.

We here provide some examples of the scale mixture of normal distributions
satisfying the assumptions (A.1), (A.2) and (A.3), which imply that X is domi-
nated by the boundary uniform prior Bayes estimator. Although (A.1) is clearly
satisfied for the density (3.13), the other assumptions (A.2) and (A.3) need to
be checked for specific distributions.

Example 3.3 (Normal distribution). The normal distribution N (µ, σ2
0) for

known σ2
0 is provided by putting P [V = 1/σ2

0] = 1 in the model (3.14). Since
f ′(u)/f(u) = −u/σ2

0 for the normal density f(u), the assumption (A.2) is clearly
satisfied. The inequality in (A.3) is represented as

2 −m(x+m)/σ2
0 +m(x−m)/σ2

0 ≥ 0,

which is satisfied for m ≤ σ0. The boundary uniform prior Bayes estimator µ̂BU

is given by

µ̂BU = m(emX/σ2
0 − e−mX/σ2

0 )/(emX/σ2
0 + e−mX/σ2

0 )(3.15)

= m tanh(mX/σ2
0)

=
m2X

σ2
0

∞∑
j=0

(mX/σ2
0)

2j

(2j + 1)!

/ ∞∑
j=0

(mX/σ2
0)

2j

(2j)!
,

which, from Proposition 3.2, dominates X for m ≤ σ0.

Corollary 3.3. For the normal distribution N (µ, σ2
0), the boundary uni-

form prior Bayes estimator µ̂BU given by (3.15) belongs to the class of improved
estimators provided by Theorem 2.2 if m ≤ σ0.

In the normal distribution, it is noted that Casella and Strawderman (1981)
established the minimaxity of µ̂BU for m/σ0 ≤ 1.0567, and Marchand and Perron
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(2001) showed the stronger result that µ̂BU dominates the maximum likelihood
estimator for m/σ0 ≤ 1.

Example 3.4 (T -distribution). The t-distribution Tr with r degrees of free-
dom is provided by letting rV follow a chi-squares distribution χ2

r with r degrees
of freedom in the model (3.14). The density of Tr is described by

fT (x− µ) = c[1 + (x− µ)2/r]−(r+1)/2

for c = Γ((r + 1)/2)(rπ)−1/2/Γ(r/2). The assumption (A.1) is clearly satisfied.
It is noted that f(x − µ) does not have the monotone likelihood ratio prop-
erty, so that we need to evaluate the inequality (3.3) directly for (A.2). Since
f ′T (t)/fT (t) = −(r + 1)u/(r + u2), the inequality (3.3) is represented as

− x− µ

(x− µ)2 + r
− x+ µ

(x+ µ)2 + r
≤ 0,

which can be simplified by

2x(x2 − µ2 + r) ≥ 0.(3.16)

Since x2 − µ2 + r ≥ −m2 + r, the inequality (3.16) holds, and (A.2) is satisfied
for any nonnegative x and µ ∈ [0,m] if m ≤ √

r.
The inequality in the assumption (A.3) is expressed by

1 − m(r + 1)(x+m)

2{(x+m)2 + r} +
m(r + 1)(x−m)

2{(x−m)2 + r} ≥ 0,

which is, after some calculations, rewritten as

(x2 −m2)2 + 2r(x2 +m2) + r2 +m2(r + 1)(x2 −m2 − r) ≥ 0,

or

x4 + {(r − 1)m2 + 2r}x2 + r(r +m2)(1 −m2) ≥ 0.(3.17)

Since x > 0, the inequality (3.17) is satisfied if r ≥ 1 and m ≤ 1, that is, under
these conditions the assumption (A.3) holds for the Tr-distribution.

The boundary uniform prior Bayes estimator µ̂BU is expressed as

µ̂BU =
m[1 + (X −m)2/r]−(r+1)/2 −m[1 + (X +m)2/r]−(r+1)/2

[1 + (X −m)2/r]−(r+1)/2 + [1 + (X +m)2/r]−(r+1)/2
,(3.18)

which, from Proposition 3.2, belongs to the class of Theorem 2.2.

Corollary 3.4. For the Tr-distribution with r degrees of freedom, the
boundary uniform prior Bayes estimator µ̂BU given by (3.18) belongs to the class
of improved estimators provided by Theorem 2.2 if r ≥ 1 and m ≤ 1.
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In the t-distribution, it is noted that Marchand and Perron (2005) recently
showed the stronger result that µ̂BU dominates the truncated or ML estimator
µ̂TR if r ≥ 1 and m ≤ 1.

We next want to get general conditions on the distribution Λ(v) for the
density fNM (x− µ) in (3.13) to satisfy the assumptions (A.1), (A.2) and (A.3).
Although it may be difficult to derive exact conditions, we can get rough sufficient
conditions on Λ(v) and m. Let m1 be a positive constant satisfying the inequality

1

4m2
1

≥ E[V 5/2]

E[V 3/2]
− E[V 3/2e−2m2

1V ]

E[V 1/2e−2m2
1V ]

,(3.19)

where V is a random variable having the distribution Λ(v). Also let m2 be a
constant such that

m2
2 ≤ E[V 1/2]/E[V 3/2].(3.20)

It is noted that there exists such positive constants m1 and m2, although the
condition (3.19) is restrictive.

Proposition 3.3. The scale mixture of normal distributions fNM (x − µ)
satisfies the assumptions (A.1), (A.2) and (A.3) if m ≤ min(m1,m2). That
is, the boundary uniform prior Bayes estimator µ̂BU dominates X for m ≤
min(m1,m2).

Proof. We shall verify that fNM (x − µ) satisfies (A.2′) and (A.3). Since
fNM (u) = (2π)−1/2E[V 1/2e−V u2/2] and f ′NM (u) = −(2π)−1/2E[uV 3/2e−V u2/2],

the assumption (A.2′) is expressed as g(u) = E[uV 3/2e−V u2/2]/E[V 1/2e−V u2/2]
is nondecreasing in u for 0 < u ≤ 2m. The derivative g′(u) is nonnegative if

E[(u−2 − V )V 3/2e−V u2/2]E[V 1/2E−V u2/2] + {E[V 3/2e−V u2/2]}2 ≥ 0,

or
1

u2
− E[V 5/2e−V u2/2]

E[V 3/2e−V u2/2]
+
E[V 3/2e−V u2/2]

E[V 1/2e−V u2/2]
≥ 0,(3.21)

for 0 < u ≤ 2m. Letting h(t, a) = E[V a+1e−V t]/E[V ae−V t], we can express the
inequality (3.21) as

u−2 − h(u2/2, 3/2) + h(u2/2, 1/2) ≥ 0.(3.22)

We here show that h(t, a) is decreasing in t. In fact, (d/dt)h(t, a) ≤ 0 if

−E[V a+2e−V t]E[V ae−V t] + {E[V a+1e−V t]}2 ≤ 0,

which is equivalent to
E∗[V 2] − {E∗[V ]}2 ≥ 0,
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where E∗[IA] = E[IAV
ae−V t]/E[V ae−V t] for the indicator function IA. Since

this inequality is true, h(t, a) is decreasing in t. Since 0 < u2 ≤ 4m2, from the
monotonicity of h(t, a), the inequality (3.22) holds if

(4m2)−1 − h(0, 3/2) + h(2m2, 1/2) ≥ 0,

which is given by the condition (3.19). Hence, (A.2′) is satisfied.
We next verify the assumption (A.3), which is written by

−(x−m)
E[V 3/2e−V (x−m)2/2]

E[V 1/2e−V (x−m)2/2]
+ (x+m)

E[V 3/2e−V (x+m)2/2]

E[V 1/2e−V (x+m)2/2]
≤ 2

m
,

or

−(x−m)h((x−m)2/2, 1/2) + (x+m)h((x+m)2/2, 1/2) ≤ 2/m.(3.23)

Since h(t, a) is decreasing in t > 0 and (x−m)2 ≤ (x+m)2 for x > 0, it is noted
that h((x + m)2/2, 1/2) ≤ h((x − m)2/2, 1/2) ≤ h(0, 1/2), so that the l.h.s. in
the inequality (3.23) is evaluated as

−(x−m)h((x−m)2/2, 1/2) + (x+m)h((x+m)2/2, 1/2)

≤ 2mh((x−m)2/2, 1/2) ≤ 2mh(0, 1/2).

Hence the inequality (3.23) holds if

m2 ≤ E[V 1/2]/E[V 3/2],

which is guaranteed by (3.20), and (A.3) is satisfied. Therefore, the proof of
Proposition 3.3 is complete.

Example 3.5 (Finite mixture normal distribution). Let Λ(v) be a discrete
distribution on {v1, . . . , vk} and Λ(vi) = pi for i = 1, . . . , k. Then

fNM (x− µ) =
k∑

i=1

pi

√
vi/2π exp{−vi(x− µ)2/2}.

Let vmin = min1≤i≤k vi and

m0 = min


(∑k

i=1 piv
1/2
i∑k

i=1 piv
3/2
i

)1/2

,
1

2

[∑k
i=1 piv

5/2
i∑k

i=1 piv
3/2
i

− vmin

]−1/2
 .

Hence, from Proposition 3.2, the boundary uniform prior Bayes estimator µ̂BU

belongs to the class of improved estimators provided by Theorem 2.2 if m ≤ m0,
namely, the Bayes estimator µ̂BU dominates X.
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4. An extension to the scale family

The same arguments as in Section 2 allow us to extend the results to the scale
family of the density σ−nf(x/σ) for scale parameter σ > 0, where x/σ means
(x1/σ, . . . , xn/σ). It is supposed that the scale σ is estimated by estimator σ̂
relative to the entropy loss function

Ls(σ̂/σ) = σ̂/σ − log σ̂/σ − 1,(4.1)

referred to as the Stein loss as well. The best scale-equivariant estimator σ̂0 is
given by

σ̂0 = σ̂0(X ) =

∫ ∞

0
σ−n−1f(X /σ)dσ

/ ∫ ∞

0
σ−n−2f(X /σ)dσ.

This is the unrestricted generalized Bayes estimator against the measure σ−1dσ
over positive real line R+. Assume that the scale σ is restricted to the bounded
interval

B = {σ | a ≤ σ ≤ b}
for known positive values a and b.

To improve on the best scale-equivariant estimator σ̂0 by using the restriction
B, consider a class of the estimators

σ̂φ = σ̂φ(σ̂0,Z ) = σ̂0φ(σ̂0,Z ), Z = X /σ̂0(4.2)

where φ(w, z ) is an absolutely continuous function.

Theorem 4.1. Assume that φ(w, z ) satisfies the following conditions:
(a) There exists a function c(z ) such that φ(c(z ), z ) = 1,
(b) φ(w, z ) is nonincreasing in w,
(c) φ(w, z ) is bounded as

φ(w, z )

{
≥ φw/b,∞(w, z ) if w ≥ c(z ),

≤ φ0,w/a(w, z ) if w < c(z ),

where

φw/b,∞(w, z ) =

∫∞
w/b v

n−1f(zv)dv∫∞
w/b v

nf(zv)dv
, φ0,w/a(w, z ) =

∫ w/a
0 vn−1f(zv)dv∫ w/a
0 vnf(zv)dv

.

Then σ̂φ given by (4.2) dominates the best scale-equivariant estimator σ̂0 relative
to the Ls-loss.

Proof. The same arguments as in the proof of Theorem 2.1 is used for the
proof of this theorem, an outline of which is given here. The risk difference of
the two estimators σ̂0 and σ̂φ is written by

∆ = R(σ, σ̂0) −R(σ, σ̂φ)
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= E

[∫ c(Z )/σ̂0

1

d

dt
Ls(σ̂0σ

−1φ(tσ̂0,Z ))dt

]

=

∫ ∫ c(z )/σ̂0

1

{
σ̂0

σ
− 1

φ(tσ̂0, z )

}
σ̂0φ

′(tσ̂0, z )σ−nf(x/σ)dtdx

=

∫
c(z )≥σ̂0

∫ c(z )/σ̂0

1

{
σ̂0

σ
− 1

φ(tσ̂0, z )

}
σ̂0φ

′(tσ̂0, z )σ−nf(x/σ)dtdx

−
∫
c(z )<σ̂0

∫ 1

c(z )/σ̂0

{
σ̂0

σ
− 1

φ(tσ̂0, z )

}
σ̂0φ

′(tσ̂0, z )σ−nf(x/σ)dtdx

= ∆1 + ∆2. (say).

For the proof that ∆1 ≥ 0, note that σ̂0 is scale-equivariant. Also, note the
set that c(z )/σ̂0 ≥ 1 and 1 ≤ t ≤ c(z )/σ̂0 is equivalent to the set that 1 ≤ t <∞
and c(z )/σ̂0 ≥ t. Making the transformations u = tx and v = σ̂0/(σt) in turn
with du = tndx and dv = (σ̂0/(σt

2))dt, we can rewrite ∆1 as

∆1 =

∫ ∞

1

∫
c(z )/σ̂0(x )≥t

{
σ̂0(x )

σ
− 1

φ(tσ̂0(x ), z )

}
σ̂0(x )φ′(tσ̂0(x ), z )σ−n

× f(x/σ)dxdt

=

∫ ∞

1

∫
c(z )≥σ̂0(u)

{
σ̂0(u)

tσ
− 1

φ(σ̂0(u), z )

}
σ̂0(u)

t
φ′(σ̂0(u), z )(tσ)−n

× f(u/(tσ))dudt

=

∫
c(z )≥σ̂0(u)

∫ σ̂0(u)/σ

0

{
v − 1

φ(σ̂0(u), z )

}
φ′(σ̂0(u), z )

(
v

σ̂0(u)

)n−1

× f((u/σ̂0(u))v)dvdu

where z = u/σ̂0(u). Since φ(w, z ) is nonincreasing in w, it is sufficient to show
that

φ(w, z ) ≤
∫ w/σ

0
vn−1f(zv)dv

/ ∫ w/σ

0
vnf(zv)dv,

which is expressed as

φ(σw∗, z ) ≤
∫ w∗

0
vn−1f(zv)dv

/ ∫ w∗

0
vnf(zv)dv,(4.3)

for w∗ = w/σ. Again from the condition (b), we note that φ(σw∗, z ) ≤ φ(aw∗, z )
for a ≤ σ ≤ b. Hence, the inequality (4.3) holds if

φ(aw∗, z ) ≤
∫ w∗

0
vn−1f(zv)dv

/ ∫ w∗

0
vnf(zv)dv.

Replacing w∗ with w/a again yields the inequality in the condition (c) of Theorem
4.1.

The similar arguments give the expression that

∆2 = −
∫
c(z )<σ̂0(u)

∫ ∞

σ̂0(u)/σ

{
v − 1

φ(σ̂0(u), z )

}
φ′(σ̂0(u), z )

(
v

σ̂0(u)

)n−1

×f((u/σ̂0(u))v)dvdu ,
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which, from the condition (b), leads to the sufficient condition that

φ(w, z ) ≥
∫ ∞

w/σ
vn−1f(zv)dv

/ ∫ ∞

w/σ
vnf(zv)dv.

This inequality is guaranteed by the condition (c), and, therefore, the proof of
Theorem 4.1 is complete.

Concerning the condition (c) of Theorem 4.1, we can get another condition
corresponding to Theorem 2.2. It can be derived by noting that the functions∫ s

w/b v
n−1f(zv)dv∫ s

w/b v
nf(zv)dv

and

∫ w/a
s vn−1f(zv)dv∫ w/a
s vnf(zv)dv

are decreasing in s, which implies that φU (w, z ) ≥ φw/b,∞(w, z ) and φU (w, z ) ≤
φ0,w/a(w, z ), respectively. Hence we obtain the following theorem.

Theorem 4.2. Assume that φ(w, z ) satisfies the following conditions:
(a) There exists a function c(z ) such that φ(c(z ), z ) = 1,
(b) φ(w, z ) is nonincreasing in w,
(c) φ(w, z ) is bounded as

φ(w, z )

{
≥ φU (w, z ) if w ≥ c(z ),

≤ φU (w, z ) if w < c(z ),

where

φU (w, z ) =

∫ w/a

w/b
vn−1f(zv)dv

/ ∫ w/a

w/b
vnf(zv)dv.(4.4)

Then σ̂φ given by (4.2) dominates the best scale-equivariant estimator σ̂0 relative
to the Ls-loss.

Some improved estimators can be derived by the same arguments as in Sec-
tion 2.2. When the prior over the bounded interval, described by

πU (σ) = (log b− log a)−1σ−1dσI(a ≤ σ ≤ b),

is supposed, the resulting Bayes estimator is given by

σ̂FU =

∫ b

a
σ−n−1f(X /σ)dσ

/ ∫ b

a
σ−n−2f(X /σ)dσ(4.5)

= σ̂0

∫ σ̂0/a

σ̂0/b
vn−1f((X /σ̂0)v)dv

/ ∫ σ̂0/a

σ̂0/b
vnf((X /σ̂0)v)dv

= σ̂0φ
U (σ̂0,Z ),
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where φU (w, z ) is defined by (4.4). It can be verified that the Bayes estimator
σ̂FU belongs to the class provided by Theorem 4.2. For the condition (b), the
derivative of φU (w, z ) with respect to w is proportional to the quantity{

1

a

(
w

a

)n−1

f(zw/a) − 1

b

(
w

b

)n−1

f(zw/b)

}∫ w/a

w/b
vnf(zv)dv

−
{

1

a

(
w

a

)n

f(zw/a) − 1

b

(
w

b

)n

f(zw/b)

}∫ w/a

w/b
vn−1f(zv)dv

=

∫ w/a

w/b
vn−1f(zv)

[
(v − w/a)

1

a

(
w

a

)n−1

f(zw/a)

+ (w/b− v)
1

b

(
w

b

)n−1

f(zw/b)

]
dv,

which is not positive. Thus, φU (w, z ) satisfies the condition (b). Since

w

b

∫ w/a

w/b
vn−1f(zv)dv ≤

∫ w/a

w/b
vnf(zv)dv ≤ w

a

∫ w/a

w/b
vn−1f(zv)dv,

it is noted that φU (w, z ) ≥ a/w > 1 for w < a and φU (w, z ) ≤ b/w < 1 for
w > b. From the monotonicity of φU (w, z ), it follows that there exists a function
c(z ) such that φU (c(z ), z ) = 1.

Proposition 4.1. The Bayes estimator σ̂FU given by (4.5) dominates the
best scale-equivariant estimator σ̂0 relative to the Ls-loss.

Since the estimator σ̂0 takes values outside the parameter space a ≤ σ ≤ b,
it is reasonable to truncate it at the endpoints a and b, and we get the truncated
estimator

σ̂TR = max{a,min{σ̂0, b}}
= σ̂0φ

TR(σ̂0,Z ),

where
φTR(σ̂0, z ) = max{a/σ̂0,min{1, b/σ̂0}}.

The function φTR(w, z ) satisfies all the conditions in Theorem 4.1, and σ̂TR

belongs to the class of improved estimators provided by Theorem 4.1.
A shrinkage estimator corresponding to (2.10) is provided by

σ̂S = σ̂0{
√
ab/σ̂0}A = σ̂1−A

0 × (ab)A/2,(4.6)

where A is the solution of the equation

E[{log V
√
a/b}V 1−A(b/a)A/2] = E[log V

√
b/a],(4.7)

for V = σ̂0/σ. When A ≥ 0, σ̂S shrinks σ̂0 towards the geometric mean
√
ab of

the two endpoints a and b.
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Proposition 4.2. If A > 0, then the shrinkage estimator σ̂S given by (4.6)
dominates σ̂0 relative to the Ls-loss, and the estimator σ̂0 is not minimax.

Proof. The risk function of the estimator σ̂S is written by

R(σ, σ̂S) = E[σ̂S/σ − log σ̂S/σ − 1]

= E[V 1−A(
√
ab/σ)A − (1 −A) log V +A log σ/

√
ab− 1].

Noting that a ≤ σ ≤ b and A > 0, we see that

R(σ, σ̂S) ≤ E[V 1−A(
√
b/a)A − (1 −A) log V +A log

√
b/a− 1],(4.8)

which can be minimized when A is the solution of the equation (4.7). Hence, the
risk difference of the two estimators σ̂0 and σ̂S is evaluated as

∆ = R(σ, σ̂0) −R(σ, σ̂S)

≥ E[V − log V − 1] − E[V 1−A(
√
b/a)A − (1 −A) log V +A log

√
b/a− 1]

= E[V 1−A(b/a)A/2{V A(a/b)A/2 − log V A(a/b)A/2 − 1}],

which is positive, since x − log x − 1 > 0 for x �= 1. This shows that the risk of
the estimator σ̂S is bounded by the constant strictly smaller than the constant
risk R(σ, σ̂0), and the proof is complete.

Corresponding to (2.11), we can consider a Bayes estimator against a two-
point prior. The prior putting mass on the two endpoints {a, b} is provided
by

πB(σ) = pP [σ = a] + (1 − p)P [σ = b],

where p is a known constant in the interval [0, 1]. Then the Bayes estimator
against the two-point prior is given by

σ̂BU =
pa−nf(X /a) + (1 − p)b−nf(X /b)

pa−n−1f(X /a) + (1 − p)b−n−1f(X /b)
= σ̂0φ

B(σ̂0,Z ),(4.9)

where for Z = X /σ̂0,

φB(w, z ) =
p(w/a)nf(zw/a) + (1 − p)(w/b)nf(zw/b)

p(w/a)n+1f(zw/a) + (1 − p)(w/b)n+1f(zw/b)
.

Example 4.1 (Gamma distribution). Consider the estimation of the scale
parameter of the gamma distribution Ga(r, σ) whose density is described by
{Γ(r)}−1σ−rxr−1 exp{−x/σ}. The best scale equivariant estimator under the
loss (4.1) is σ̂0 = X/r, which is unbiased. Let us consider the restriction a ≤ σ ≤ b
where a and b are positive constants satisfying the equation

ae1/a = be1/b.
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The Bayes estimator against the prior πU (σ) = σ−1dσI(a ≤ σ ≤ b) is given by

σ̂FU =

∫ b

a
σ−r−1e−X/σdσ

/ ∫ b

a
σ−r−2e−X/σdσ = σ̂0φ

U (X),

where the function φU (x) satisfies

φU (x) = r

∫ x/a

x/b
vr−1e−vdv

/ ∫ x/a

x/b
vre−vdv.(4.10)

The integration by parts gives the equation∫ x/a

x/b
vre−vdv = [−vre−v]

x/a
x/b + r

∫ x/a

x/b
vr−1e−vdv,

which implies that the function φU (x) in (4.10) is rewritten by

φU (x) =

∫ x/a

x/b
vr−1e−vdv

/ {
g(x) +

∫ x/a

x/b
vr−1e−vdv

}
,

where

g(x) = r−1[−vre−v]
x/a
x/b =

1

r
{(x/b)re−x/b − (x/a)re−x/a}.

Since ae1/a = be1/b, it follows that

g(r) = rr−1{(b−1e−1/b)r − (a−1e−1/a)r} = 0,

which shows that φU (r) = 1, and the constant c = c(z ) given in Theorem 4.2
corresponds to r. From the theorem, it is seen that the estimator σ̂FU dominates
σ̂0.

It seems difficult to derive an improved two-points prior Bayes estimator
corresponding to (4.9) even in the above simple example. However, the expecta-
tion of such an improved two-point Bayes estimator can be demonstrated in the
following example.

Example 4.2 (Specific distribution related to F ). Let X be a positive ran-
dom variable having the density

1

B((r − 1)/2, (r + 1)/2)

(x/σ)(r−1)/2−1

σ(1 + x/σ)r
, x > 0,

where r is a constant such that r > 1. The best scale equivariant estimator is
σ̂0 = X. When the scale σ is restricted to the interval B = {σ | 1/b ≤ σ ≤ b}
for b > 1, the Bayes estimator against the prior πU (σ) = σ−1dσI(1/b ≤ σ ≤ b)
is given by

σ̂FU =

∫ b
1/b σ

−(r+1)/2(1 +X/σ)−rdσ∫ b
1/b σ

−(r+1)/2−1(1 +X/σ)−rdσ
= XφU (X),
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where

φU (x) =

∫ bx

x/b
v(r−1)/2−1(1 + v)−rdv

/ ∫ bx

x/b
v(r−1)/2(1 + v)−rdv.

By the integration by parts, it is noted that∫ b

1/b

(
v

1 + v

)(r−1)/2 ( 1

1 + v

)(r−1)/2+1

dv(4.11)

=
2

r − 1

[
− v(r−1)/2

(1 + v)r−1

]b
1/b

+

∫ b

1/b
v(r−1)/2−1(1 + v)−rdv,

and the first term in the r.h.s. of (4.11) is equal to zero, which implies that
φU (1) = 1.

The Bayes estimator against the boundary uniform prior πB(σ) = 2−1P [σ =
1/b] + 2−1P [σ = b] is

σ̂BU =
b(r−1)/2/(1 + bX)r + b−(r−1)/2/(1 +X/b)r

b(r+1)/2/(1 + bX)r + b−(r+1)/2/(1 +X/b)r
= XφB(X),(4.12)

where

φB(x) =
1

x

(x+ b)r + b(1 + bx)r

b(x+ b)r + (1 + bx)r
.

It is noted that φB(1) = 1. To get the dominance result of σ̂BU over σ̂0, we need
to check the conditions (b) and (c) of Theorem 4.2.

We first show that φB(x) is nonincreasing in x. Differentiating φB(x) with
respect to x, we see that (d/dx)φB(x) is proportional to the quantity

xr[{(x+ b)r−1 + b2(1 + bx)r−1} × {b(x+ b)r + (1 + bx)r}
− {(x+ b)r + b(1 + bx)r} × {b(x+ b)r−1 + b(1 + bx)r−1}]

− {(x+ b)r + b(1 + bx)r} × {b(x+ b)r + (1 + bx)r}
= I1 − I2, (say).

It is easily seen that I1 = xr(b2 − 1)2(x+ b)r−1(1 + bx)r−1. On the other hand,
we observe that

I2 = (b2 + 1)(1 + bx)(x+ b)(x+ b)r−1(1 + bx)r−1

+ b(x2 + 2bx+ b2)(x+ b)2r−2 + b(b2x2 + 2bx+ 1)(1 + bx)2r−2.

It is noted that

b(x2 + 2bx+ b2)(x+ b)2r−2 + b(b2x2 + 2bx+ 1)(1 + bx)2r−2

≥ 2b[bx2 + 2bx+ b](x+ b)r−1(1 + bx)r−1,

which leads to the evaluation of I2 as

I2 ≥ [(b2 + 1){bx2 + (b2 + 1)x+ b} + 2b2x2 + 4b2x+ 2b2](4.13)

× (x+ b)r−1(1 + bx)r−1.
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Combining I1 and (4.13) gives that

(I1 − I2)(x+ b)1−r(1 + bx)1−r

≤ xr(b2 − 1)2 − (b2 + 1){bx2 + (b2 + 1)x+ b} − 2b2(x+ 1)2

= −b(b+ 1)2x2 − {(b2 + 1)2 + 4b2 − r(b2 − 1)2}x− b(b+ 1)2,

which, since the r.h.s. is a quadratic function of x, is not positive for all x > 0 if

r ≤ {(b2 + 1)2 + 4b2}/(b2 − 1)2,(4.14)

or if [(b2 + 1)2 + 4b2 − r(b2 − 1)2]2 − 4b2(b + 1)4 ≤ 0, which is equivalent to the
inequality

[(b2 + 1)2 + 4b2 − r(b2 − 1)2 − 2b(b+ 1)2](4.15)

× [(b2 + 1)2 + 4b2 − r(b2 − 1)2 + 2b(b+ 1)2] ≤ 0.

Since r > 1, combining (4.14) and (4.15) gives the condition

1 < r ≤ 1 +
2b(b2 + 6b+ 1)

(b2 − 1)2
.(4.16)

Hence, the condition (b) is verified if r and b satisfy the condition (4.16).
We next show that φB(x) ≥ φU (x) for x ≥ 1 and φB(x) ≤ φU (x) for 0 < x ≤

1. By making the transformation θ = 1/σ for 1/b < σ < 1, σ̂FU can be rewritten
as

σ̂FU =

∫ b
1 {θ−(r−1)/2(1 +X/θ)−r + θ(r−1)/2(1 + θX)−r}θ−1dθ∫ b
1 {θ−(r+1)/2(1 +X/θ)−r + θ(r+1)/2(1 + θX)−r}θ−1dθ

,

which implies that

inf
1≤θ≤b

G(θ,X) ≤ σ̂FU ≤ sup
1≤θ≤b

G(θ,X),

where

G(θ, x) =
θ−(r−1)/2(1 + x/θ)−r + θ(r−1)/2(1 + θx)−r

θ−(r+1)/2(1 + x/θ)−r + θ(r+1)/2(1 + θx)−r

=
θ(1 + θx)r + (θ + x)r

(1 + θx)r + θ(θ + x)r
.

Hence it is sufficient to show that sup1≤θ≤bG(θ, x) = G(b, x) for x ≥ 1 and
inf1≤θ≤bG(θ, x) = G(b, x) for 0 < x ≤ 1. For the purpose, we shall show that
G(θ, x) is increasing in θ for x ≥ 1 and decreasing for 0 < x < 1. The derivative
(d/dθ)G(θ, x) is proportional to the quantity

{(1 + θx)r + rθx(1 + θx)r−1 + r(θ + x)r−1} × {(1 + θx)r + θ(θ + x)r}
− {θ(1 + θx)r + (θ + x)r}
× {rx(1 + θx)r−1 + (θ + x)r + θr(θ + x)r−1}

= (1 + θx)2r − (θ + x)2r + (1 + θx)r−1(θ + x)r−1r(θ2 − 1)(x2 − 1).
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Since θ > 1, note that (1+θx)2r ≥ (resp. <)(θ+x)2r if and only if x ≥ (resp. <)1,
so that we see that (d/dθ)G(θ, x) ≥ (resp. <)0 if and only if x ≥ (resp. <)1. This
means that φB(x) satisfies the condition (c) of Theorem 4.2.

We thus conclude that the two-point boundary uniform Bayes estimator
σ̂BU given by (4.12) dominates σ̂0 = X when r and b satisfy the condition (4.16),
namely, 1 < r ≤ 1 + q(b) for q(b) = 2b(b2 + 6b + 1)/(b2 − 1)2. Since q(b) is a
decreasing function of b for b > 1 and limb→∞ q(b) = 0, for a fixed r > 1, there
exists a constant b0(r) such that b0(r) > 1 and 0 < r − 1 = q(b0(r)). Hence, the
condition (4.16) can be rewritten as 1 < b ≤ b0(r). This condition means that
the improvement of σ̂BU over X holds when b is bounded above by the constant
b0(r), which is the same property as observed in the estimation of the location
parameter.
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