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FINITE SAMPLE PROPERTIES OF ESTIMATORS FOR
THE OPTIMAL PORTFOLIO WEIGHT

Harunori Mori*

This paper considers the problem of estimating the optimal portfolio weight to
the mean-variance model in finance when parameters are unknown. For this purpose,
we consider the following two classes of estimators. One is the class of proportional
type estimators and the other is the class of Stein type estimators. First, we derive
an unbiased estimator of the optimal portfolio weight, which belongs to the class of
proportional type estimators. Second, we obtain dominance results within each class.
From this, we showed that the unbiased proportional estimator and the maximum
likelihood estimator are inadmissible.
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1. Introduction

The mean-variance model is a standard framework for defining optimal port-
folio weight invested in risky assets. When we allow unrestricted short sales, the
model is given by

Maximize µ′x − ax′Σx

subject to 1′x = 1,

where x is a portfolio weight, µ and Σ are mean vector and positive definite
covariance matrix of returns of the K risky assets, a is a risk aversion parameter
satisfying a > 0 and 1 is a K × 1 vector whose components are equal to 1. We
denote the optimal portfolio weight by x∗(µ,Σ).

In practice, µ and Σ are unknown and must be estimated from available
historical information. We denote the return vector of K risky assets at period
t by zt and assume that zt, t = 1, . . . , n are independently distributed as a K-
variate normal distribution NK(µ,Σ). The maximum likelihood estimators of µ
and Σ are given by

m =
1
n

n∑
t=1

zt and S =
1
n

n∑
t=1

(zt − m)(zt − m)′,

respectively. The maximum likelihood estimator of the optimal portfolio weight is
given by x∗(m,S). For many analysts and investors, m and S seem obvious and
reliable estimators (Michaud (1998)). However, many authors pointed out that
estimation error can degrade the desirable properties of the optimal portfolio
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when portfolio optimization is implemented using m and S. This problem is
referred to as the problem of estimation risk in portfolio selection. Although many
authors raised serious objections to the mean-variance model as a framework for
defining optimal portfolio weight and proposed a number of alternatives, the
mean-variance model serves as the standard optimization framework for modern
asset management. Thus it is important to examine the problem statistically
under the mean-variance model. However, previous attempts to consider the
problem have been inconclusive.

From the point of view of statistics, the problem can be summarized in
two issues. The first issue is an investigation of distributional properties of the
maximum likelihood estimator x∗(m,S). Mori (2001) derived the asymptotic
distribution of x∗(m,S). Jobson and Korkie (1980) also derived the asymptotic
distribution of the maximum likelihood estimator of the optimal portfolio weight
under the slightly different setup. However, little is known about the distribu-
tional properties of x∗(m,S) because it is a complicated function of m and S.
Ledoit (1995) investigated, in the context of the mean-variance model, asymp-
totic properties of estimators of the covariance matrix Σ when the number of
assets is large.

The second issue is an improvement on x∗(m,S). From a Monte Carlo
simulation, Frost and Savarino (1986) and Jorion (1986) showed that the im-
provement can be obtained through the use of Stein type estimators of µ and
Σ instead of m and S, respectively. They defined the Stein type estimators as
empirical Bayes estimators. Jobson et al. (1979) also showed similar results from
a Monte Carlo simulation under the same setup as Jobson and Korkie (1980)
although the use of Stein type estimator of Σ did not seem to be advantageous.
Their results raise a statistically interesting question which is whether the Stein
type estimator dominating x∗(m,S) exists. Hui et al. (1993) and Board and
Sutcliffe (1994) supported their results by empirical studies.

This paper is concerned with the above two issues from the point of view
of statistics. We consider the following quadratic programming problem with
generalized linear restrictions rather than the mean-variance model:

Maximize µ′x − ax′Σx(1.1)
subject to A′x = b,

where A is a K×q matrix of rank q and b is a q × 1 vector. We denote the
objective function of the problem (1.1) by π(x), i.e.,

π(x) ≡ µ′x − ax′Σx.

The optimal solution to the problem (1.1) is given by

x∗(µ,Σ) =
1
2a

(
Σ−1 − Σ−1A

(
A′Σ−1A

)−1
A′Σ−1

)
µ

+ Σ−1A
(
A′Σ−1A

)−1
b.
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In this paper, we focus on the problem of estimating x∗(µ,Σ). For this purpose,
we consider the following two classes of estimators. One is the class of propor-
tional type estimators. The maximum likelihood estimator x∗(m,S) belongs to
this class. The other is the class of Stein type estimators. Jobson et al. (1979),
Frost and Savarino (1986) and Jorion (1986) proposed an estimator x∗(µ̂, Σ̂)
where µ̂ is a Stein type estimator of µ. Our definition of Stein type estimator is
different from theirs and it is given in Section 2.1. We first derive an unbiased
estimator of x∗(µ,Σ) and its covariance matrix. Next we consider an improve-
ment of x∗(m,S) under a certain loss function within each class. We show that
there are estimators dominating x∗(m,S) in each class.

In Section 2, we first formulate the problem of estimation risk from the
point of view of statistics. The two classes of estimators and the loss function
are defined in this section. The unbiased estimator and two dominance results
are given in Theorem 2.1, 2.2 and 2.3, respectively. In Section 3, 4 and 5, we
prove these theorems. Finally, brief conclusions are given in Section 6.

2. Estimation of the optimal solution

2.1. Formulation of the problem of estimation risk
Although previous studies dealing with the problem of estimation risk consid-

ered the problem of estimating µ and Σ, we need not estimate them separately.
We focus on the problem of estimating x∗(µ,Σ). The usual squared error loss
function does not seem to be appropriate for this problem. If π(x̂) is much
smaller than the maximum, then x̂ is not a good estimator even if x̂ is close to
x∗(µ,Σ). Because the objective of the problem (1.1) is to maximize π(x), it is
adequate to estimate x∗(µ,Σ) under the loss function

L(x̂) ≡ π(x∗(µ,Σ)) − π(x̂).(2.1)

Frost and Savarino (1986) and Jorion (1986) used in their simulation studies
the similar loss function to evaluate numerically their estimators of the optimal
portfolio weight.

Next we define the following two functions for a convenience of notation.

Definition 2.1. Let W be a K×K symmetric and nonsingular matrix and
A be a K×q matrix of rank q.
(1) F1(A,W ) ≡ W−1 − W−1A(A′W−1A)−1A′W−1

(2) F2(A,W ) ≡ W−1A(A′W−1A)−1

By using these functions, we can represent the optimal solution as

x∗(µ,Σ) =
1
2a

F1(A,Σ)µ + F2(A,Σ)b.

In this paper, we consider the following two types of estimators of x∗(µ,Σ) based
on m and S.

Definition 2.2. Let cP , cS and d be positive constants.
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(1) The proportional type estimator

x̂P (cP ) ≡ cP

2a
F1(A,S)m + F2(A,S)b.

(2) The Stein type estimator

x̂S(cS , d) ≡ cS

2a

(
1 − d

m′F1(A,S)m

)
F1(A,S)m + F2(A,S)b.

Jobson et al. (1979), Frost and Savarino (1986) and Jorion (1986) also pro-
posed the use of the Stein type estimator of µ, although their estimators are
different from (1 − d/m′F1(A,S)m)m. We derive x̂S(cS , d) by taking account
of the optimization problem (1.1). The derivation is explained in Section 5.

2.2. Main results
We first state some properties of the proportional type estimator x̂P (cP ).

The following theorem gives the condition for x̂P (cP ) to be unbiased.

Theorem 2.1. Let n > max{K + 1, K − q + 2} and

cUB
P =

n − K + q − 2
n

.(2.2)

Then x̂P (cUB
P ) is unbiased. If n > max{K + 1, K − q + 4}, then the covariance

matrix of x̂P (cUB
P ) exists and is given by

V
[
x̂P

(
cUB
P

)]
=

n − K + q

4a2(n − K + q − 1)(n − K + q − 4)
F1(A,Σ)µµ′F1(A,Σ)

+
{

n − K + q − 2
4a2(n − K + q − 1)(n − K + q − 4)

(
n − 2

n
+ µ′F1(A,Σ)µ

)

+
b′

(
A′Σ−1A

)−1
b

n − K + q − 2

}
F1(A,Σ).

The proof is given in Section 3.
Note that the unbiased estimator x̂P (cUB

P ) is the minimum variance unbiased
estimator since m and S are complete sufficient statistics.

From Theorem 2.1, we can obtain the bias of x̂P (cP ). It is

Bias[x̂P (cP )] =
ncP − (n − K + q − 2)

2a(n − K + q − 2)
F1(A,Σ)µ.

We note that x̂P (1) = x∗(m,S), which is the maximum likelihood estimator of
x∗(µ,Σ). Hence the bias of x̂P (1) is given by

Bias[x̂P (1)] =
K − q + 2

2a(n − K + q − 2)
F1(A,Σ)µ.

Next we state a dominance result within the class of proportional type esti-
mators.



FINITE SAMPLE PROPERTIES OF ESTIMATORS 31

Theorem 2.2. Let n > max{K + 1, K − q + 4} and

0 < c∗P ≤ (n − K + q − 1)(n − K + q − 4)
n(n − 2)

,(2.3)

then x̂P (c∗P ) dominates x̂P (cP ) relative to the loss (2.1) provided

cP >
2(n − K + q − 1)(n − K + q − 4)

n(n − 2)
− c∗P .(2.4)

If c∗P and cP do not satisfy the condition (2.4), x̂P (c∗P ) and x̂P (cP ) do not dom-
inate each other.

The proof is given in Section 4.
The constant cUB

P satisfies the condition (2.4) if

c∗P =
(n − K + q − 1)(n − K + q − 4)

n(n − 2)
.

Thus Theorem 2.2 shows that the unbiased estimator x̂P (cUB
P ) is inadmissible.

Similarly, we see that the maximum likelihood estimator x̂P (1) is also inadmis-
sible.

We state the following theorem on the Stein type estimator x̂S(c, d).

Theorem 2.3. Let n > K + 1 and K > q + 2 and

cS = cP = c ≥ (n − K + q − 1)(n − K + q − 2)
n(n − 2)

,(2.5)

then x̂S(c, d) dominates x̂P (c) provided

0 < d <
2(K − q − 2)(n − K + q − 1)

n(n − 2)c
.

The proof is given in Section 5.
Theorem 2.3 shows that there are estimators dominating the unbiased es-

timator x̂P (cUB
P ) and the maximum likelihood estimator x̂P (1) in the class of

Stein type estimators since the condition (2.5) holds when c = cUB
P and c = 1. It

is also noted that any Stein type estimator and any proportional type estimator
satisfying the condition (2.3) do not dominate each other since the right-hand
side of (2.5) is greater than the right-hand side of (2.3). However, no comparison
between x̂S(cS , d) and x̂P (cP ) has been made yet when cS �= cP .

3. Some results on F1 and F2 and proof of Theorem 2.1

3.1. Some properties of the matrix functions F1 and F2

Throughout this paper, we use the following notations. We let A be a K × q
matrix of rank q and b be a q × 1 vector. Let P be an orthogonal matrix such
that

PAA′P ′ = Λ,(3.1)
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where Λ is a diagonal matrix whose diagonal elements are the eigenvalues of the
matrix AA′. Let Λ and P be partitioned as

Λ =

(
Λ1 0
0 0

)
and P =

(
P1

P2

)
,

where Λ1 is a q × q diagonal matrix with positive diagonal elements and P1 is a
q × K matrix and P2 is a (K − q) × K matrix. We denote

L = P1A.(3.2)

We have the following lemma on the matrix functions F1 and F2.

Lemma 3.1. Let us define U = PWP ′ and V = U−1. Let U be partitioned
into q and K − q rows and columns

U =

(
P1WP ′

1 P1WP ′
2

P2WP ′
1 P2WP ′

2

)
=

(
U11 U ′

21

U21 U22

)
(3.3)

and let V be partitioned as U has been partitioned, then
(i) F1(A,W ) = P ′

2U
−1
22 P2,

(ii) F2(A,W ) = P ′
1(L

′)−1 − P ′
2U

−1
22 U21(L′)−1.

Proof. From the definitions of U and V , we have

F1(A,W ) = P ′ (V − V PA(A′P ′V PA)−1A′P ′V
)
P .

Since

A′P ′ =
(
A′P ′

1 A′P ′
2

)
=

(
L′ 0

)
,

we have

V PA(A′P ′V PA)−1A′P ′V

= V

(
L

0

) ((
L′ 0

) (
V11 V ′

21

V21 V22

) (
L

0

))−1 (
L′ 0

)
V

=

(
V11 V ′

21

V21 V21V
−1
11 V ′

21

)
.

Here it is noted that

U =

(
V −1

11 + V −1
11 V ′

21V
−1
22·1V21V

−1
11 −V −1

11 V ′
21V

−1
22·1

−V −1
22·1V21V

−1
11 V −1

22·1

)
,(3.4)

where V22·1 = V22 − V21V
−1
11 V ′

21. Since U22 = V −1
22·1 from this, it follows that

V − V PA(A′P ′V PA)−1A′P ′V =

(
0 0
0 U−1

22

)
.
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Hence F1(A,W ) can be written as

F1(A,W ) = P ′
2U

−1
22 P2.

Thus (i) is proved.
Similarly to the proof of (i), we have

F2(A,W ) = P ′V PA(A′P ′V PA)−1

= P ′
1(L

′)−1 + P ′
2V21V

−1
11 (L′)−1.

From (3.4), we have −U22V21V
−1
11 = U21 or V21V

−1
11 = −U−1

22 U21. Therefore,

F2(A,W ) = P ′
1(L

′)−1 − P ′
2U

−1
22 U21(L′)−1.

Hence this completes the lemma.

From the above lemma, we have

F1(A, I) = P ′
2P2 and F2(A, I) = P ′

1(L
′)−1(3.5)

since P is an orthogonal matrix.
The following lemma is easy to establish.

Lemma 3.2. Let T be a matrix of same order as W and c�=0, then
(i) F1(A,W ) = cF1(A, cW ),
(ii) F2(A,W ) = F2(A, cW ),
(iii) F1(A,W ) = (T ′)−1F1

(
T−1A,T−1W (T ′)−1

)
T−1,

(iv) F2(A,W ) = (T ′)−1F2

(
T−1A,T−1W (T ′)−1

)
.

3.2. Mean vectors and covariance matrices of F1X and F2b
We need mean vectors and covariance matrices of F1(A,W )X and F2(A,W )

b to prove Theorem 2.1. First we have the following lemma on the mean vectors.

Lemma 3.3. Let X ∼ NK(µ, τI) with τ > 0 and W be distributed as a
Wishart distribution WK(m, I) with m > K, where X and W are independent,
then

(i) E[F1(A,W )X] =
1

m − K + q − 1
F1(A, I)µ,

(ii) E[F2(A,W )b] = F2(A, I)b.

Proof. From (3.3), we have U22 = P2WP ′
2 ∼ WK−q(m, I) since P is an

orthogonal matrix. Therefore

E
[
U−1

22

]
=

1
m − K + q − 1

I.
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Note that F1(A,W ) = P ′
2U

−1
22 P2 from Lemma 3.1. From this and (3.5), it

follows that

E[F1(A,W )X] =
1

m − K + q − 1
F1(A, I)µ.

Thus (i) is proved.
Let yi ∼ NK(0, I), i = 1, . . . , m be independent and Y ′ =

(
y1 · · · ym

)
,

then we can represent U in the form U = Y ′Y by definition of the Wishart
distribution. Let Y be partitioned as Y =

(
Y1 Y2

)
, where Y1 is a m× q matrix

and Y2 is a m × (K − q) matrix. Then U is written as(
U11 U ′

21

U21 U22

)
=

(
Y ′

1Y1 Y ′
1Y2

Y ′
2Y1 Y ′

2Y2

)
.(3.6)

Since Y1 and Y2 are independent and E[Y1] = 0, we have

E
[
U−1

22 U21

]
= EY2

[
(Y ′

2Y2)−1Y ′
2EY1 [Y1]

]
= 0.(3.7)

Hence it follows from Lemma 3.1 and (3.5) that

E[F2(A,W )] = P ′
1(L

′)−1 − P ′
2E

[
U−1

22 U21

]
(L′)−1

= F2(A, I).

This proves (ii).

The following lemma gives the covariance matrices of F1(A,W )X and F2(A,
W )b.

Lemma 3.4. Let X ∼ NK(µ, τI) with τ > 0 and W ∼ WK(m, I) with
m > max{K, K − q + 3} are independent, then

(i) V [F1(A,W )X]

=
m − K + q + 1

(m − K + q)(m − K + q − 1)2(m − K + q − 3)
× F1(A, I)µµ′F1(A, I)

+
τ(m − 1) + µ′F1(A, I)µ

(m − K + q)(m − K + q − 1)(m − K + q − 3)
F1(A, I),

(ii) Cov[F1(A,W )X,F2(A,W )b] = 0,

(iii) V [F2(A,W )b] =
b′(A′A)−1b

m − K + q − 1
F1(A, I).

Proof. First (i) is an immediate consequence of Theorem 3.2 (iii) of Haff
(1979).
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From Lemma 3.1, we have

F1(A,W )Xb′F ′
2(A,W )

= P ′
2U

−1
22 P2Xb′L−1P1 − P ′

2U
−1
22 P2Xb′L−1U ′

21U
−1
22 P2.

From (3.6), we have

E
[
U−1

22 P2Xb′L−1U ′
21U

−1
22

]
= EY2

[
(Y ′

2Y2)−1P2µb′L−1EY1 [Y
′
1 ]Y2(Y ′

2Y2)−1
]

= 0.

Then the expectation of F1(A,W )Xb′F ′
2(A,W ) is written as

E[F1(A,W )Xb′F ′
2(A,W )] =

P ′
2P2µb′L−1P1

m − K + q − 1
(3.8)

=
F1(A, I)µb′F ′

2(A, I)
m − K + q − 1

.

Hence, from Lemma 3.3, we have

Cov[F1(A,W )X,F2(A,W )b]

= E
[
F1(A,W )Xb′F ′

2(A,W )
]
− F1(A, I)µb′F ′

2(A, I)
m − K + q − 1

= 0.

Thus (ii) is proved.
Similarly, from (3.5), (3.6), (3.7) and Lemma 3.1, we can show that

V [F2(A,W )b]
= E

[
F2(A,W )bb′F ′

2(A,W )
]
− F2(A, I)bb′F ′

2(A, I)

= P ′
2E

[
U−1

22 U21(L′)−1bb′L−1U ′
21U

−1
22

]
P2

= P ′
2EY2

[
(Y ′

2Y2)−1Y ′
2EY1

[
Y1(L′)−1bb′L−1Y ′

1

]
Y2(Y ′

2Y2)−1
]
P2.

We denote H = E[Y1(L′)−1bb′L−1Y ′
1 ] and the (i, j)-th element of H by hij and

the i-th row vector of Y1 by Y1i. Since Y1i is the subvector formed by the first q
elements of yi∼NK(0, I),

E[Y1i] = 0, V [Y1i] = I and Cov[Y1i,Y1j ] = 0

for i �= j. Hence we have

hii = tr
((

L′)−1
bb′L−1

)
= b′L−1

(
L′)−1

b and hij = 0

for i �= j. Note that A′A = A′P ′PA = L′L. Therefore, we have

V [F2(A,W )b] = (b′(A′A)−1b)P ′
2E

[
(Y ′

2Y2)−1Y ′
2Y2(Y ′

2Y2)−1
]
P2

= (b′(A′A)−1b)P ′
2E

[
U−1

22

]
P2

=
b′(A′A)−1b

m − K + q − 1
F1(A, I).

Thus (iii) is proved.
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3.3. Proof of Theorem 2.1
Let T be a nonsingular matrix such that Σ = TT ′. From Lemma 3.2, the

proportional type estimator x̂P (cP ) is rewritten as

x̂P (cP ) =
ncP

2a
(T ′)−1F1

(
T−1A, nT−1S(T ′)−1

)
T−1m(3.9)

+ (T ′)−1F2

(
T−1A, nT−1S(T ′)−1

)
b.

We note that

T−1m ∼ NK

(
T−1µ,

1
n

I

)
and nT−1S(T ′)−1 ∼ WK(n − 1, I),(3.10)

since m ∼ NK(µ, (1/n)Σ) and nS ∼ WK(n − 1,Σ). From Lemma 3.3, we have

E[x̂P (cP )] =
ncP

2a(n − K + q − 2)
(T ′)−1F1(T−1A, I)T−1µ

+ (T ′)−1F2(T−1A, I)b

=
ncP

2a(n − K + q − 2)
(T ′)−1F1

(
T−1A,T−1Σ(T ′)−1

)
T−1µ

+ (T ′)−1F2

(
T−1A,T−1Σ(T ′)−1

)
b

=
ncP

2a(n − K + q − 2)
F1(A,Σ)µ + F2(A,Σ)b.

Hence, if cP = cUB
P , then E[x̂P (cP )] = x∗(µ,Σ). This implies that x̂P (cUB

P ) is
an unbiased estimator and completes the proof of (2.2).

Similarly, applying (3.9) and Lemma 3.4 to the covariance matrix of the
proportional type estimator, we have

V [x̂P (cP )]

=
n2c2

P

4a2
(T ′)−1V

[
F1

(
T−1A, nT−1S(T ′)−1

)
T−1m

]
T−1

+
ncP

a
(T ′)−1Cov

[
F1

(
T−1A, nT−1S(T ′)−1

)
T−1m,

F2

(
T−1A, nT−1S(T ′)−1

)
b
]
T−1

+ (T ′)−1V
[
F2

(
T−1A, nT−1S(T ′)−1

)
b
]
T−1

=
n2(s + 1)c2

P

4a2s(s − 1)2(s − 3)
(T ′)−1F1

(
T−1A, I

)
T−1µµ′(T ′)−1F1

(
T−1A, I

)
T−1

+
n2c2

P

4a2s(s − 1)(s − 3)

(
n − 2

n
+ µ′(T ′)−1F1

(
T−1A, I

)
T−1µ

)
× (T ′)−1F1

(
T−1A, I

)
T−1

+
b′(A′(T ′)−1T−1A)−1b

s − 1
(T ′)−1F1

(
T−1A, I

)
T−1,
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where s = n−K + q− 1. Since Lemma 3.2, the covariance matrix is rewritten as

V [x̂P (cP )] =
n2(s + 1)c2

P

4a2s(s − 1)2(s − 3)
F1(A,Σ)µµ′F1(A,Σ)

+
{

n2c2
P

4a2s(s − 1)(s − 3)

(
n − 2

n
+ µ′F1(A,Σ)µ

)

+
b′(A′Σ−1A)−1b

s − 1

}
F1(A,Σ).

Hence, if cP = cUB
P , then we can obtain the covariance matrix of the unbiased

estimator V [x̂P (cUB
P )]. Thus the proof of Theorem 2.1 is complete.

4. Proof of Theorem 2.2

First we prepare expectations of some functions of F1(A,W )X and F2(A,
W )b in the following lemma.

Lemma 4.1. Let X ∼ NK(µ, τI) with τ > 0 and W ∼ WK(m, I) with
m > max{K, K − q + 3} be independent, then

(i) E[X ′F1(A,W )2X]

=
(m − 1)(µ′F1(A, I)µ + τ(K − q))

(m − K + q)(m − K + q − 1)(m − K + q − 3)
,

(ii) E[X ′F1(A,W )F2(A,W )b] = 0.

Proof. Note that X ′F1(A,W )2X = trF1(A,W )XX ′F1(A,W ). From
Theorem 3.3 (i) and Theorem 3.4 (i), we have

E
[
X ′F1(A,W )2X

]
=

trF1(A, I)µµ′F1(A, I)
(m − K + q)(m − K + q − 3)

+
τ(m − 1) + µ′F1(A, I)µ

(m − K + q)(m − K + q − 1)(m − K + q − 3)
trF1(A, I).

From (3.5), we observe that

trF1(A, I)µµ′F1(A, I) = µ′F1(A, I)2µ = µ′F1(A, I)µ

and

trF1(A, I) = K − q.

Hence we can get (i).
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Similarly, from (3.5) and (3.8), we have

E
[
X ′F1(A,W )F2(A,W )b

]
= trE

[
F1(A,W )Xb′F ′

2(A,W )
]

=
1

m − K + q − 1
trF1(A, I)µb′F ′

2(A, I)

=
1

m − K + q − 1
µ′F1(A, I)F2(A, I)b

= 0.

This completes the proof of Lemma 4.1.

Proof of Theorem 2.2. It follows from (3.9) that

π(x̂P (cP ))

= −n2c2
P

4a
m′(T ′)−1F1

(
T−1A, nT−1S(T ′)−1

)2
T−1m

+
ncP

2a
µ′(T ′)−1F1

(
T−1A, nT−1S(T ′)−1

)
T−1m

− ncP m′(T ′)−1F1

(
T−1A, nT−1S(T ′)−1

)
F2

(
T−1A, nT−1S(T ′)−1

)
b

+ terms which do not contain cP ,

where T is a nonsingular matrix such that Σ = TT ′. From (3.10), Lemma 3.3
and Lemma 4.1, the expectation of π(x̂P (cP )) is written as

E[π(x̂P (cP ))](4.1)

= − n2(n − 2)
4a(n − K + q − 1)(n − K + q − 2)(n − K + q − 4)

×
(

µ′F1(A,Σ)µ +
K − q

n

)
c2
P

+
n

2a(n − K + q − 2)
µ′F1(A,Σ)µcP

+ terms which do not contain cP .

The constant cP maximizing E[π(x̂P (cP ))] is

c∗∗P =
(n − K + q − 1)(n − K + q − 4)

n(n − 2)
θ,(4.2)

where

θ =
µ′F1(A,Σ)µ

µ′F1(A,Σ)µ + (K − q)/n
.

The maximizer (4.2) minimizes the risk of x̂P (cP ). The maximizer (4.2) is the
function of µ and Σ and thus x̂P (c∗∗P ) is not a statistic. Instead of using c∗∗P , we
consider the constant c∗P of the form

c∗P =
(n − K + q − 1)(n − K + q − 4)

n(n − 2)
α,
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where 0 < α ≤ 1. We also consider the constant cP of the form

cp =
(n − K + q − 1)(n − K + q − 4)

n(n − 2)
β,

where β > 0. In what follows, we will derive the range of α and β for which
x̂P (c∗P ) dominates x̂P (cP ). We denote the difference between the risks of x̂P (c∗P )
and x̂P (cP ) by

g(β) = E [L(x̂P (cP )) − L(x̂P (c∗P ))]

From (4.1), the function g(β) is written as

g(β) =
(n − K + q − 1)(n − K + q − 4)

4a(n − 2)(n − K + q − 2)

×
(

µ′F1(A,Σ)µ +
K − q

n

)
(β − α)(β + α − 2θ).

From this, if β − α > 0 and β + α − 2θ > 0, then g(β) > 0. Since 0 ≤ θ < 1,
it holds that β + α − 2θ > 0 if β + α − 2 > 0. Moreover, since 0 < α ≤ 1, it
holds that β − α > 0 if β + α − 2 > 0. Hence, if β + α − 2 > 0, then g(β) > 0.
This implies that x̂P (c∗P ) dominates any proportional type estimators satisfying
the condition (2.4). On the other hand, it depends on θ whether the inequality
g(β) > 0 holds for the case β + α − 2 ≤ 0. This completes the proof.

5. Derivation of the Stein type estimator and proof of Theorem 2.3

5.1. Derivation of the Stein type estimator
When Σ is unknown, the standard Stein type estimator of µ is given by

mST =
(

1 − α

(m − ν)′S−1(m − ν)

)
(m − ν) + ν,

where 0 < α < 2(K − 2)/(N − K + 3) and ν is an arbitrary fixed vector (see
Anderson (1984, Theorem 5.3.1)). The Stein type estimator of µ proposed by
Jobson et al. (1979) and Jorion (1986) are of the same form as mST . By
substituting mST and S into the optimal solution x∗(µ,Σ), we can obtain an
estimator of x∗(µ,Σ), which is different from the Stein type estimator x̂S(cS , d).
Our derivation of x̂S(cS , d) takes account of the optimization problem (1.1) and
it is described below.

Let P ′ =
(
P ′

1 P ′
2

)
be the orthogonal matrix defined in (3.1), then a general

solution to A′x = b is written as

x = P ′
2y + x0,(5.1)

where y is an arbitrary (K − q) × 1 vector and x0 is a particular solution.
Substituting the general solution into the quadratic programming problem (1.1),
the problem reduces to the following problem with respect to y:

Maximize
(

1
a
µ − 2Σx0

)′
P ′

2y − y′P2ΣP ′
2y,
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which is equivalent to the problem

Minimize (z − P2µ)′(P2ΣP ′
2)

−1(z − P2µ),

where

z = 2a(P2ΣP ′
2y + P2Σx0).(5.2)

We denote the optimal solutions to these problems by y∗ and z∗, respectively.
Thus we see that the estimation problem for z∗ is equivalent to the estimation
problem for mean vector of a (K − q)-variate normal distribution NK−q(P2µ,P2

ΣP ′
2) under the loss function

(ẑ − P2µ)′(P2ΣP ′
2)

−1(ẑ − P2µ),

where ẑ is an estimator of z∗. From Theorem 5.3.1 of Anderson (1984), the Stein
type estimator of P2µ is given by

ẑS =
(

1 − d

m′P ′
2(P2SP ′

2)−1P2m

)
P2m =

(
1 − d

m′F1(A,S)m

)
P2m,

where d is a positive constant. Therefore we can obtain an estimator of y∗ from
(5.2) by replacing Σ with S. The estimator is

ŷS =
1
2a

(
1 − d

m′F1(A,S)m

)
(P2SP ′

2)
−1P2m − (P2SP ′

2)
−1P2Sx0.

Substituting y = ŷS into (5.1) gives an estimator of x∗ defined by

x̂S =
1
2a

(
1 − d

m′F1(A,S)m

)
P ′

2(P2SP ′
2)

−1P2m(5.3)

− P ′
2(P2SP ′

2)
−1P2Sx0 + x0.

Note that x0 = P ′
1(L

′)−1b is a particular solution to A′x = b, where L = P1A.
Substituting this x0 into (5.3) and using Lemma 3.1, we can obtain the Stein
type estimator with cS = 1 defined by Definition 2.2:

x̂S(1, d) =
1
2a

(
1 − d

m′F1(A,S)m

)
F1(A,S)m + F2(A,S)b.

5.2. Expectations of certain functions of F1 and F2

To prove Theorem 2.3, we here evaluate expectations of the following func-
tions

µ′F1X

X ′F1X
,

X ′F 2
1 X

X ′F1X
,

X ′F 2
1 X

(X ′F1X)2
and

X ′F1F2b

X ′F1X
,

where F1 = F1(A,W ) and F2 = F2(A,W ). First we state the following lemma
on the fundamental result of the Wishart distribution.
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Lemma 5.1. Let W ∼ WK(m, I) with m > K and W be partitioned into
1 and K − 1 rows and columns

W =

(
w11 W ′

21

W21 W22

)
,

then

E
[
W ′

21W
−2
22 W21

]
=

K − 1
m − K

.

Proof. In the proof of Lemma 3.3 (ii), let q = 1, then we have

W ′
21W

−2
22 W21 = Y ′

1Y2(Y ′
2Y2)−2Y ′

2Y1.

Hence, we have

E
[
W ′

21W
−2
22 W21

]
= EY2

[
EY1

[
Y ′

1Y2(Y ′
2Y2)−2Y ′

2Y1

]]
= EY2

[
tr(Y ′

2Y2)−1
]

=
K − 1
m − K

,

which proves Lemma 5.1.

Lemma 5.2. Let Z be distributed as a Poisson distribution with parameter
1/(2τ)µ′F1(A, I)µ with τ > 0. Let X ∼ NK(µ, τI) with K > q + 2 and W ∼
WK(m, I) with m > K be independent, then

(i) E

[
µ′F1(A,W )X
X ′F1(A,W )X

]
= 1 − K − q − 2

2
E

[
1

Z + (K − q − 2)/2

]
,

(ii) E

[
X ′F1(A,W )2X
X ′F1(A,W )X

]
=

m − 1
(m − K + q)(m − K + q − 1)

,

(iii) E

[
X ′F1(A,W )2X

(X ′F1(A,W )X)2

]
=

m − 1
2τ(m − K + q)

E

[
1

Z + (K − q − 2)/2

]
,

(iv) E

[
X ′F1(A,W )F2(A,W )b

X ′F1(A,W )X

]
= 0.

Proof. Let e1 be a (K−q)×1 vector whose first element is 1 and otherwise
0 and Q be an orthogonal matrix satisfying

QP2X =
√

X ′P ′
2P2Xe1.(5.4)

We define a (K − q) × (K − q) matrix Ũ by

Ũ = QU22Q
′,
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where U22 is defined in (3.3). We denote Ṽ = Ũ−1 and the (i, j)-th element of
Ṽ by ṽij . From Lemma 3.1 and (5.4), we have

X ′F1(A,W )X = X ′P ′
2U

−1
22 P2X(5.5)

= X ′P ′
2Q

′Ũ−1QP2X

= (X ′P ′
2P2X)ṽ11.

Let denote the (i, j)-th element of Ũ by ũij and Ũ be partitioned into 1 and
K − q − 1 rows and columns

Ũ =

(
ũ11 Ũ ′

21

Ũ21 Ũ22

)
,

then Ṽ is written as

Ṽ = ṽ11

(
1 −Ũ ′

21Ũ
−1
22

−Ũ−1
22 Ũ21 Ũ−1

22 Ũ21Ũ
′
21Ũ

−1
22 + ṽ−1

11 Ũ−1
22

)
,(5.6)

where ṽ11 = (ũ11 − Ũ ′
21Ũ

−1
22 Ũ21)−1. Hence we have

F1(A,W )X =
√

X ′P ′
2P2XP ′

2Q
′Ũ−1e1

= ṽ11

√
X ′P ′

2P2XP ′
2Q

′
(

1
−Ũ−1

22 Ũ21

)
.

Note that

Ũ ∼ WK−q(m, I)(5.7)

for any choice of Q since U22 ∼ WK−q(m, I) and Q is an orthogonal matrix.
From this and (3.7), we can observe that E[Ũ−1

22 Ũ21] = 0 for any choice of Q.
Hence we have

E

[
µ′F1(A,W )X
X ′F1(A,W )X

∣∣∣∣ X

]
(5.8)

= E

[ √
X ′P ′

2P2Xµ′P ′
2Q

′

(X ′P ′
2P2X)

(
1

−Ũ−1
22 Ũ21

)∣∣∣∣∣ X

]

=
µ′P ′

2Q
′√

X ′P ′
2P2X

(
1

−E
[
Ũ−1

22 Ũ21

])

=
µ′P ′

2Q
′e1√

X ′P ′
2P2X

.

From (5.4), we see that Q′e1 = P2X/
√

X ′P ′
2P2X. Hence we can represent the

conditional expectation (5.8) as

E

[
µ′F1(A,W )X
X ′F1(A,W )X

∣∣∣∣ X

]
=

µ′P ′
2P2X

X ′P ′
2P2X

.
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Note that P2X ∼ NK−q(P2µ, τI). From Lemma 1 of Baranchik (1973), we have

E

[
µ′P ′

2P2X

X ′P ′
2P2X

]
= 1 − K − q − 2

2
E

[
1

Z + (K − q − 2)/2

]
,

where Z is distributed as a Poisson distribution with parameter 1/(2τ)µ′P ′
2P2µ =

1/(2τ)µ′F1(A, I)µ. This completes the proof of (i).
Similar to (5.5), we have

X ′F1(A,W )2X = X ′P ′
2U

−2
22 P2X

= (X ′P ′
2P2X)e′

1Ũ
−2e1.

Note that e′
1Ũ

−2e1 = ṽ2
11(1 + Ũ ′

21Ũ
−2
22 Ũ21) from (5.6). Hence we have

X ′F1(A,W )2X = ṽ2
11(X

′P ′
2P2X)

(
1 + Ũ ′

21Ũ
−2
22 Ũ21

)
.(5.9)

From (5.5) and (5.9), we have

X ′F1(A,W )2X
X ′F1(A,W )X

= ṽ11

(
1 + Ũ ′

21Ũ
−2
22 Ũ21

)
.

From (5.7) and 8b.2 (iii) of Rao (1973), we see that ṽ−1
11 is distributed as a

central Chi-square distribution with m − K + q + 1 degrees of freedom, i.e.,
ṽ−1
11 ∼ χ2(m − K + q + 1). Hence,

E[ṽ11] =
1

m − K + q − 1
.

From Theorem 7.3.6 of Anderson (1984), ṽ−1
11 = ũ11 − Ũ ′

21Ũ
−1
22 Ũ21 and Ũ−1

22 Ũ21

are independent. Therefore, from Lemma 5.1, we have

E

[
X ′F1(A,W )2X
X ′F1(A,W )X

]
= E

[
ṽ11

(
1 + Ũ ′

21Ũ
−2
22 Ũ21

)]
=

m − 1
(m − K + q)(m − K + q − 1)

.

Thus (ii) is proved.
From (5.5) and (5.9), we see that

X ′F1(A,W )2X
(X ′F1(A,W )X)2

=
1 + Ũ ′

21Ũ
−2
22 Ũ21

X ′P ′
2P2X

.

Hence, from Lemma 5.1, we have

E

[
X ′F1(A,W )2X

(X ′F1(A,W )X)2

∣∣∣∣ X

]
=

1
X ′P ′

2P2X
E

[
1 + Ũ ′

21Ũ
−2
22 Ũ21

∣∣∣ X
]

=
m − 1

(m − K + q)
1

X ′P ′
2P2X

.
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Since τ−1X ′P ′
2P2X is distributed as a noncentral Chi-square distribution with

K − q degrees of freedom and noncentral parameter τ−1µ′F1(A, I)µ, we have

E

[
X ′F1(A,W )2X

(X ′F1(A,W )X)2

]
=

m − 1
τ(m − K + q)

E

[
τ

X ′P ′
2P2X

]

=
m − 1

2τ(m − K + q)
E

[
1

Z + (K − q − 2)/2

]
,

where Z is distributed as a Poisson distribution with parameter 1/(2τ)µ′F1(A, I)
µ. Thus (iii) is proved.

From Lemma 3.1, we have

F1(A,W )F2(A,W )
X ′F1(A,W )X

=
P ′

2U
−1
22 P2

(
P ′

1(L
′)−1 − P ′

2U
−1
22 U21(L′)−1

)
X ′P ′

2U
−1
22 P2X

= −P ′
2U

−2
22 U21(L′)−1

X ′P ′
2U

−1
22 P2X

.

From (3.6), this is rewritten as

F1(A,W )F2(A,W )
X ′F1(A,W )X

= −P ′
2(Y

′
2Y2)−2Y ′

2Y1(L′)−1

X ′P ′
2(Y

′
2Y2)−1P2X

.

Since X,Y1, and Y2 are independent and E[Y1] = 0, we have

E

[
X ′F1(A,W )F2(A,W )b

X ′F1(A,W )X

]

= −E

[
X ′P ′

2(Y
′
2Y2)−2Y ′

2

X ′P ′
2(Y

′
2Y2)−1P2X

]
E[Y1](L′)−1b

= 0.

This completes the proof of (iv). Thus Lemma 5.2 is proved.

5.3. Proof of Theorem 2.3
We denote the difference between the risks of x̂P (c) and x̂S(c, d) by

g(d) =E[L(x̂P (c)) − L(x̂S(c, d))]

= − c2d2

4a
E

[
m′F1(A,S)ΣF1(A,S)m

(m′F1(A,S)m)2

]
− cd

2a
E

[
µ′F1(A,S)m
m′F1(A,S)m

]

+
c2d

2a
E

[
m′F1(A,S)ΣF1(A,S)m

m′F1(A,S)m

]

+ cdE

[
m′F1(A,S)ΣF2(A,S)b

m′F1(A,S)m

]
.

From Lemma 3.2, we see that

F1(A,S) = n(T ′)−1F1(T−1A, nT−1S(T ′)−1)T−1 and

F2(A,S) = (T ′)−1F2(T−1A, nT−1S(T ′)−1),
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where T is a nonsingular matrix such that Σ = TT ′. Here we substitute these
into g(d). From (3.10) and Lemma 5.2, we have

g(d) = − c2n(n − 2)
8a(n − K + q − 1)

Gd2 − c

2a

(
1 − K − q − 2

2
G

)
d(5.10)

+
c2n(n − 2)

2a(n − K + q − 1)(n − K + q − 2)
d,

where G is the following expectation with respect to Z,

G = E

[
1

Z + (K − q − 2)/2

]
,

where Z is distributed as a Poisson distribution with parameter (n/2)µ′F1(A,Σ)
µ. The roots of the quadratic equation g(d) = 0 are 0 and

d(c, G) =
2(K − q − 2)(n − K + q − 1)

n(n − 2)c
(5.11)

− 4((n − K + q − 1)(n − K + q − 2) − n(n − 2)c)
n(n − 2)(n − K + q − 2)cG

.

If d belongs to the interval between these two roots, then g(d) > 0. We see that

inf
G>0

d(c, G) =
2(K − q − 2)(n − K + q − 1)

n(n − 2)c
> 0

with c ≥ n−1(n − 2)−1(n − K + q − 1)(n − K + q − 2). Hence, if 0 < d <
infG>0 d(c, G), then g(d) > 0 for any G. This completes the proof of Theorem
2.3.

6. Conclusions

In this paper, we considered the problem of estimating the optimal solution
to the problem (1.1). For the purpose, we examined two classes of estimators.
One is the class of proportional type estimators and the other is the class of Stein
type estimators. We showed that there are estimators dominating the maximum
likelihood estimator in each class. However, there are no simple dominance results
between two classes.

There are two problems in our results from the point of view of practical ap-
plications. First, the problem (1.1) does not include inequality constraints, which
are important in practical applications. Second, we assumed that the return of
a risky asset is distributed as a normal distribution. However, many empirical
studies in finance have concluded that the normality assumption is suspect. The
extension of this study, which takes account of nonnegativity constraints and
nonnormality assumptions, is important in both finance and statistics. Thus this
extension awaits future studies.
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