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ASYMPTOTIC RESULTS OF A HIGH DIMENSIONAL
MANOVA TEST AND POWER COMPARISON WHEN
THE DIMENSION IS LARGE COMPARED TO THE

SAMPLE SIZE

Yasunori Fujikoshi*, Tetsuto Himeno∗ and Hirofumi Wakaki∗

This paper is concerned with Dempster trace criterion for multivariate linear
hypothesis which was proposed for high dimensional situation. First we derive asymp-
totic null and nonnull distributions of Dempster trace criterion when both the sample
size and the dimension tend to infinity. Our approximations are examined through
some numerical experiments. Next we compare the power of Dempster trace criterion
with the ones of three classical criteria; likelihood ratio criterion, Lawley-Hotelling
trace criterion, and Bartlett-Nanda-Pillai trace criterion when the dimension is large
compared to the sample size.
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1. Introduction

Let Y be an N × p observation matrix which is obtained by independently
observing a p dimensional variate y = (y1, . . . , yp)′ for N subjects. A multivariate
linear model for Y is expressed as

Y = AΘ + E ,(1.1)

where A is a known N ×k design matrix with rank(A) = k, Θ is a k×p unknown
parameter matrix, and E is an N × p error matrix. It is assumed that the rows
of E are independently distributed as Np(0,Σ). For testing

H0 : CΘ = O vs H1 : CΘ �= O,(1.2)

let Sh and Se be the matrices of sums of squares and products due to the hy-
pothesis and the error defined by

Sh = (CΘ̂)′
[
C(A′A)−1C ′]−1

CΘ̂,

Se = (Y − AΘ̂)′(Y − AΘ̂),

respectively, where C is a q × k known matrix with rank(C) = q, and Θ̂ =
(A′A)−1A′Y . Then Sh and Se are independently distributed as a noncentral

Received March 31, 2004. Revised May 20, 2004. Accepted May 24, 2004.

*Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526,

Japan.



20 YASUNORI FUJIKOSHI ET AL.

Wishart distribution Wp(q, Σ; MM ′) and a central Wishart distribution Wp(n, Σ),
where n = N − k, and M is a p × q matrix such that

MM ′ = (CΘ)′
[
C(A′A)−1C ′]−1

CΘ.(1.3)

Under the assumption that n ≥ p, the following three well known statistics have
been used:

(i) Likelihood Ratio statistic: − log(| Se | / | Se + Sh |)
(ii) Lawley-Hotelling trace criterion: trShS−1

e

(iii) Bartlett-Nanda-Pillai trace criterion: trSh(Se + Sh)−1.
When n < p, Se becomes singular, and it will be impossible to use the classi-
cal statistics. For such cases, a non-exact test was first proposed by Dempster
(1958, 1960) for one and two sample cases. For testing (1.2), we can write the
corresponding statistic as
(iv) Dempster trace criterion:

TD = (trSh)/(trSe),(1.4)

which may be called Dempster trace criterion. For the null distribution of TD, it
has been proposed to use F -approximations by Dempster (1958, 1960), Takeda
and Goto (1999), etc. It seems that the F -approximations are good in some
situations with Σ = λI. The test was applied by Dempster (1960) to an example
which consist of 62 biological measurements and 12 subjects, in order to examine
whether there is evidence that the 62 items could be used to distinguish between
alcoholic or non-alchoholic. In general, it is getting important to develop multi-
variate theory for analyzing multivariate datasets with fewer observations than
the dimension, or with large dimension in comparison of the number of samples,
in various applied area.

Note that the criterion has been proposed for high dimensional case, and so,
it is important to study its asymptotic behavior when the dimension p is large
compared to the number n. In this paper we study its distribution under a high
dimensional framework:

A1 : q; fix, n → ∞, p → ∞,
p

n
→ c ∈ (0,∞).(1.5)

Further, in addition to A1 we will assume

A2 :
1
p

tr Σk = O(1), (k = 1, 2),(1.6)

for the null case, and in addition to A1 and A2

A3 :
1
p

tr ΣkΩ = O(1), (k = 1, 2),(1.7)

for the nonnull case, where

Ω = Σ−1/2Θ′C ′(C(A′A)−1C ′)−1CΘΣ−1/2.
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The assumption (1.6) will be natural. The assumption (1.7) corresponds to local
alternatives when Σ = λI.

In Section 2 we derive asymptotic null distribution of TD. Our approxima-
tions are numerically examined through some experiments. On the other hand,
Wakaki et al. (2002) derived asymptotic distributions of the null and nonnull
distributions of the three classical test statistics under the assumption (1.5) with
c < 1 and the assumptions (1.6) and (1.7). In Section 3 we compare the power
of Dempster trace criterion with the ones of three classical tests. Naturally it is
seen that TD will be more powerful than the classical tests as p becomes near to
n.

2. Dempster’s test

In this section we derive the limiting null and nonnull distributions of Dempster
test statistic.

2.1. Limiting null distribution
Under the null hypothesis, Sh and Se are independently distributed as the

central Wishart distributions, Wp(q, Σ) and Wp(n, Σ), respectively. Let

T̃D =
√

p

{
n

trSh

trSe
− q

}
.

Let U and V be defined by

U =
trSh − qtrΣ√

2qtrΣ2
, V =

trSe − ntrΣ√
2ntrΣ2

.(2.1)

For our asymptotics, we assume (1.5) and (1.6). Then, considering the character-
istic functions of U and V , it is seen that U and V are asymptotically distributed
as the nomal distribution N(0, 1). Using (2.1), we can expand T̃D as

T̃D =
√

p

{
U
√

2npq
√

(trΣ2)/p + pq
√

n(trΣ)/p

V
√

2p
√

(trΣ2)/p + p
√

n(trΣ)/p
− q

}

=

√
2q(trΣ2)/p

(trΣ)/p
U + o(1).

Therefore, we obtain the following theorem.

Theorem 2.1. Under the asymptotic framework (1.5) and the assumption
(1.6), it holds that

T̃D

σD

d→ N(0, 1),

where d→ denotes convergence in distribution, and

σD =

√
2q(tr Σ2)/p

(tr Σ)/p
.
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For a practical situation, we need to use an estimator instead of σD since Σ is
usually unknown. Srivastava (2003) has proposed a high dimensional consistent
estimator, i.e., (n, p)-consistent estimator given by

σ̂D =

√
2q {(trS2

e )/n2 − (trSe)2/n3} /p

(trSe)/(np)
.

Table 2.1. Upper 5 percent points.

Σ = diag(1, . . . , 1)

q n p Simu σD σ̂D

2 40 40 3.589 3.290 3.354

2 40 80 3.541 3.290 3.328

2 80 40 3.515 3.290 3.391

2 80 80 3.459 3.290 3.339

2 120 120 3.427 3.290 3.304

2 120 200 3.406 3.290 3.337

2 200 120 3.399 3.290 3.301

2 200 200 3.398 3.290 3.283

4 40 40 5.158 4.652 4.860

4 40 80 5.039 4.652 4.652

4 80 40 4.969 4.652 4.648

4 80 80 4.910 4.652 4.665

4 120 120 4.835 4.652 4.648

4 120 200 4.803 4.652 4.567

4 200 120 4.798 4.652 4.711

4 200 200 4.788 4.652 4.709

Table 2.2. Actual error probabili-

ties of the first kind when the nominal

level is 0.05.

Σ = diag(1, . . . , 1)

q n p σD σ̂D

2 40 40 0.0640 0.0611

2 40 80 0.0617 0.0597

2 80 40 0.0604 0.0555

2 80 80 0.0586 0.0560

2 120 120 0.0564 0.0558

2 120 200 0.0557 0.0532

2 200 120 0.0551 0.0546

2 200 200 0.0551 0.0553

4 40 40 0.0671 0.0595

4 40 80 0.0632 0.0632

4 80 40 0.0606 0.0607

4 80 80 0.0595 0.0591

4 120 120 0.0563 0.0564

4 120 200 0.0557 0.0589

4 200 120 0.0548 0.0528

4 200 200 0.0550 0.0528

Table 2.3. Maximal value of q = 2, 4, 6, 8, 10.

n

p 20 40 60 80 100 120 140 160 180 200

20 8 8

40 6 4 6 10 8 8

60 2 2 6 8 10 10 10 10

80 4 4 8 10 8 10 10 10

100 4 6 6 8 8 10 10 10

120 2 6 8 10 10 10 10 10

140 2 4 4 8 10 10 10 10 10

160 4 4 8 10 10 10 10 10

180 2 4 4 10 10 10 10 10 10

200 2 2 6 8 10 10 10 10 10
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We attempted to clear numerical accuracy of the limiting distribution in The-
orem 2.1. Note that the null distribution of TD depends on Σ through its charac-
teristic roots λ1, λ2, . . . , λp, and hence we may assume that Σ = diag(λ1, . . . , λp).
We choosed the values of q, n, p, and (λ1, . . . , λp) as follows:

q; 2, 4, 6, 8, 10,

n, p; 20, 40, 60, 80, 100, 120, 140, 160, 180, 200,

(λ1, . . . , λp) = (1, . . . , 1).

The error probabilities of the first kind are almost monotone decreasing for n
and p, monotone increasing for q, and lager than 0.05. If n or p is smaller
than 50, the error probabilities of the first kind are almost lager than 0.06. If
n and p are larger than 100, the error probabilities of the first kind are almost
smaller than 0.06 and larger than 0.05. We show a part of these results on Table
2.1 and Table 2.2. Table 2.1 gives the estimated upper 5 percent points based
on Monte Carlo simulation, the limiting distribution in Theorem 2.1 and the
limiting distribution when σD is replaced by σ̂D, respectively. Table 2.2 gives
the actual error probabilities of the first kind by using the approximated percent
points. Table 2.3 gives the maximal values of q in the above range such that
the error probability of the first kind is smaller than 0.06 and larger than 0.05.
It should be noted that our approximation method underestimates the percent
point. Further, the approximations are rather improving by using σ̂D instead of
σD. However, the approximations are not very accurate except the case when n
is large in comparison with p. In order to get more accurate approximations it is
expected to obtain asymptotic expansions up to O(n−1/2) or O(n−1) under the
high dimensional framework (1.5) and the assumption (1.6) with k = 1 ∼ 3 or
k = 1 ∼ 4.

2.2. Limiting nonnull distribution
Under alternative hypotheses, Se and Sh are independently distributed as

the central and noncentral Wishart distributions, Wp(n, Σ) and Wp(q, Σ, MM ′),
respectively, where M is defined in (1.3). Let

T ∗
D =

√
p

{
n

trSh

trSe
− q − trΣΩ

trΣ

}
.

Let U and V be defined by

U =
1√
p
(trSh − qtrΣ − trΣΩ), V =

1√
np

(trSe − ntrΣ).(2.2)

For our asymptotics, we assume (1.5), (1.6) and (1.7). Then U and V are asymp-
totically independent and normal. More precisely,

V√
2(tr Σ2)/p

d→ N(0, 1).
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Further, using the characteristic function of the noncentral Wishart distribution
(see, chapter 10 of Muirhead (1982)), the cumulant generating function of U can
be expanded as

log E[exp(itU)] = log E

[
exp

(
it√
p
trSh

)]
− it√

p
(qtrΣ + trΣΩ)

= −q

2
log det

(
Ip −

2it√
p
Σ

)
− 1

2
trΩ

+
1
2
trΩ

(
Ip −

2it√
p
Σ

)−1

− it√
p
(qtrΣ + trΣΩ)

=
q

2

{
2it√

p
trΣ +

2(it)2

p
trΣ2

}
− 1

2
trΩ

+
1
2

{
trΩ +

2it√
p
trΣΩ +

4(it)2

p
trΣ2Ω

}

− it√
p
(qtrΣ + trΣΩ) + o(1)

= (it)2
{

q
trΣ2

p
+ 2

trΣ2Ω
p

}
+ o(1).

Using (2.2) we obtain

T ∗
D =

√
p

{√
npU + pq

√
n(trΣ)/p + p

√
n(trΣΩ)/p

√
pV + p

√
n(trΣ)/p

− q − trΣΩ
trΣ

}

=
1

(trΣ)/p
U + o(1).

Therefore we obtain the following theorem.

Theorem 2.2. Under the asymptotic framework (1.5) and the assumptions
(1.6) and (1.7), it holds that

T ∗
D

σ∗
D

d→ N(0, 1),

where

σ∗
D =

√
2q(trΣ2)/p + 4(trΣ2Ω)/p

(trΣ)/p
.

In a special case Ω = 0, we get the limiting null distribution in Theorem 2.1.

3. Power comparison

In this section we compare the power of Dempster test with ones of likelihood
ratio test, Lawley-Hotelling test, and Bartlett-Nanda-Pillai test. Let

δD = T̃D − T ∗
D =

√
p
trΣΩ
trΣ

,
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then the power of T̃D with significance level α can be expressed as

PD = Pr(T̃D > σDzα) = Pr(T ∗
D > σDzα − δD),

where zα is the upper 100α % point of the standard nomal distribution. Using
Theorem 2.2, the asymptotic power is

lim
p→∞

PD = lim
p→∞

Φ
(

δD − σDzα

σ∗
D

)
.

If the order of trΣkΩ (k = 1, 2) is larger than
√

p, δD → ∞ so that the asymptotic
power tends to one, while if the order of trΣkΩ (k = 1, 2) is smaller than

√
p, the

asymptotic power is α since δD → 0 and σ∗
D → σD. When trΣkΩ = O(

√
p) (k =

1, 2), we obtain the asymptotic result easily, then

lim
p→∞

PD = Φ
(

δD

σD
− zα

)

= Φ

(
trΣΩ√
2qtrΣ2

− zα

)
.(3.1)

On the other hand, let

TLR = −√
p

(
1 +

m

p

) {
log

|Se|
|Se + Sh|

+ q log
(
1 +

p

m

)}
,

TH =
√

p

{
m

p
trShS−1

e − q

}
,

TBNP =
√

p
(
1 +

p

m

) {(
1 +

m

p

)
trSh(Se + Sh)−1 − q

}
,

then under the assumption trΩ = O(
√

p), the power of TG (G=LR, H, BNP)
with significance level α can be expressed (see Wakaki et al. (2002)) as

lim
p→∞

PG = Φ
(

δ0

σ
− zα

)

= Φ

(
trΩ/

√
p√

2q(1 + r)
− zα

)
,(3.2)

where r = p/m and m = n − p + q. Note that Ω in the case TD is used for trΩ
in the case TG. Comparing (3.1) with (3.2) and neglecting the terms of o(1),

(trΩ)/
√

p√
1 + r

>
trΣΩ√
trΣ2

⇒ PG > PD,

(trΩ)/
√

p√
1 + r

<
trΣΩ√
trΣ2

⇒ PG < PD.
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By the definition of Ω, i.e., Ω = Σ−1/2MM ′Σ−1/2 we have

trΣΩ

(trΩ/
√

p)
√

trΣ2
=

trMM ′

trΣ−1MM ′
√

(trΣ2)/p

=
(vec(M))′vec(M)

(vec(M))′(Iq ⊗ Σ−1)vec(M)
√

trΣ2/p

≥ 1
max

j
λ−1

j

√
trΣ2/p

=
min

j
λj√

trΣ2/p

≥
min

j
λj

max
j

λj
,

where λi’s are the characteristic roots of Σ. Thus, neglecting the terms of o(1)
we can see that

Rλ =
min

j
λj

max
j

λj
>

1√
1 + r

⇒ PG < PD.

In particular,
(1) If Σ = aIp (a: constant), then PG < PD.
(2) If Rλ is near to one, then PG < PD.
(3) If Rλ is small and p is small, then PG > PD.
(4) If c is close to one, r becomes large since r = p/m → c/(1 − c), and hence

PG < PD.
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