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THE VINCZE INEQUALITY FOR THE BAYES RISK

Nao Ohyauchi*

In this paper, the Vincze inequality for the Bayes risk of an estimator with the
unbiasedness at any two specific values of the parameter is derived using the Lagrange
method. The lower bound for the Bayes risk is also shown to be attained. The
Cramér-Rao inequality is derived from the information inequality. Some examples
on non-regular distributions are also given.
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1. Introduction

In statistical estimation it is well known that the information inequalities of
Cramér-Rao, Bhattacharyya, etc. play an important role, under suitable regular-
ity conditions. In non-regular cases when the regularity conditions do not always
hold, the Hammersley-Chapman-Robbins inequality is well known (Hammersley
(1950), Chapman and Robbins (1951)), and it is useful for the distribution with
the support depending on the parameter. In such a distribution, it is shown
in Akahira and Takeuchi (1995) that the infimum of the variance of unbiased
estimator is zero at any specified value of the parameter.

In Vincze (1992), the lower bound for the convex combination of variances
of any unbiased estimator at two arbitrary points of the parameter is derived
in an indirect way based on the Cramér-Rao type inequality, and it is shown
to be unattainable. In this paper, we have a grip on the convex combination
as the Bayes risk, and derive the Vincze inequality for the Bayes risk of an
estimator with unbiasedness at any two specified points of the parameter, using
the Lagrange method (see also Akahira and Ohyauchi (2003)). We also show that
the lower bound for the Bayes risk can be attained. Further, the Cramér-Rao
inequality is derived from the information inequality. Some examples on non-
regular distributions are given. Related results to the information inequalities
for the Bayes risk are found in Ohyauchi (2002) and Akahira and Ohyauchi
(2002).

2. Formulation

Suppose that the joint probability density function (with respect to a σ-finite
measure µ) of a random vector X := (X1, . . . , Xn) is fX(x, θ), where θ ∈ Θ. Let
θ1 and θ2 be any disjoint points in Θ, and πα be a prior probability measure such
that πα({θ1}) = α and πα({θ2}) = 1 − α, where 0 ≤ α ≤ 1. Let X be a sample
space of X. Then we consider the Bayes risk r(πα, ĝ) of an estimator ĝ(X) of a
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function g(θ) of θ based on X := (X1, . . . , Xn) with respect to a quadratic loss
and the prior πα, i.e.,

r(πα, ĝ) :=
∫

Θ
R(θ, ĝ)πα(dθ) = αR(θ1, ĝ) + (1 − α)R(θ2, ĝ)(2.1)

under the condition

Eθi
(ĝ) = g(θi) (i = 1, 2),(2.2)

where

R(θ, ĝ) = Eθ

[
{ĝ(X) − g(θ)}2

]
=

∫
X
{ĝ(x) − g(θ)}2 fX(x, θ)dµ(x).

Now we want to obtain the estimator ĝ = ĝ∗(X) minimizing the Bayes
risk (2.1) under the condition (2.2). In order to do so, we define an amount of
information as

I
(α)
X (θ1, θ2) :=

∫
X

{fX(x, θ1) − fX(x, θ2)}2

f (α)(x; θ1, θ2)
dµ(x),(2.3)

where

f (α)(x; θ1, θ2) =
∫

Θ
fX(x, θ)πα(dθ) = αfX(x, θ1) + (1 − α)fX(x, θ2).(2.4)

(See Akahira (1975), pp. 20, 21, Akahira and Takeuchi (1981), p. 42 for α = 1/2,
and Vincze (1992) for 0 ≤ α ≤ 1.) Akahira (2003) also defined another amount
of information by

JX(θ1, θ2) :=
∫
X

fX(x, θ1)fX(x, θ2)
fX(x, θ1) + fX(x, θ2)

dµ(x),(2.5)

which is easier to calculate than I
(1/2)
X (θ1, θ2). The relationship between (2.3)

and (2.5) is easily seen to be

I
(1/2)
X (θ1, θ2) + 8JX(θ1, θ2) = 4.(2.6)

Since I
(1/2)
X (θ1, θ2) ≥ 0, it follows from (2.6) that

0 ≤ JX(θ1, θ2) ≤
1
2
.

Letting θ2 = θ1 + ∆, we have

JX(θ1, θ2) =
1
2
− ∆2

8
Eθ1

[{
∂

∂θ1
log fX(X, θ1)

}2
]

+ o
(
∆2

)

=:
1
2
− ∆2

8
IX(θ1) + o

(
∆2

)
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as ∆ → 0, provided that the differentiation under the integral sign is allowed,
where IX(θ1) is the amount of the Fisher information on θ1 based on X. A
non-regular Cramér-Rao type bound for the convex combination of variances of
any unbiased estimator at the two points is obtained by Vincze (1992), and it is
also shown that the bound can not be attained.

In this paper, we get the lower bound for the Bayes risk under the condition
(2.2), using the Lagrange method, and show that the lower bound is attainable
at the points θ1 and θ2.

3. The Vincze inequality for the Bayes risk

First, we derive an information inequality for the Bayes risk of the estimator
under the condition (2.2). From (2.2) we have∫

X
ĝ(x)f (α)(x; θ1, θ2)dµ(x) = αg(θ1) + (1 − α)g(θ2) =: η (say).(3.1)

Letting

h(α)(x; θ1, θ2) := α{fX(x, θ1) − fX(x, θ2)}

for 0 ≤ α ≤ 1, we obtain∫
X

ĝ(x)h(α)(x; θ1, θ2)dµ(x) = α{g(θ1) − g(θ2)} =: δ (say).(3.2)

It is easily seen that (3.1) and (3.2) imply (2.2).

Theorem 3.1. Under the condition (2.2), the information inequality for
the Bayes risk is given by

r(πα, ĝ) ≥ α(1 − α){g(θ1) − g(θ2)}2

{
1

α(1 − α)I(α)
X (θ1, θ2)

− 1

}
(3.3)

=: B(α)(θ1, θ2) (say).

The lower bound B(α)(θ1, θ2) is attained by the estimator

ĝ∗(X) := η +
{g(θ1) − g(θ2)}{fX(X, θ1) − fX(X, θ2)}

I
(α)
X (θ1, θ2)f (α)(X; θ1, θ2)

.(3.4)

Proof. Under the conditions (3.1) and (3.2), we consider the problem of
minimizing ∫

X
ĝ2(x)f (α)(x; θ1, θ2)dµ(x).
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Letting

F (λ1, λ2; ĝ) :=
∫
X

ĝ2(x)f (α)(x; θ1, θ2)dµ(x)(3.5)

− λ1

{∫
X

ĝ(x)f (α)(x; θ1, θ2)dµ(x) − η

}

− λ2

{∫
X

ĝ(x)h(α)(x; θ1, θ2)dµ(x) − δ

}
,

we get ĝ = ĝ∗ such that ĝ∗ minimizes F . Since

F (λ1, λ2; ĝ) =
∫
X

[
f (α)(x; θ1, θ2)ĝ2(x)(3.6)

− {λ1f
(α)(x; θ1, θ2) + λ2h

(α)(x; θ1, θ2)}ĝ(x)
]
dµ(x)

+ λ1η + λ2δ,

in order to obtain ĝ∗, for almost all x[µ], it is enough to take ĝ(x) minimizing
[· · · ] in (3.6). Hence we have

ĝ∗(x) =
λ1

2
+

λ2h
(α)(x; θ1, θ2)

2f (α)(x; θ1, θ2)
,(3.7)

since the integrand of (3.6) is a quadratic expression of ĝ(x). From the conditions
(3.1) and (3.2) we have

∫
X

{
λ1

2
+

λ2h
(α)(x; θ1, θ2)

2f (α)(x; θ1, θ2)

}
f (α)(x; θ1, θ2)dµ(x) = η,(3.8)

∫
X

{
λ1

2
+

λ2h
(α)(x; θ1, θ2)

2f (α)(x; θ1, θ2)

}
h(α)(x; θ1, θ2)dµ(x) = δ.(3.9)

Since ∫
X

h(α)(x; θ1, θ2)dµ(x) = 0,

it follows from (3.8), (3.9) and (2.3) that

λ1

2
= η,

λ2

2
=

δ

α2I
(α)
X (θ1, θ2)

.(3.10)

From (3.7) and (3.10) we have

ĝ∗(X) = η +
δh(α)(X; θ1, θ2)

α2I
(α)
X (θ1, θ2)f (α)(X; θ1, θ2)

(3.11)

= η +
{g(θ1) − g(θ2)}{fX(X, θ1) − fX(X, θ2)}

I
(α)
X (θ1, θ2)f (α)(X; θ1, θ2)

.
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It follows from (3.11) that the mean-squared error of ĝ∗ is given by

Ef (α)

[
{ĝ∗(X) − η}2

]
=

∫
X
{ĝ∗(x) − η}2f (α)(x; θ1, θ2)dµ(x)(3.12)

=
δ2

α4
{

I
(α)
X (θ1, θ2)

}2

∫
X

{
h(α)(x; θ1, θ2)

}2

f (α)(x; θ1, θ2)
dµ(x)

=
δ2

α2I
(α)
X (θ1, θ2)

=
{g(θ1) − g(θ2)}2

I
(α)
X (θ1, θ2)

.

On the other hand, it follows from (2.1), (3.1) and (3.2) that for any estimator
ĝ satisfying (2.2)

r(πα, ĝ) = αR(θ1, ĝ) + (1 − α)R(θ2, ĝ)(3.13)

= Ef (α)

[
(ĝ − η)2

]
− α{η − g(θ1)}2 − (1 − α){η − g(θ2)}2

= Ef (α)

[
(ĝ − η)2

]
− α(1 − α){g(θ1) − g(θ2)}2.

From (3.12) and (3.13) we have

r(πα, ĝ) ≥ Ef (α)

[
(ĝ∗ − η)2

]
− α(1 − α){g(θ1) − g(θ2)}2

=
{g(θ1) − g(θ2)}2

I
(α)
X (θ1, θ2)

− α(1 − α){g(θ1) − g(θ2)}2

= α(1 − α){g(θ1) − g(θ2)}2

{
1

α(1 − α)I(α)
X (θ1, θ2)

− 1

}
.

Hence we have the lower bound (3.3), and see that the bound is attained by ĝ∗.
Thus we complete the proof.

Remark that the lower bound is also derived by Vincze (1992) in an indirect
way based on the Cramér-Rao type inequality, which is different from ours.

Next we shall show that the Cramér-Rao inequality can be derived from the
information inequality (3.3). In particular, let Θ = R1, θ1 = θ and θ2 = θ + ∆
(∆ > 0). Suppose that the support {x | fX(x, θ) > 0} is independent of θ, and
g(θ) and fX(x, θ) are differentiable in θ. Then we have for small ∆

g(θ2) − g(θ1) = g′(θ)∆ + o(∆),(3.14)

fX(x, θ2) − fX(x, θ1) = ∆
∂fX(x, θ)

∂θ
+ o(∆),(3.15)

which implies
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I
(α)
X (θ1, θ2) = I

(α)
X (θ, θ + ∆) =

∫
X

{fX(x, θ) − fX(x, θ + ∆)}2

αfX(x, θ) + (1 − α)fX(x, θ + ∆)
dµ(x)

=
∫
X

∆2{∂fX(x, θ)/∂θ}2

fX(x, θ)
dµ(x) + o

(
∆2

)

= ∆2Eθ

[{
∂ log fX(X, θ)

∂θ

}2
]

+ o
(
∆2

)
=: ∆2IX(θ) + o

(
∆2

)
,

where IX is called the amount of Fisher information. Then

B(α)(θ1, θ2)(3.16)

= α(1 − α){g(θ) − g(θ + ∆)}2

{
1

α(1 − α)I(α)
X (θ, θ + ∆)

− 1

}

= α(1 − α){g′(θ)}2∆2(1 + o(1))
[

1
α(1 − α)∆2{IX(θ) + o(1)} − 1

]

=
{g′(θ)}2

IX(θ)
+ o(1).

On the other hand, we have

Eθ[ĝ(X)] = g(θ), Eθ+∆[ĝ(X)] = g(θ + ∆).

We also have

r(πα, ĝ) = αVθ(ĝ) + (1 − α)Vθ+∆(ĝ).(3.17)

Since by (3.14) and (3.15)

Vθ+∆(ĝ) = Eθ+∆

[
{ĝ(X) − g(θ + ∆)}2

]
(3.18)

= Eθ+∆

[
{ĝ(X) − g(θ) − g′(θ)∆ + o(∆)}2

]
=

∫
X
{ĝ(x) − g(θ) − g′(θ)∆ + o(∆)}2

×
{

fX(x, θ) + ∆
∂fX(x, θ)

∂θ
+ o(∆)

}
dµ(x)

=
∫
X
{ĝ(x) − g(θ)}2fX(x, θ)dµ(x) + o(1)

= Eθ

[
{ĝ(X) − g(θ)}2

]
+ o(1)

= Vθ(ĝ) + o(1),

it follows from (3.17) and (3.18) that

r(πα, ĝ) = Vθ(ĝ) + o(1).(3.19)
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Letting ∆ → 0, from (3.3), (3.14), (3.16) and (3.19) we obtain for any unbiased
estimator of g(θ)

Vθ(ĝ) ≥ {g′(θ)}2

IX(θ)
,(3.20)

which is the Cramér-Rao inequality. From (3.4), (3.14) and (3.15) it follows that

ĝ∗(X) − g(θ) =
g′(θ)
IX(θ)

∂ log fX(X, θ)
∂θ

,

which is a necessary and sufficient condition for the equality in (3.20) to hold.

4. Bayes estimation

In the formulation in Section 2, we assume that the condition (2.2) holds.
However, the interest is focused on the ordinary Bayes estimator without the
condition (2.2). We consider the Bayes estimator ĝB(X), that is the estimator
minimizing the Bayes risk (2.1). Then the Bayes estimator is

ĝ
(α)
B (X) =

αg(θ1)fX(X, θ1) + (1 − α)g(θ2)fX(X, θ2)
f (α)(X, θ1, θ2)

.

Let α = 1/2. Then it follows from (2.5) that the Bayes risk of ĝ
(1/2)
B is given by

r
(
π1/2, ĝ

(1/2)
B

)
=

1
2
{g(θ1) − g(θ2)}2

∫
X

fX(x, θ1)fX(x, θ2)
fX(x, θ1) + fX(x, θ2)

dµ(x)(4.1)

=
1
2
{g(θ1) − g(θ2)}2 JX(θ1, θ2).

Hence, for any estimator ĝ = ĝ(X) of g(θ)

r(π1/2, ĝ) ≥ r
(
π1/2, ĝ

(1/2)
B

)
=

1
2
{g(θ1) − g(θ2)}2 JX(θ1, θ2) =: B∗(θ1, θ2).(4.2)

On the other hand, it follows from (3.3) that, under the condition (2.2), the
lower bound for the Bayes risk is given by

B(1/2)(θ1, θ2) = {g(θ1) − g(θ2)}2

{
1

I
(1/2)
X (θ1, θ2)

− 1
4

}
.(4.3)

Comparing B∗(θ1, θ2) with B(1/2)(θ1, θ2), we obtain from (2.6) and (4.3)

B∗(θ1, θ2) − B(1/2)(θ1, θ2)
{g(θ1) − g(θ2)}2

= − 1

16I
(1/2)
X (θ1, θ2)

{
I

(1/2)
X (θ1, θ2) − 4

}2
≤ 0.

Note that B∗(θ1, θ2) is less that B(1/2)(θ1, θ2) since B∗ is the lower bound for the
Bayes risk of any estimator of g(θ) without the condition (2.2).
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5. Examples

In this section we give two examples of Theorem 3.1 and its related result.

Example 5.1. Suppose that X1, . . . , Xn are independent and identically dis-
tributed (i.i.d.) random variables with the uniform distribution on the inter-
val [θ − (1/2), θ + (1/2)]. Let g(θ) = θ, and θ1 < θ2 < θ1 + 1. Define
x(1) := min1≤i≤n xi, x(n) := max1≤i≤n xi, and Sj := {x : x(n) − 1/2 ≤ θj ≤
x(1) + 1/2} (j = 1, 2). Then the amount of information is given by

I
(α)
X (θ1, θ2) =

∫
· · ·

∫ {fX(x, θ1) − fX(x, θ2)}2

αfX(x, θ1) + (1 − α)fX(x, θ2)
dx1 · · · dxn

=
∫

· · ·
∫

S1−(S1∩S2)

1
α

dx1 · · · dxn +
∫

· · ·
∫

S2−(S1∩S2)

1
1 − α

dx1 · · · dxn

=
1
α

{
1 −

(
1 +

δ

α

)n}
+

1
1 − α

{
1 −

(
1 +

δ

α

)n}

=
1

α(1 − α)
{1 − (1 + (θ1 − θ2))n} ,

which yields the lower bound

B(α)(θ1, θ2) = α(1 − α)(θ1 − θ2)2
{

1
1 − (1 + (θ1 − θ2))n

− 1
}

.(5.1)

Then we have

fX(x, θ1) − fX(x, θ2)
αfX(x, θ1) + (1 − α)fX(x, θ2)

=
1
α

χS1−(S1∩S2)(x) +
1

1 − α
χS2−(S1∩S2)(x),

(5.2)

where χA(x) denotes the indicator of a set A of X . Then it follows from (3.4)
and (5.2) that

θ̂∗(X)(5.3)
= αθ1 + (1 − α)θ2

+
α(1 − α)(θ1 − θ2)
1 − (1 + θ1 − θ2)n

{
1
α

χS1−(S1∩S2)(X) +
1

1 − α
χS2−(S1∩S2)(X)

}
,

which attains the lower bound B(α)(θ1, θ2).
Now, let θ2 = θ1 + (∆/n) (∆ > 0). From (5.1) we have for large n

B(α)(θ1, θ2) = α(1 − α)
∆2

n2

{
1

1 − (1 − ∆/n)n
− 1

}

� α(1 − α)
n2

∆2

(
1

1 − e−∆
− 1

)
=

α(1 − α)
n2

∆2

e∆ − 1
.
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Then we obtain

sup
∆>0

B(α)

(
θ, θ +

∆
n

)
� α(1 − α)

n2

∆2
0

e∆0 − 1
� 0.65

α(1 − α)
n2

,

where ∆0 � 1.59. The estimator with θ2 = θ1 + (∆0/n) in (5.3) attains the
supremum lower bound.

Example 5.2. Suppose that a random variable X is distributed with a den-
sity

p(x, θ) =




r for 0 < x < θ,

s := 2 − r for θ ≤ x ≤ θ + 1
2 ,

r for θ + 1
2 < x < 1,

0 otherwise,

where 0 < θ < 1/2, 0 < r < s < 1. Let 0 < θ1 < θ2 < 1/2. Then we consider the
Bayes risk of an estimator of g(θ). First we have for 0 ≤ α ≤ 1,

p(α)(x; θ1, θ2) = αp(x, θ1) + (1 − α)p(x, θ2)(5.4)

=




r for 0 < x < θ1,

αs + (1 − α)r for θ1 ≤ x < θ2,

s for θ2 ≤ x ≤ θ1 + 1
2 ,

αr + (1 − α)s for θ1 + 1
2 < x ≤ θ2 + 1

2 ,

r for θ2 + 1
2 < x < 1,

0 otherwise.

Since

p(x, θ1) − p(x, θ2) =




s − r for θ1 ≤ x < θ2,

r − s for θ1 + 1
2 < x ≤ θ2 + 1

2 ,

0 otherwise,

(5.5)

it follows from (2.3) that

I
(α)
X (θ1, θ2) =

∫ 1

0

{p(x, θ1) − p(x, θ2)}2

p(α)(x; θ1, θ2)
dx

=
(s − r)2

α(s − r) + r
(θ2 − θ1) +

(s − r)2

α(r − s) + s
(θ2 − θ1)

=
(s − r)2(θ2 − θ1)

(α(s − r) + r)(α(r − s) + s)
,

which yields the lower bound

B(α)(θ1, θ2) = α(1 − α){g(θ1) − g(θ2)}2

{
(α(s − r) + r)(α(r − s) + s)
α(1 − α)(s − r)2(θ2 − θ1)

− 1
}

.

(5.6)
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From (3.4), (5.4) and (5.5) we have

ĝ∗(X) =αg(θ1) + (1 − α)g(θ2) +
(α(s − r) + r)(α(r − s) + s)

(s − r)2(θ2 − θ1)
{g(θ1) − g(θ2)}

×
{

s − r

α(s − r) + r
χ[θ1,θ2)(X) +

r − s

α(r − s) + s
χ(θ1+1/2,θ2+1/2](X)

}
,

which attains the lower bound (5.6).
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