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Abstract  A splicing system based genetic algorithm is proposed to optimize dynamical radial basis function (RBF) 
neural network, which is used to extract valuable process information from input output data. The novel RBF net-
work training technique includes the network structure into the set of function centers by compromising between 
the conflicting requirements of reducing prediction error and simultaneously decreasing model complexity. The ef-
fectiveness of the proposed method is illustrated through the development of dynamic models as a benchmark discrete 
example and a continuous stirred tank reactor by comparing with several different RBF network training methods. 
Keywords  RBF network, structure optimization, genetic algorithm, splicing system 

1  INTRODUCTION 
Radial basis function (RBF) networks attracted 

considerable interest in the past because of its several 
advantages compared with other types of artificial 
neural networks (ANNs), such as better approximation 
capabilities, simpler network structures, and faster 
learning algorithms[1]. However, the selection of ap-
propriate number of basis functions is a critical issue 
for RBF networks[2]. The number of basis functions 
controls the complexity of the structure , i.e., the gen-
eralization capability of RBF networks. A RBF net-
work, containing very few basis functions, yields poor 
predictions on new data, i.e., poor generalization, as 
the model has limited flexibility. The RBF network, 
containing several basis functions, also yields poor 
generalization, as it is too flexible and fits the noise in 
the training data. The best generalization performance 
is obtained via the compromise between the conflict-
ing requirements of simultaneously reducing the pre-
diction error and decreasing the complexity of the 
model. This trade-off highlights the importance of 
optimizing the complexity of RBF network to achieve 
the best generalization. 

More specifically, most of the standard RBF 
training methods require the designer to fix the net-
work structure. These training procedures usually 
proceed via two steps[3]: First, the centers of basis 
function are determined using clustering method. 
Second, the calculation of the final-layer weights is 
reduced to solve a simple linear system using least 
squares method. Therefore, the first stage is an unsu-
pervised method, and separated from the actual objec-
tive to minimize the output prediction error. In this 
study, the RBF networks are constructed using the 
input data supervised by the output data. 

The inclusion of the structure selection in the 
formulation of the network optimization problem is 
desirable, but it results in a rather difficult problem, 
which cannot be easily solved using the standard op-
timization methods. An interesting alternative for 

solving this complicated problem is offered by the use 
of the recently developed evolutionary computation 
methods. Perhaps the most popular and successful 
strategies are the so-called genetic algorithms (GAs), 
which are stochastic methods based on the principles 
of natural selection and evolution[4]. GAs have 
proved to be successful in the structure selection of 
several types of neural networks, such as BP neural 
networks[5,6] and recurrent neural networks[7,8]. As 
to the optimization of RBF networks, Vesin and 
Gruter used GA to solve the complete optimization 
problem, but the centers of the potential nodes were 
restricted among the set of training data[9]. Esposito 
et al. employed a GA based technique to determine the 
widths of Gaussian functions in RBF networks[10], 
whereas Sarimveis et al. used GA approach to opti-
mize the parameters of RBF networks in terms of the 
error minimization criterion[11]. 

In this study, the structure selection is included, 
and the fitness of each chromosome is calculated on 
the basis of the prediction error and the structure com-
plexity criterion. To simplify the optimization of RBF 
network, the radial basis function is chosen as 
thin-plate-spline function[12], where the determina-
tion of widths is not required. Therefore, the GA in 
this study is used to determine the centers of basis 
functions and the network structure. The final-layer 
weights are derived using recursive least squares (RLS) 
method with the same initial weight vector. The pro-
posed algorithm starts with a random population of 
RBF networks, which are coded as chromosomes. As 
all the function centers generated by stochastic chro-
mosomes are not feasible, two novel operators, i.e., 
elongation and deletion, enlightened by DNA splicing 
system[13,14], are introduced in the GA approach. 

2  SPLICING SYSTEM BASED GA FOR RBF 
NETWORKS 

Generally, the determination of the RBF centers 
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is based on a self-organizing clustering approach, such 
as k-means clustering[15], the nearest neighbor clus-
tering method[16]. The application of the above algo-
rithms requires the transcendental knowledge of an 
appropriate clustering degree which is difficult to de-
termine, and it considers only the input data. The pro-
posed approach in this study does not require the 
transcendental knowledge of the plant; moreover, the 
structure and RBF centers can be synchronously opti-
mized by utilizing the input output data. 

GA is an optimization algorithm on the basis of 
Darwinism, which is very flexible. Depending on the 
features of the problem's solution space, there is a 
wide range of choices of fitness functions, the coding 
method, and the genetic operations, and all these fac-
tors affect the efficiency of genetic algorithm. This 
study is focused on the optimization of RBF network 
using the splicing system based GA. 

2.1  Coding method 
There are totally nr×n real number parameters to 

be optimized in the RBF network, which means one 
chromosome should be able to give nr×n real number 
values, where nr is the number of hidden nodes, n is 
the number of input nodes. Hence, binary coding 
chromosome will become very complex, and decimal 
coding chromosome is used. The structure of the lth 
chromosome is shown below 
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where l＝1, 2, …, L, L is the size of the population, nr 
is randomly produced between 1 and D, D is the 
maximum number of hidden nodes, the rows below nr 
are set to zeros and do not correspond to the center. 
The elements of lC  are computed using the follow-
ing equation: 

,min ,max ,min( )lj j j jc x r x x= + ⋅ −  

r1 , 1l n j n≤ ≤ ≤ ≤         (2) 
where r is the random number between 0 and 1, xj,min 
and xj,max is the minimum and the maximum values of 
input variables given in the problem. 

2.2  Fitness function 
As mentioned in the above sections, the draw-

backs of the general training methods of RBF network 
mainly lie in the absence of global optimization of 
both the approximation capability and the generaliza-
tion performance. To overcome these drawbacks, the 
choice of appropriate fitness function is crucial. 

In this study, the training procedures using splic-

ing system based GA are also preceded in two steps: 
First, the network structure and the basis function pa-
rameters are determined using the chromosomes of 
one population. Second, the final-layer weights are 
calculated using least squares method. As the direct 
least squares method cannot obtain the solutions for a 
bad-conditioned matrix, the output weights of the lth 
RBF neural network are calculated using the follow-
ing RLS method[17]: 
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(3) 
where 1≤k≤N, N is the maximum iterative time, Xr(k) 
is the r

ln  dimension output vector of the hidden layer, 

y(k) is the output of the actual system, K(k) is the r
ln  

dimension assistant vector, P(k) is the r
ln -by- r

ln  as-
sistant matrix. From Eq.(3), the computational com-
plexity of RLS solution for one iterative time is ob-

tained as ( )( )2
r
lO n . Hence, the complexity of RLS 

solution for the lth network weight vector is 

( )( )2
r
lO N n . 

In every generation of GA, the calculation of the 
output weights completes the formulation of L RBF 
networks, which can be represented by the pairs (C1, 
w1), (C2, w2),… and (CL, wL). To obtain good gener-
alization capability of RBF networks, the training data 
are divided into two groups, one group of data (X1, Y1) 
are used to calculate the final-layer weights, herein,  
N＝N1 (N1 is the number of the first group data), and 
the other group of data (X2, Y2) are utilized to evaluate 
the produced RBF networks in each generation. This 
scheme incorporates a testing procedure into the 
training algorithm, and guarantees good generalization 
performance of the RBF networks. However, to obtain 
good approximation capability of RBF networks, the 
network structure still becomes much complex. The 
structure complexity of RBF network conflicts with 
the generalization performance of neural networks. 
Therefore, the objective function considering both 
approximation capability and generalization perform-
ance is shown as follows. 
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Equation (4) expresses a compromise between the 
cost of modeling errors and the complexity of network 
structure[13], where 2̂ ( )Y t  is the output of RBF net-

work, N2 is the number of the second group data, r
ln  is 

the number of hidden nodes in the lth chromosome, η 
is the weight coefficient, and 0≤η≤1, the greater the 
η is, the stronger constraint of structure complexity 
would be considered. In this study, η is set as 1. 
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2.3  Operators in splicing system based GA 
Li et al.[13] summarized all possible operations 

of the DNA splicing systems, such as elongation op-
eration, deletion operation, absent operation, insertion 
operation, translocation operation, transformation op-
eration permutation operation, etc. Above operations 
actually include three basic operations: selection, 
crossover, and mutation. Other operations adopted by 
standard genetic algorithm (SGA) for special prob-
lems may improve the performance of SGA. 
2.3.1  Selection operator 

A set of individuals from the previous population 
must be selected for reproduction. This selection de-
pends on their fitness values. Individuals with good 
fitness values will most probably survive. There exist 
different types of selection operators, and in this study 
roulette wheel method is applied. The probability of 
the selected individual , P(Cl), is given by: 

1
( ) ( ) ( )

L

l l l
l

P f f
=

= ∑C C C           (5) 

where f(Cl) is the fitness function of the individual Cl, 
which is obtained by 1/J(Cl, wl). The roulette wheel is 
placed with L equally spaced pointers. A single spin of 
the roulette wheel will simultaneously pick all the 
members of the next population.As the computational 
complexity in Eq.(4) is O(N2), the complexity of se-
lection operator in one generation is O(LN2). 
2.3.2  Crossover operator 

The crossover operator is applied after selection 
with a probability (pc), which produces novel indi-
viduals, i.e., the novel structure and centers of RBF 
networks. It is executed between the currently selected 
individual Cl and its subsequent individual Cl+1, and 
yields the offspring chromosomes l'C , 1l'+C . As the 
number of input nodes (n) is fixed during the whole 
GA optimization process, the crossover point is cho-
sen between 1 and n. The procedure is demonstrated 
in Fig.1, which represents the single-point crossover. 
As the computational complexity of the plus operator 
for two D-by-n matrices is O(nD), in the worst case 
(all chromosome pairs execute crossover operator), 
the crossover operator in one generation requires 
O(LnD/2) computations. 
2.3.3  Mutation operator 

To effectively explore the search space, mutation 
is carried out. When the element of an individual is 

mutated with a probability (pm), it is replaced by a 
novel generated element in terms of Eq.(2). Similar 
complexity can be obtained as in the case of crossover 
operator, which is O(LnD). 
2.3.4  Splicing operators 

As shown in the description of the crossover op-
eration, different structures of RBF networks can be 
produced using this genetic operator. However, the 
operator may yield unreasonable RBF structure as 
shown in Fig.1, where most of the centers in row 5 
and row 6 of l'C  are zeros. Moreover, the crossover 
operator does not always modify the structure of the 
parent chromosomes. Therefore, enlightened by the 
DNA splicing system[13], two more genetic operators, 
i.e., elongation operator and deletion operator are in-
troduced. The elongation operator is used to add a 
novel node, and a random nonzero vector is created as 
described in Eq.(2), whereas the deletion operator is 
utilized to replace the existing unreasonable node 

( )1 2, , ,l l l l
i i i inc c c⎡ ⎤⋅ ⋅ ⋅⎣ ⎦c  with a zero vector. Suppose r is a 

random number between 0 and 1, when pe＞r, the 
elongation operator is executed. In the worst case (the 
number of hidden nodes in each chromosome add up 

to D), the complexity is ( )( )r1
L l
lO D n n
=

−∑ . The 

deletion operator is executed in the place of existing 
unreasonable node, which is determined by the num-
ber of zeros in the node centers. If the number of zeros 
goes beyond 2, the node is considered as an unrea-
sonable one and will be replaced by deletion operator. 
In the worst case (all nodes are deleted), the computa-

tional complexity is ( )1
L l

rlO n n
=∑ . 

2.4  The procedure of splicing system based GA 
The whole processes of the optimization of RBF 

networks are described in the following steps. 
Step 1: Generate the code for L chromosomes 

randomly in the search space. 
Step 2: Calculate the corresponding L weight 

vectors using RLS method and compute the perform-
ance index f for each individual. 

Step 3: Select the chromosomes for the genera-
tion of new chromosomes of the next generation ac-
cording to the selection operator.  

 
Figure 1  Schematic diagram of the crossover operation 
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Step 4: Choose a point randomly in the 
range ],1[ n , and exchange the codes of the pairs of 
chromosomes reproduced in Step 3. Repeat this for all 
the pcL/2 pairs of parents.  

Step 5: Implement mutation, replace the element 
of the current chromosome with the novel element 
generated by Eq.(2). 

Step 6: Execute the splicing operators, when the 
conditions are met. 

Step 7: Repeat Steps 2 to 6 until a termination 
criterion is met. This can be the set of maximum 
number of evolutions, or the set of minimum im-
provement of the best performance in successive gen-
erations. Moreover, Elitism, the inclusion of the best 
current set in the next population, is used throughout. 

Considering the complexity of one generation in 
the whole procedure, the basic operations of one gen-
eration being performed and the worst case complexi-
ties associated with it, are as follows: 

(1) L RLS solutions of weight vector is 

( )( )2
1 r1

L l
lO N n
=∑ ; 

(2) Selection operator is O(LN2); 
(3) Crossover operator is O(LnD/2), 
(4) Mutation operator is O(LnD); 
(5) Elongation operator is ( )r1( )L l

lO D n n
=

−∑ , and 

(6) Deletion operator is ( )r1
L l
lO n n
=∑ . 

As can be seen, the overall complexity of the 

above algorithm is ( )( )2
1 r1

L l
lO N n
=∑ . Once the 

number of nodes ( )r
ln  in the hidden layer increases, 

the computation significantly increases. Moreover, as 
the elitism strategy is adopted throughout the whole 
evolutionary procedure, the proposed GA can be com-
pletely converged[18]. 

3  SIMULATION RESULTS 
The performance of the proposed methodology is 

evaluated by applying it on two different systems: a 
nonlinear benchmark problem described by a discrete 
input output model and a nonlinear continuous stirred 
tank reactor. 

3.1  Simulation tests on a discrete input output model 
The discrete input output model is described as 

follows[19]. 
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The objective of this application is to utilize the 
proposed methodology to obtain suitable RBF con-
figuration for modeling the aforementioned system. 
The input of RBF model consists of two previous 
values of u and three previous values of y. 

( ) [ ( 1) ( 2) ( 1) ( 2) ( 3)]k u k u k y k y k y k= − − − − −x (7) 
The proposed methodology is compared with 

nearest neighbor clustering method and k-means clus-
tering method, which are used to train the centers of 
RBF network. 1000 data points are produced accord-
ing to Eq.(6), where the first 500 data points are used 
to optimize the RBF networks, and the other 500 data 
points are used to test the performance of the given 
RBF networks. The operational parameters used by 
the proposed algorithm can be seen in Table 1.  

Table 1  GA parameters used in the discrete model and 
CSTR examples 

Algorithm parameters Discrete example CSTR example

number of chromosomes L 30 30 

maximum of hidden nodes D 40 150 

number of generations G 150 150 

probability of crossover pc 0.8 0.8 

probability of mutation pm 0.1 0.1 

probability of elongation pe 0.01 0.01 

The simulation results obtained using the above 
two methods and the proposed GA are shown in 
Figs.2—5. Fig.2 shows the fitting curve of prediction 
values and real values using nearest neighbor cluster-
ing method, and the plots of the estimation error are 
depicted in Figs.3—5. As the nearest neighbor clus-
tering method was used for calculating the number of 
Gaussian functions and their corresponding function 
centers, σ should be set in advance. In Fig.3, σ is se-
lected as 0.2 using trial and error method. In Fig.4, the 
structure of RBF network is obtained using k-means 
clustering method with 20 clusters in terms of nearest 
neighbor clustering method, and σ is optimized using 
SGA. The number of hidden nodes in RBF network 
and the sum of absolute values of modeling error (S) 
using the above 3 methods are listed in Table 2. By 
comparing the results in Table 2 and the plots in  
Figs.3—5, it can be observed that the proposed ap-
proach minimizes the error to a small extent using an 
almost equivalent network structure. Moreover, it is 
needless to set the network parameter, such as σ to 0.2 
and clusters to 20. 

Table 2  Simulation results using the 3 different methods 

Methods Number of hidden nodes S 

nearest neighbor clustering 20 5.2876

k-means clustering & SGA 20 1.9928

proposed GA 22 0.2765



Chin. J. Ch. E. (Vol. 15, No.2) 

April, 2007 

244 

 
Figure 2  RBF network predictions using nearest 

neighbor clustering method 
- - - - neural predictions; —— real values 

 
Figure 3  Estimation of error using nearest 

neighbor clustering method 

 
Figure 4  Estimation of error using k-means 

clustering method and SGA 

 
Figure 5  Estimation error using proposed method 

3.2  Simulation tests on a continuous stirred tank 
reactor 

In this study, a nonisothermal CSTR process is 
considered, which is characterized using the following 
dynamic equations[20]: 

2
1 1 1

2
(1 )exp

1
xx x Da x
x ϕ

⎛ ⎞= − + − ⎜ ⎟+⎝ ⎠
 

2
2 2 1

2
(1 ) (1 )exp

1
xx x BDa x u
x

δ δ
ϕ

⎛ ⎞= − + + − +⎜ ⎟+⎝ ⎠
 (8) 

where x1 and x2 represent the dimensionless reactant 
concentration and reactant temperature, respectively, 
the physical parameters in the CSTR model equations 
are: Da, φ, B and δ, which correspond to the Damök-
hler number, the activated energy, heat of reaction, 
and heat transfer coefficient, respectively. The values 
of the system parameters can be obtained as: Da＝
0.072, φ＝20, B＝8, δ＝0.3. The control input, u, is 
the dimensionless temperature of the coolant. Because 
of the hard input constraints, u lies between －5 and 5. 

The objective is to build discrete dynamic models 
for predicting the state variable x1 and x2 using the 
input output data. The input vector of RBF network 
model is selected as follows.  

( ) [ ( 1) ( 2) ( 3) ( ) ( 1) ]k u k u k u k y k y k= − − − −x   (9) 
The proposed method is applied to optimize both 

the structure and the centers of RBF networks. As the 
problem is relatively complex, the number of hidden 
nodes obtained using nearest neighbor clustering is 
169 corresponding to σ＝0.3, which is too compli-
cated to be adopted. Hence, the results of the proposed 
algorithm are compared with another RBF identifica-
tion scheme, i.e., the improved S&A GA in Ref.[11]. 
The same radial basis function is adopted and the 
maximum number of hidden nodes is chosen as 150. 

For all simulations that follow, a set of 700 input 
output data points are created by randomly selecting the 
values of the input variable within the space [－5, 5]. 
The first 300 data are used in the training procedure to 
calculate the connection weights; the second 200 data 
are also used during the training process to evaluate 
the RBF network in each generation, whereas the re-
maining 200 data are used to test the efficiency of the 
ultimate RBF network. To test the generalization per-
formance of RBF networks, the values of the output 
variables are modified by adding random noise chosen 
from a uniform distribution at the interval [－3%, +3%] 
of the maximum values of the given variable. 

To evaluate the approximation capability and gen-
eralization performance, both the training error and 
testing error are compared as shown in Figs.6—9. Once 
the best structure and the centers of RBF network are 
optimized using GA according to the first and second 
data sets, the weights between the hidden layer and the 
output layer are updated using RLS method according 
to the second 200 data, the training errors are thus ob-
tained, and then, the weights are fixed and the testing 
errors are calculated in terms of the third 200 data. 
Figs.6 and 8 show the responses of RBF network pre-
dictor optimized using S&A GA with RLS method be-
cause the LS method in Ref.[11] could not always ob-
tain the inverse of the matrix. By comparing with Figs.7 
and 9 through RBF networks using S&A GA, training 
errors are obtained, which are smaller than that by the 
use of proposed GA, i.e., the sum of absolute values of 
the training error (S1) using S&A GA is smaller than 
that by the use of proposed GA, and they demand much 
more hidden nodes regardless of the complexity of the 
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network structure. Moreover, the sum of the absolute 
value of the testing error (S2) are quite similar, and 
some points of testing error in Figs.6 and 8 are smaller 
than that in Figs.7 and 9, which can also be testified 
using the maximum testing error (E2max). This may be 
caused by the over-fitting of RBF network with several 
hidden nodes. Table 3 shows that, as the number of 
hidden nodes using S&A GA is much more than that by 
the use of proposed GA, the runtime has markedly in-

creased, which is consistent with the analysis of com-
putational complexity. All algorithms are programmed 
by MATLAB7.01 using the computer with Celeron(R) 
CPU 2.4GHz and RAM 256MB. 

4  CONCLUSIONS 
This article presents a splicing system based GA 

for the optimization of both structure and centers of 
the RBF network model. This algorithm is based on 

 
Figure 6  Training and testing error for x1 

using S&A GA in RBF network 

 
Figure 7  Training and testing error for x1 

using proposed GA in RBF network 

 
Figure 8  Training and testing error for x2 using 

 S&A GA in RBF network 

 
Figure 9  Training and testing error for x2 

using proposed GA in RBF network 
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input-output data, and its objective function considers 
both approximation capability and generalization per-
formance of the RBF network. In this manner, the 
network simultaneously retains a reasonable size and 
effectively describes the whole system. Different 
simulations of benchmark problem and typical 
nonlinear dynamic CSTR system are performed to 
illustrate the effectiveness of the proposed method. 
The results show that this method can produce highly 
accurate prediction and keep a relatively simple net-
work structure. 

NOMENCLATURE 
B heat of the reaction 
Cl the lth n-by-D chromosome matrix 
ci the ith node center vector 
D maximum number of the hidden nodes 
Da Damökhler number 
E2max maximum of the testing error 
f the fitness function 
G maximum number of generations 
J the objective function 
K r

ln  dimension assistant vector in the lth network in 
RLS algorithm 

L size of the population 
N maximum iterative time 
n number of the input nodes 

r
ln  number of hidden nodes of the lth network 

P r
ln -by- r

ln  assistant matrix in the lth network in RLS 
algorithm 

pc probability of crossover 
pe probability of elongation 
pm probability of mutation 
r random number between 0 and 1 
S sum of the absolute value of the modeling error 
S1 sum of the absolute value of the training error 
S2 sum of the absolute value of the testing error 
u control input of the actual system 
wl weight vector of the lth RBF network 
Xr r

ln  dimension output vector of the hidden layer in 
RLS algorithm 

X1 N1 n-dimension input vectors 
X2 N2 n-dimension input vectors 
x input vector of the RBF network 
x1 reactant concentration 
x2 reactor temperature 
Y1 N1 output values of the system 
Y2 N2 output values of the system 
y output value of the actual system 
δ heat transfer coefficient 
σ width of the Gaussian function 
φ activated energy 
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