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ASYMPTOTIC CONFIDENCE INTERVALS BASED ON
M-PROCEDURES IN ONE- AND TWO-SAMPLE

MODELS

Taka-aki Shiraishi*

Asymptotic confidence intervals of location parameters are proposed in one-
and two-sample models. These are robust procedures based on scale-invariant M-
statistics. The one-sample procedures have the same robustness as Huber’s M-
estimators. Furthermore although the symmetry of the underlying distribution is
needed in the asymptotic theory of Huber’s M-estimators, the proposed procedures
do not demand the symmetry in the two-sample model. The asymptotic efficiency of
the proposed confidence intervals is given by a numerical integration.
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1. Introduction

Let X1, . . . , Xn be a random sample from an absolutely continuous distri-
bution function F ((x − µ)/σ). We denote the density of F (x) by f(x). For
convenience, we assume∫ ∞

−∞
tf(t)dt = 0 and

∫ ∞

−∞
t2f(t)dt = 1.(1.1)

Huber (1964) proposed solution θ̂ = θ of the equation:

n∑
i=1

ψ(Xi − θ) = 0(1.2)

as an estimator of µ and called it M-estimator, where ψ(x) is monotone increasing
and strictly negative (positive) for large negative (positive) values of x. Further-
more, he showed that the M-estimator given by taking ψ(x) = max{min{x, c0},
−c0} for some positive constant c0 has the minimax asymptotic variance among a
class of estimators defined by the solution of (1.2) through the function ψ(·) over
the class of distributions that the underlying distribution is in ε-contamination
neighborhood of a normal distribution. Huber (1981) reviewed further progres-
sive results of M-estimators. Shiraishi (2003) showed that (i) the M-estimator is a
little less efficient than the sample mean for the case where the underlying distri-
bution is normal, and that (ii) the M-estimator is more efficient than the sample
mean for the case where the underlying distribution is not normal. Jurečková and
Sen (1996) discussed robust confidence intervals based on M-statistics. However
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the statistics are not scale-invariant. Since the scale parameter of the underlying
distribution is unknown in the data analysis, we discuss robust confidence inter-
vals which are scale-invariant. The optimum choice of parameter for confidence
interval is discussed by using a Monte Carlo simulation.

Next let X1, . . . , Xn1 and Y1, . . . , Yn2 be two samples from populations with
absolutely continuous distribution functions F ((x−µ1)/σ) and F ((x−µ2)/σ) re-
spectively. Shiraishi (1996) proposed scale-invariant M-estimators for difference
of the two means δ = µ1 − µ2. The asymptotic property of the proposed estima-
tors was discussed. For the two-way layouts, Shiraishi (1993, 1998, 1999, 2001)
discussed scale-invariant M-estimators of location parameters. In the two-sample
model, we discuss asymptotic confidence intervals for δ, based on Shiraishi’s M-
estimators. The proposed statistics are scale-invariant. Furthermore although
the symmetry of the underlying distribution is needed in the asymptotic theory
of Huber’s M-estimators, the proposed procedures do not demand the symmetry
in the two-sample model.

Lastly the asymptotic efficiency of the proposed procedures relative to the
classical normal procedures is expressed, and it is calculated by numerical value
integration. It can be seen that the proposed procedures are more efficient than
the classical normal procedures except for the case where the underlying distri-
bution is normal. Especially, the proposed procedures are fairly efficient for the
asymmetric distributions in the two-sample model.

The present paper generalizes the confidence intervals stated in textbook of
Shiraishi (2003). Furthermore this gives the proof for the asymptotic results of
the textbook.

2. One-sample confidence interval

For function Ψ(x) defined on R and for constants ∆, ω and ρ > 0, let us put

W (∆, ω) =
n∑

i=1

{
Ψ

(
Xi − µ − ∆/

√
n

ρeω/
√

n

)
− Ψ

(
Xi − µ

ρ

)} /√
n + d(Ψ)∆/σ

(2.1)

+ e(Ψ)ω,

and

W ∗(∆, ω) =
n∑

i=1

{
Ψ

(
Xi − µ − ∆/

√
n

ρeω/
√

n

)
− Ψ

(
Xi − µ

ρ

)} /√
n + d(Ψ)∆/σ,

(2.2)

respectively, where

d(Ψ) = −
∫ ∞

−∞
Ψ(σx/ρ)f ′(x)dx,(2.3)
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and

e(Ψ) = −
∫ ∞

−∞
Ψ(σx/ρ)

{
1 +

xf ′(x)
f(x)

}
f(x)dx.(2.4)

We impose the following conditions.
(c.1); f(x) is symmetrical about 0, i.e.,

f(−x) = f(x).(2.5)

(c.2); f(x) have finite Fisher’s informations, i.e.,

0 <

∫ ∞

−∞

{
−f ′(x)/f(x)

}2
f(x)dx < ∞

and

0 <

∫ ∞

−∞

{
−1 − xf ′(x)/f(x)

}2
f(x)dx < ∞.

(c.3); Ψ(x) = Ψ1(x) + Ψ2(x), Ψ1(x) is nondecreasing and Ψ2(x) is nonin-
creasing. There exists a constant c such that Ψ(x) = Ψ(−c) for x ≤ −c; = Ψ(c)
for x ≥ c.

If (c.2) is satisfied, from Shiraishi (1989), the densities {
∏n

k=1[1/(σeω/
√

n)
f((xk−∆/

√
n)/(σeω/

√
n))]} are contiguous to the densities {

∏n
k=1[(1/σ)f(xk/σ)]}

as n tends to infinity.
Proceeding as in the proof of Lemma 3.1 of Shiraishi (1996), we get Theorem

2.1.

Theorem 2.1. Let (X1, . . . , Xn) have joint distribution function
∏n

k=1

F (xk/σ). Then under the conditions (c.1)–(c.3), we have, for any positive C1, C2,
and ε,

lim
n→∞

P

{
sup

|∆|<C1,|ω|<C2

|W (∆, ω)| > ε

}
= 0.

Furthermore, we get Corollary 2.2.

Corollary 2.2. Suppose that Ψ(x) is skew symmetrical, i.e., Ψ(−x) =
−Ψ(x). Then under the assumptions of Theorem 2.1, we have, for any positive
C1, C2, and ε,

lim
n→∞

P

{
sup

|∆|<C1,|ω|<C2

|W ∗(∆, ω)| > ε

}
= 0.

Proof. The condition (c.1) and the skew symmetry of Ψ(x) give e(Ψ) = 0.
Combining this fact with Theorem 2.1, we get the conclusion.

Also from a direct application of Corollary 2.2, we have Corollary 2.3.
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Corollary 2.3. Suppose that Ψ(x) is skew symmetrical. Then under the
assumptions of Theorem 2.1, we get, for any positive C1, C2, and ε,

lim
n→∞

P

{
sup

|∆1|<C1,|ω|<C2

|W ∗(∆1 + ∆2, ω)| > ε

}
= 0.

Let us put

TM (µ) =
n∑

i=1

ψ

(
Xi − µ

σ̂n

)
,

where σ̂n is a consistent estimator of some constant ρ > 0 satisfying the condition
(c.4).

(c.4);
√

n(σ̂n − ρ) = Op(1).
We refer to the solution µ̂n of TM (µ) = 0 as M-estimator. We impose the

condition (c.5) on ψ(·).
(c.5); ψ(x) is nondecreasing and skew symmetrical. There exists a con-

stant c such that ψ(x) = ψ(−c) for x ≤ −c; = ψ(c) for x ≥ c. d(ψ) =
−

∫ ∞
−∞ ψ(σx/ρ)f ′(x)dx > 0.
Let us define the solution θ of the following equation by θ̂n.

n∑
i=1

ψ

(
Xi − µ

ρ

) /√
n =

√
nd(ψ)(θ − µ)/σ.

By using Corollary 2.2 given by Ψ(x) = ψ(x), along the lines on the proofs of
Lemma 4.1–4.5 of Jurečková (1971), we can show

√
n|µ̂n − θ̂n| ≈ 0,

where An ≈ Bn denotes An − Bn
P−→ 0 and P−→ denotes convergence in proba-

bility. Therefore we get

√
n(µ̂n − µ) ≈ (σ/d(ψ))

n∑
i=1

ψ

(
Xi − µ

ρ

) /√
n

L−→ N
(
0, c(ψ, f)σ2/d2(ψ)

)
,

(2.6)

where

c(ψ, f) =
∫ ∞

−∞
ψ2(σx/ρ)f(x)dx.(2.7)

Let us put

η̂n = {TM (µ̂n − ∆/
√

n) − TM (µ̂n + ∆/
√

n)}/(2
√

n∆).
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Then by applying Ψ(·) = ψ(·) and ∆2 = ∆ in Corollary 2.3, we get

P{|W ∗(
√

n(µ̂n − µ) + ∆,
√

n(σ̂n − ρ))| > ε}(2.8)
≤ P{|W ∗(

√
n(µ̂n − µ) + ∆,

√
n(σ̂n − ρ))| > ε,√

n|µ̂n − µ| < C1,
√

n|σ̂n − ρ| < C2}
+ P{

√
n|µ̂n − µ| ≥ C1} + P{

√
n|σ̂n − ρ| ≥ C2}

≤ P

{
sup

|∆1|<C1,|ω|<C2

|W ∗(∆1 + ∆, ω)| > ε

}

+ P{
√

n|µ̂n − µ| ≥ C1} + P{
√

n|σ̂n − ρ| ≥ C2}.

By choosing C1, C2 and n sufficiently large for any positive ε and ε0, Corollary
2.2, the condition (c.4), and (2.6) give

(the right hand side of (2.8)) ≤ ε0.

Hence, we have

n∑
i=1

{
ψ

(
Xi − µ̂n + ∆/

√
n

σ̂n

)
− ψ

(
Xi − µ

ρ

)} /√
n + d(ψ){

√
n(µ̂n − µ) − ∆}/σ

P−→ 0

and

n∑
i=1

{
ψ

(
Xi − µ̂n − ∆/

√
n

σ̂n

)
− ψ

(
Xi − µ

ρ

)} /√
n + d(ψ){

√
n(µ̂n − µ) + ∆}/σ

P−→ 0,

which imply

η̂n
P−→ d(ψ)/σ.(2.9)

Moreover, let us put

ĉn(ψ, f) =
1
n

n∑
i=1

ψ2

(
Xi − µ̂n

σ̂n

)
.

Then by applying Ψ(x) = {ψ(x)}2 to Theorem 2.1, we get

n∑
i=1

ψ2

(
Xi − µ̂n

σ̂n

) /√
n

≈
n∑

i=1

ψ2

(
Xi − µ

ρ

) /√
n −

√
nd(ψ2)(µ̂n − µ)/σ −

√
ne(ψ2)(log σ̂n − log ρ).
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Hence µ̂n
P−→ µ and σ̂n

P−→ ρ imply

ĉn(ψ, f) ≈
n∑

i=1

ψ2

(
Xi − µ

ρ

) /
n

P−→ c(ψ, f).(2.10)

From (2.6), (2.9) and (2.10), we get
√

nη̂n√
ĉn(ψ, f)

(µ̂n − µ) L−→ N(0, 1),

where L−→ denotes convergence in law.
Hence we can obtain Theorem 2.4.

Theorem 2.4. Suppose that the conditions (c.1), (c.2), (c.4) and (c.5) are
satisfied. Then (

µ̂n −
√

ĉn(ψ, f)z(α/2)√
nη̂n

, µ̂n +

√
ĉn(ψ, f)z(α/2)√

nη̂n

)

is an asymptotically distribution-free 100(1 − α) percent confidence interval for
µ, where z(α/2) is the upper 100× (α/2) percentile of the standard normal distri-
bution.

Theorem 2.4 implies that the asymptotic confidence interval does not depend
on ∆. However we must decide the value of ∆. Hence a simulation study for the
goodness of η̂n estimating d(ψ)/σ is done, based on

ψ(x) = max{min{x, 1.399},−1.399}(2.11)

and

σ̂n =
1

Φ−1(0.75)
· med{|X1 − med(X)|, . . . , |Xn − med(X)|},(2.12)

where med(X) denotes the sample median among {X1, . . . , Xn}, and Φ(x) de-
notes the standard normal distribution function. From Table 5.2 of Shiraishi
(2003), this score function ψ(x) is approximately the optimum choice which
gives the minimax asymptotic variance on 0.05-contaminated normal neighbor-
hood {f(x) = 0.95φ(x) + 0.05h(x) : φ(x) is a standard normal density and h(x)
is any symmmetric density}. Welsh (1986) showed that σ̂n satisfies (c.4) for
ρ = σF−1(0.75)/Φ−1(0.75). Hence σ̂n is a consistent estimator of ρ. Further
discussion for σ̂n is seen in Ando and Kimura (2003) and Rousseeuw and Croux
(1993). The underlying distributions F (x) chosen here are normal; N(0, 1), lo-
gistic distribution, contaminated normal; 0.95N(0, 5/7) + 0.05N(0, 45/7), and
double exponential. η̂n depends on ∆. From (2.9), η̂n is a consistent estimator
for η = d(ψ)/σ. We simulate the mean squared error of η̂n (MSE) given by
E{(η̂n − η)2} in Table 1 for n = 20, 30, 50 and ∆ = 3.5, 7.0 (0.5). The values of
the MSE are estimated by Monte-Carlo simulation from 2, 000 samples. From
Table 1, we may decide ∆ = 5.5 as the best choice.
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Table 1. The simulated mean squared error of η̂n.

(i) F (x) = normal

n = 20 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0225 0.0209 0.0179 0.0157 0.0167 0.0184 0.0200 0.0244

n = 30 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0195 0.0154 0.0148 0.0131 0.0126 0.0128 0.0137 0.0145

n = 50 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0103 0.0102 0.0098 0.0092 0.0089 0.0089 0.0082 0.0098

(ii) F (x) = logistic

n = 20 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0307 0.0233 0.0209 0.0218 0.0217 0.0261 0.0315 0.0377

n = 30 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0238 0.0198 0.0183 0.0172 0.0163 0.0170 0.0180 0.0221

n = 50 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0154 0.0147 0.0133 0.0134 0.0118 0.0110 0.0114 0.0123

(iii) F (x) = contaminated normal

n = 20 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0265 0.0252 0.0219 0.0217 0.0264 0.0325 0.0371 0.0467

n = 30 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0239 0.0195 0.0184 0.0172 0.0177 0.0192 0.0224 0.0255

n = 50 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0140 0.0134 0.0126 0.0122 0.0119 0.0123 0.0122 0.0149

(iv) F (x) = double exponential

n = 20 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0408 0.0345 0.0343 0.0399 0.0455 0.0593 0.0735 0.0897

n = 30 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0388 0.0320 0.0284 0.0277 0.0281 0.0321 0.0384 0.0490

n = 50 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0294 0.0268 0.0235 0.0226 0.0201 0.0188 0.00206 0.0225

3. Two-sample confidence interval

We suppose (1.1). Then we get E(Xi) = µ1, E(Yj) = µ2, and V (Xi) =
V (Yj) = σ2. We do not impose the symmetry on f(x).

Let us put

W1(∆1 + ∆2, ω) =
√

n

n1

n1∑
i=1

{
Ψ

(
Xi − µ1 − (∆1 + ∆2)/

√
n

ρeω/
√

n

)
− Ψ

(
Xi − µ1

ρ

)}

+ d(Ψ)(∆1 + ∆2)/σ + e(Ψ)ω,
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W2

(
∆1 −

n1

n2
∆2, ω

)

=
√

n

n2

n2∑
j=1

{
Ψ

(
Yj − µ2 − (∆1 − n1

n2
∆2)/

√
n

ρeω/
√

n

)
− Ψ

(
Yj − µ2

ρ

)}

+ d(Ψ)
(

∆1 −
n1

n2
∆2

) /
σ + e(Ψ)ω,

and

W (∆1,∆2, ω) = W1(∆1 + ∆2, ω) − W2

(
∆1 −

n1

n2
∆2, ω

)
,

where n = n1 + n2, d(Ψ) and e(Ψ) are defined by (2.3) and (2.4) respectively.
We add the condition
(c.6); 0 < limn→∞ n1/n = λ < 1.
Then from the discussion similar to the proof of Theorem 2.1, we can derive

Lemma 3.1.

Lemma 3.1. Suppose that (c.2), (c.3) and (c.6) are satisfied. Then we get,
for positive C1, C2, C3, and ε,

lim
n→∞

P

{
sup

|∆1|<C1,|∆2|<C2,|ω|<C3

|W1(∆1 + ∆2, ω)| > ε

}
= 0,

and

lim
n→∞

P

{
sup

|∆1|<C1,|∆2|<C2,|ω|<C3

∣∣∣∣W2

(
∆1 −

n1

n2
∆2, ω

)∣∣∣∣ > ε

}
= 0.

Hence from a direct application of Lemma 3.1, we have Theorem 3.2.

Theorem 3.2. Suppose that the assumptions of Lemma 3.1 are satisfied.
Then we get, for positive C1, C2, C3, and ε,

lim
n→∞

P

{
sup

|∆1|<C1,|∆2|<C2,|ω|<C3

|W (∆1,∆2, ω)| > ε

}
= 0.

Let us put

T ∗
M (θ) =

1
n1

n1∑
i=1

ψ

(
Xi − µ̃ − θ

σ̂n

)
− 1

n2

n2∑
j=1

ψ


Yj − µ̃ +

(
n1
n2

)
· θ

σ̂n


 ,

where µ̃ = (n1X̄ + n2Ȳ )/n and X̄ =
∑n1

i=1 Xi/n1 and Ȳ =
∑n2

j=1 Yj/n2.
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We can derive the solution θ̆n of T ∗
M (θ) = 0. Shiraishi (2003) proposed

δ̆n = (1 + n1/n2) · θ̆n as a robust estimator of δ = µ1 − µ2. σ̂n is a consistent
estimator of some constant ρ satisfying (c.4). By applying Ψ(x) = ψ(x) to
Theorem 3.2, we get

0 =
√

nTM (θ̆n)

≈
√

n

n1

n1∑
i=1

{
ψ

(
Xi − µ1

ρ

)
− ψ̄

}
−

√
n

n2

n2∑
j=1

{
ψ

(
Yj − µ2

ρ

)
− ψ̄

}

−
√

nd(ψ)(δ̆n − δ)/σ,

where ψ̄ =
∫ ∞
−∞ ψ(σx/ρ)dF (x).

Hence we have
√

n(δ̆n − δ) ≈ (σ/d(ψ))

×


√

n

n1

n1∑
i=1

{
ψ

(
Xi − µ1

ρ

)
− ψ̄

}
−

√
n

n2

n2∑
j=1

{
ψ

(
Yj − µ2

ρ

)
− ψ̄

}


L−→ N(0, c∗(ψ, f)σ2/{λ(1 − λ)d2(ψ)}),(3.1)

where c∗(ψ, f) =
∫ ∞
−∞{ψ(σx/ρ) − ψ̄}2f(x)dx. Let us put

η̆n =
√

n{TM (θ̆n − ∆/
√

n) − TM (θ̆n + ∆/
√

n)}
/ {

2
(

1 +
n1

n2

)
∆

}
.

Then by applying Ψ(x) = ψ(x) to Theorem 3.2, as in the proof of (2.9), we get

η̆n
P−→ d(ψ)/σ.(3.2)

Let us put

c̆n(ψ, f)

=
1
n


 n1∑

i=1

{
ψ

(
Xi − X̄

σ̂n

)
− ψ̄(X, Y )

}2

+
n2∑

j=1

{
ψ

(
Yj − Ȳ

σ̂n

)
− ψ̄(X, Y )

}2

 ,

where

ψ̄(X, Y ) =
1
n




n1∑
i=1

ψ

(
Xi − X̄

σ̂n

)
+

n2∑
j=1

ψ

(
Yj − Ȳ

σ̂n

)
 .

Then by the discussion similar to the proof of (2.10), we find

c̆n(ψ, f) P−→ c∗(ψ, f).(3.3)

From (3.1)–(3.3), we get
√

n1n2η̆n√
nc̆n(ψ, f)

(δ̆n − δ) L−→ N(0, 1).

Hence we can obtain Theorem 3.3.
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Theorem 3.3. Suppose that the conditions (c.2), (c.4), (c.5) and (c.6) are
satisfied. Then(

δ̆n −
√

nc̆n(ψ, f)z(α/2)√
n1n2η̆n

, δ̆n +

√
nc̆n(ψ, f)z(α/2)√

n1n2η̆n

)

is an asymptotically distribution-free 100(1 − α) percent confidence interval for
δ.

Theorem 3.3 implies that the asymptotic confidence interval does not depend
on ∆. However we must decide the value of ∆. Hence a simulation study for the
goodness of η̂n estimating d(ψ)/σ is done, based on ψ(x) given by (2.11) and

σ̂n =
√

π√
2 · n

n∑
i=1

|Zi|,(3.4)

where we define Z1, . . . , Zn by

Zi =

{
Xi − X̄ (i = 1, . . . , n1)
Yi−n1 − Ȳ (i = n1 + 1, . . . , n).

(3.5)

Table 2. The simulated mean squared error of η̆n.

(i) F (x) = normal

n1 = n2 = 20 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0104 0.0089 0.0088 0.0082 0.0083 0.0081 0.0086 0.0091

n1 = n2 = 30 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0068 0.0063 0.0061 0.0057 0.0058 0.0055 0.0061 0.0061

(ii) F (x) = logistic

n1 = n2 = 20 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0137 0.0127 0.0119 0.0113 0.0106 0.0103 0.0106 0.0111

n1 = n2 = 30 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0099 0.0087 0.0086 0.0079 0.0078 0.0076 0.0075 0.0079

(iii) F (x) = contaminated normal

n1 = n2 = 20 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0154 0.0132 0.0130 0.0123 0.0125 0.0134 0.0140 0.0150

n1 = n2 = 30 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0102 0.0094 0.0090 0.0086 0.0091 0.0092 0.0097 0.0095

(iv) F (x) = double exponential

n1 = n2 = 20 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0222 0.0205 0.0189 0.0177 0.0162 0.0151 0.0150 0.0154

n1 = n2 = 30 ∆ 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

MSE 0.0162 0.0143 0.0141 0.0129 0.0124 0.0120 0.0114 0.0115
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Hence σ̂n is a consistent estimator of ρ = (
√

πσ/
√

2)
∫ ∞
−∞ |x|dF (x). σ̂n de-

fined by (3.4) satisfies (c.4) from the relation

√
n(σ̂n − ρ) ≈




n1∑
i=1

(√
π√
2
|Xi − µ1| − ρ

)
+

n2∑
j=1

(√
π√
2
|Yj − µ2| − ρ

)


/
√

n

+
√

n

∫ ∞

−∞
|x|f ′(x)dx

{
(X̄ − µ1) + (Ȳ − µ2)

}
/σ.

The underlying distributions F (x) chosen here are normal; N(0, 1), logistic
distribution, contaminated normal; 0.95N(0, 5/7) + 0.05N(0, 45/7), and double
exponential. η̂n depends on ∆. From (3.2), η̆n is a consistent estimator for η =
d(ψ)/σ. We simulate the mean squared error of η̆n (MSE) given by E{(η̆n−η)2}
in Table 2 for n = 20, 30 and ∆ = 3.5, 7.0 (0.5). The values of the MSE are
estimated by Monte-Carlo simulation from 2, 000 samples. From Table 2, we
may decide ∆ = 5.0 as the best choice.

4. Asymptotic efficiency

For two sequences of 100(1−α) percent confidence intervals CI1n = (L1n, U1n)
and CI2n = (L2n, U2n), we assume

(U2n − L2n)2/(U1n − L1n)2 P−→ γ,

where γ is a nonnegative constant. Then we define the asymptotic relative effi-
ciency (ARE) of CI1n relative to CI2n by

ARE(CI1n, CI2n) = γ.

(i) One-sample case: CR1 denotes the robust confidence interval of Theorem
2.4 based on ψ(x) and σ̂n defined by (2.11) and (2.12) respectively. The normal
theory confidence interval is given by

CR2 =
(

X̄n −
σz(α/2)√

n
, X̄n +

σz(α/2)√
n

)
,

where X̄n denotes the sample mean. Then by using (2.9) and (2.10), ARE(CR1,
CR2) is equal to

d2(ψ)/c(ψ, f) =
{∫ ∞

−∞
ψ(σx/ρ)f ′(x)dx

}2 / ∫ ∞

−∞
ψ2(σx/ρ)f(x)dx.(4.1)

Let us put ξ = Φ−1(0.75)/F−1(0.75). Then using integration by parts, (4.1)
becomes

ARE(CR1, CR2) =
2ξ2{F (c/ξ) − 0.5}2

c2 − 2ξ2

∫ c/ξ

0
xF (x)dx

.
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The values of ARE(CR1, CR2) are given in Table 3. The underlying distribu-
tions chosen here are normal; N(0, 1), logistic distribution, contaminated normal;
0.95N(0, 5/7) + 0.05N(0, 45/7), and double exponential. From Table 3, we can
see that the proposed confidence interval is more efficient than the normal theory
confidence interval except for the case where the underlying distribution is nor-
mal. Under the normal distribution, the proposed confidence interval is nearly
efficient to the normal theory confidence interval.

Table 3. The asymptotic relative efficiency of the proposed confidence interval relative to the

normal theory confidence interval in one-sample model.

F (x) ARE(CR1, CR2)

normal 0.955

logistic 1.090

contaminated normal 1.205

double exponential 1.381

(ii) Two-sample case: CR∗
1 denotes the robust confidence interval of Theorem

3.3 based on ψ(x) and σ̂n defined by (2.11) and (3.4) respectively. The normal
theory confidence interval is given by

CR∗
2 =

(
X̄ − Ȳ −

√
nσz(α/2)√

n1n2
, X̄ − Ȳ +

√
nσz(α/2)√

n1n2

)
.

Then by using (3.2) and (3.3), ARE(CR∗
1, CR∗

2) is equal to

d2(ψ)/c∗(ψ, f)(4.2)

=
{∫ ∞

−∞
ψ(σx/ρ)f ′(x)dx

}2 / ∫ ∞

−∞

{
ψ(σx/ρ) − ψ̄

}2
f(x)dx.

Let us put ξ∗ = (
√

π/
√

2)
∫ ∞
−∞ |x|dF (x). Then using integration by parts, (4.2)

becomes

ARE(CR∗
1, CR∗

2)

=
ξ∗{F (c/ξ∗) − F (−c/ξ∗)}2

2c

∫ c/ξ∗

−c/ξ∗
F (x)dx − 2ξ∗

∫ c/ξ∗

−c/ξ∗
xF (x)dx − ξ∗

{∫ c/ξ∗

−c/ξ∗
F (x)dx

}2 .

The values of ARE(CR∗
1, CR∗

2) are given in Table 4. The underlying distribu-
tions chosen here are normal; N(0, 1), logistic distribution, contaminated normal;
0.95N(0, 5/7)+0.05N(0, 45/7), double exponential, exponential, and asymmetric
contaminated normal; 0.95N(−0.1, 0.760642) + 0.05N(1.9, 9 × 0.760642). From
Table 4, we can see that the proposed confidence interval is more efficient than
the normal theory confidence interval except for the case where the underlying
distribution is normal. Especially its efficiency is remarkably larger than 1 for
the asymmetric underlying distributions. Under the normal distribution, the
proposed confidence interval is nearly efficient to the normal theory confidence
interval.
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Table 4. The asymptotic relative efficiency of the proposed confidence interval relative to the

normal theory confidence interval in two-sample model.

F (x) ARE(CR∗
1 , CR∗

2)

normal 0.955

logistic 1.088

contaminated normal 1.208

double exponential 1.307

asymmetric contaminated normal 1.417

exponential 1.536
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