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Modeling and Control of a Continuous Stirred Tank Reactor Based on 
a Mixed Logical Dynamical Model* 
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Abstract  A novel control strategy for a continuous stirred tank reactor (CSTR) system, which has the typical 
characteristic of strongly pronounced nonlinearity, multiple operating points, and a wide operating range, is initiated 
from the point of hybrid systems. The proposed scheme makes full use of the modeling power of mixed logical dy-
namical (MLD) systems to describe the highly nonlinear dynamics and multiple operating points in a unified 
framework as a hybrid system, and takes advantage of the good control quality of model predictive control (MPC) 
to design a controller. Thus, this approach avoids oscillation during switching between sub-systems, helps to relieve 
shaking in transition, and augments the stability robustness of the whole system, and finally achieves optimal (i.e. 
fast and smooth) transition between operating points. The simulation results demonstrate that the presented ap-
proach has a satisfactory performance. 
Keywords  continuous stirred tank reactor, mixed logical dynamical model, multiple-operating point, state transi-
tion, hybrid system 

1  INTRODUCTION 
Continuous stirred tank reactors (CSTRs) are 

common chemical devices and also important techno-
logical sectors of the chemical process industry, which 
exhibit highly nonlinear behaviors and usually have 
wide operating ranges. In addition, nowadays, CSTRs 
often have to operate in multiple operating regions to 
manufacture several different products to realize 
flexible manufacture, and enhance competition ability. 
Hence, a very important control objective is to mini-
mize the product transition time, and thereby reduce 
the amount of off-specification product produced dur-
ing transition in such situation[1]. However, the 
nonlinear behavior of CSTRs becomes more signifi-
cant during these product transitions as compared to 
local operation around a steady state. As a result, 
CSTR control provides unique opportunities for em-
ploying novel transition control technique. 

In the past decade, considerable research efforts 
have been made for the modeling and control of nonlin-
ear systems, and quite a few control strategies have been 
proposed, such as linearization at a local steady state[2], 
exact feedback linearization[3], gain-scheduling[3], 
multi-model self-adaptive control (MMAC)[4], multi- 
model control[1,2], and so on. Linearization at a local 
steady state requires a relatively stable operating point, 
and is not appropriate for widely nonlinear systems. 
The exact feedback linearization calls for an exact 
model of the controlled system and all the states of the 
system to be measurable, which are often impossible in 
practice. Gain-scheduling approximates a nonlinear 
system by a series of time-invariant linear sub-systems 
around a group of given operating points. Control 
performances cannot be guaranteed if the system 
strays off those set points. As for multi-model adap-
tive control, it is difficult to decide the number of 
models that can span the whole operation region. 
Multi-model control has a hidden disadvantage of os-

cillating during switching between linear sub-systems. 
This article studies the modeling and control of a 

CSTR system based on the hybrid system theory. A 
mixed logical dynamical (MLD) model based model 
predictive control (MPC) approach is proposed for the 
CSTR system with high nonlinearity, multiple operat-
ing points, and a wide operating range. The CSTR 
system explained in this article is a nonlinear system 
that can be approximated by piecewise linear func-
tions. The CSTR is modeled as a hybrid system in the 
MLD form for three main reasons. First, the MLD 
formulation captures the wide nonlinearity of the 
CSTR system, and describes the hybrid feature of 
multiple operating points of the CSTR system in a 
general framework. Second, it allows defining the 
optimal control problem in a convenient way. Third, 
an effective HYSDEL software package is available to 
obtain an MLD model conveniently[5], and a piece-
wise affine (PWA) system can be converted to an 
MLD representation directly and conveniently. 

2  CONTINUOUS STIRRED TANK REACTOR 
SYSTEM  

Consider a standard two-state CSTR with an 
exothermic irreversible first-order reaction A→B, as 
shown in Fig.1. CA is the concentration of resultant A; 
T is the temperature of the reactor; qc is the flow rate 
of the coolant; Tcf is the temperature of the coolant. CA 
is the output of the CSTR system, and Tcf is the input. 

The dynamics of the system can be described by 
the following nonlinear equations[1]: 
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Figure 1  Continuous stirred tank reactor 

where, x1 is the resultant concentration CA, x2 is the 
reactor temperature T, and u is the coolant temperature 
Tcf. Let x＝[x1, x2]T, the other parameters are as fol-
lows: 
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Under the nominal operating conditions, say u＝
0, the reactor exhibits three steady states (operating 
points):  
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And the ranges of the variables are as follows:  
[0,1] [0,6]; [ 2,2]; :[0,1] [0,6].u R∈ ∈ −× ×x  

3  MLD SYSTEMS AND MPC TECHNIQUE 
3.1  MLD systems 

MLD systems are described by interacting physi-
cal laws, logic rules, and operating constraints in linear 
dynamic equations subject to linear mixed-integer ine-
qualities. Proposition logic is used to represent logic 
rules, heuristic knowledge, and logic constraints in the 
system, and is then transformed into linear inequalities. 
Detailed transforming rules and the set-ups of MLD 
formulation can be found in Ref.[6]. Mixed logical 
systems are a versatile framework to model various 
classes of systems, among which there are linear hy-
brid systems, finite state machines, some classes of 
discrete event systems, constrained linear systems, 
and nonlinear systems whose nonlinearities can be 
expressed or suitably approximated by piecewise lin-
ear functions[6]. 

The general form of MLD hybrid systems as in-
troduced in Ref.[6] is: 

1 2 3( 1) ( ) ( ) ( ) ( )k k k k k+ = + + +x Ax B u B B zδ  
(2a) 

1 2 3( ) ( ) ( ) ( ) ( )k k k k k= + + +y Cx D u D D zδ    (2b) 

2 3 1 4 5( ) ( ) ( ) ( )k k k k  + + +≤E E z E u E x Eδ    (2c) 

where, k ∈Z , { }0,1 lc
nn∈ ×x  denotes the states of the 

system, { }0,1 lc
mm∈ ×u  denotes the inputs and 

{ }0,1 lc
pp∈ ×y  denotes the outputs, with both real 

and binary components. Furthermore, { }0,1 lγ∈δ  and 
cγ∈z  represent the binary and auxiliary continuous 

variables, respectively. All constraints including both 
operating constraints and those transformed from 
propositional logic are summarized in the inequality 
(2c). Note that although the description (2c) seems to 
be linear, nonlinearity is hidden in the integrality con-
straints over the binary variables. 

3.2  MPC based on MLD model 
The main idea of MPC is to use a model of the 

system to predict the future evolution of the system in 
a fixed prediction horizon with the measurements of 
the system. Based on this prediction at each time step 
k, the controller selects a sequence of future command 
inputs through an optimization procedure, which aims 
at minimizing a suitable cost function and enforces 
fulfillment of the constraints. Then, only the first 
sample of the optimal sequence is applied to the plant 
at time step k, and at time step k+1, the whole optimi-
zation procedure is repeated with new plant measure-
ments. This online replanning provides the desired 
feedback control action. 

Let k be the current time step, N is the prediction 
horizon, and x(k) is the current state. ( | )i kx  is the 
state predicted at time step k i+  according to x(k) and 
input sequence { }1 ( ), ( 1), , ( 1)N

k k k k N− + ⋅ ⋅ ⋅ + −u u u u , 
and ( | ), ( | ), ( | )i k i k i k    z yδ  are similarly defined, 

1, ,i N= ⋅ ⋅ ⋅ . Consider the following optimal control 
problem[6]: 
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(3b) 
where, 0, 1, ,5j j

' j=   = ⋅ ⋅ ⋅≥Q Q  are the weighted ma-

trix, and e e e e e, , , ,x u z yδ  are the values of the steady 
point that satisfy Eq.(2). 

It is known that the control sequence solved from 
Eqs.(3a), (3b) can guarantee the MLD system (2) sta-
bility. The stability proof is detailed in Ref.[6]. 

This optimal problem can be cast as a mixed in-
teger programming problem, which is solved online. 
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When P＝1 or ∞ , the problem is turned into a mixed 
integer linear programming (MILP) problem, and 
when P＝2, it is turned into a mixed integer quadratic 
programming (MIQP) problem. By solving the MILP 
or MIQP problem at each time step k, the optimal 
control sequence u(k), u(k+1), ···, u(k+N－1) can be 
computed. According to the moving horizon philoso-
phy, only the first sample u(k) is applied to the system, 
and all the rest are disregarded. At the next time step 
k+1, the whole procedure is repeated. 

Suppose P＝2 in the performance index J in 
Eq.(3a); the MIQP problems will have to be solved 
online to obtain the control law. When compared to 
MILP problems, however, MIQP problems indicate 
onerous and slow computation, and troublesome pa-
rameter tuning. On the other hand, it is more natural to 
express the performance indexes of the practical con-
trol problems in linear objective functions[7]. There-
fore, ∞-norm linear performance index is chosen as 
our objective function of the CSTR system.  

The earlier proposed multi-model control strat-
egy for nonlinear systems has hidden disadvantages. It 
is difficult to schedule the linear subsystems coordi-
nately and may incur oscillation while switching be-
tween different subsystems. However, the MLD model 
introduced in this article covers all the linear subsys-
tems in a unified framework, which helps to relieve 
the oscillation during switching, and augments the 
stability robustness of the whole system[7]. 

4  THE MLD MODEL OF THE CSTR SYSTEM 
4.1  Linearization 

The full state space R:[0,1]×[0,6] is divided into 
three sub-regions R1:[0.78,1]×[0,6]; R2:[0.35,0.78]× 
[0,6]; R3:[0,0.35]×[0,6], and each has a steady point 
in it. By linearizing the nonlinear system (1) around 
each steady point in each sub-region and discretizing 
it with sampling period Ts＝0.1s, the PWA formula-
tion of the CSTR system is as follows: 
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k ∈Z it is the short form of kTs. 
Obviously, R1∩R2＝∅ , R1∩R3＝∅ , R2∩R3＝∅ , 

and R1∪R2∪R3＝R. System (4) covers the whole 
operating space of system (1), and it is a proper ap-
proximation of system (1). According to the definition 
and expounding of well-posedness in Ref.[6], system 
(4) is completely well-posed. In fact, a model derived 
from a real system is well posed. Well-posed and bounded 

PWA systems can be rewritten as MLD systems[6]. 

4.2  Transforming into MLD form 
Since system (4) is completely well-posed, it can 

be cast as an MLD model. Two logic variables δ1 and 
δ2 are introduced, and defined as: 
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Let [ ]1 2( ), ( )k kδ δ=d ; then, when the system works 
in region R1, the logic vector [0,0]=d ; when in R2, 

[0,1]=d , and when in R3, [1,1]=d . 
Thus, Eq.(4) can be rewritten as: 
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Introduce 6 auxiliary variables 1( )z k , 2 ( )z k , 3 ( )z k , 

4 ( )z k , 5 ( )z k , 6 ( )z k  and define them as: 
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The operating constraints are as follows: 

[ ] [ ]T T0 0 1 6≤ ≤x           (8) 

2 2u− ≤ ≤                (9) 
Transform Eqs.(5), (7)—(9) into inequalities accord-

ing to the rules in Ref.[6]. Let [ ]T
1 2( ) ( ), ( )k k kδ δ=δ , 

[ ]T
1 2 3 4 5 6( ) ( ), ( ), ( ), ( ), ( ), ( )k z k z k z k z k z k z k=z . Based 

on these inequalities, Eq.(6) and Eq.(4) can be rewrit-
ten as: 
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where, A＝0, B1＝0, B2＝0, 3
1 0 1 0 1 0
0 1 0 1 0 1

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
B , 

C＝[1 0]. Ei(i＝1,···,5) of Eq.(10) is omitted due to 
lack of space. There are 35 inequalities in total in-
cluding operating constraints and inequalities trans-
formed from propositional logic. Eq.(10) is the MLD 
model of the CSTR system described in Eq.(1). 

The above procedure of obtaining an MLD form 
of Eq.(10) can be automatized, since there exists an 
effective software package HYSDEL-Hybrid System 
Description Language[5]. 
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Since the PWA system (4) is completely 
well-posed, the MLD system (10) derived from it is 
also completely well-posed[6]. Namely, once x(k) and 
y(k) are assigned, the values of δ(k) and z(k) are 
uniquely determined by the inequality (2c)[6]. Fur-
thermore, ( 1)k +x  and y(k) are uniquely solved by 
(2a) and (2b). This property that is usually verified 
while representing real plants in the MLD form, plays 
an important role in simulations[5]. Indeed, for com-
pletely well-posed systems, given the pair [x(k), u(k)], 
it is possible to verify it by determining the values of 
δ(k) and z(k) by solving a Mixed-Integer Feasibility 
Test. This test can be done very efficiently using the 
Branch and Bound algorithm[5]. 

5  SIMULATIONS AND RESULT ANALYSES 
Under the condition ( ) 0u k ≡ , the CSTR system 

starts from each of the three steady points. The simu-
lation results of the MLD and PWA models are in 
Fig.2. (The horizontal coordinate represents the num-
ber of sampling period; k＝20 represents the 20th 
sampling period). 

By comparing the subplots on the left with those 
on the right, it can be seen that the trajectories are en-
tirely the same. It is confirmed that the MLD model 
(10) equals the PWA model (4). When the starting 
point is operating point xs1 or xs3, the states stay 
around the operating point, and remain steady. How-
ever, the system switches from sub-region R2 to R1, 
when it evolves from operating point xs2. Thus, the 
conclusions can be drawn that the operating points xs1 
and xs3 are widely asymptotically stable, while xs2 is 
locally stable. 

Now, the control strategy presented in Section 3 
is adopted to control the CSTR system with P =∞. 
First, consider the transition between operating points. 
Choose xs3 as the initial point, xs1 as the final point, 
and then solve the optimal problem (3) subject to 
Eq.(10). The resulting optimal trajectories of the 

CSTR system are shown in Fig.3. 
Figure 3 depicts the fast and smooth transition 

from steady point xs3, passing by xs2, eventually to xs1. 
The parameters are N＝3, Q1＝0, Q2＝0, Q3＝0.5I6,  
Q4＝0.95I2, Q5＝0.85 (In is an n×n identity matrix). 

 
Figure 3  Evolution from xs3 by xs2 to xs1 

On the whole, the transition in Fig.3 is rather fast 
and smooth, regardless of whether it is from sub-region 
R3 to sub-region R2 or from R2 to R1. The states of the 
system do not oscillate during the transition transient 
between two linear sub-systems. This is because the 
controller is designed and optimized in a general MLD 
framework, which makes the linear sub-systems 
well-scheduled and work coordinately. Hence, besides 
the stability of the system being guaranteed, the tran-
sition time is minimized, which is our important ob-
jective. The middle sub-figure of Fig.3 depicts the 
control sequence. Since u(k)∈[－2, 2], it restricts the 
control input from being too large or too small, and 
this is why u(k) in Fig.3 varies within [－2, 2]. 
Meanwhile, to achieve optimal transition, the control-
ler will enforce the biggest command (absolute value) to 
the CSTR at the very beginning of every transition stage. 

It is known from Eq.(4) that the control input has 

 
(a) Evolution of the MLD model            (b) Evolution of the PWA model 

Figure 2  Evolution of the MLD and PWA models, starting from three operating points respectively with u≡ 0 
—— x1; - - - - x2 
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an opposite effect on state x1 to x2. That is, when u is 
negative, it increases x1 but decreases x2, yet when u is 
positive, it decreases x1 but increases x2. Meanwhile, u 
has a bigger force on x2 than on x1. 

In the upper subplot of Fig.3, when the system 
starts from xs3＝(0.2353, 4.705) at k＝0 and transfers 
to xs2＝(0.5528, 2.7517), x1 increases from 0.2353 to 
0.5528 and x2 decreases from 4.705 to 2.7517. In the 
middle subfigure of Fig.3, u decreases to －2 at the 
very beginning, and stays unchanged in the first 20 
sample intervals so as to transfer the states as quickly 
as possible, and reduce the transition time. To avoid 
overshoot and to make the states arrive at xs2 
smoothly, u increases to a big positive value rapidly, 
and then decreases gradually to zero, when the system 
approaches the steady state xs2. Now, look at the state 
variables in the upper subplot. During the first 20 
steps, the states transfer to xs2 swiftly. While getting 
near xs2, the states slow down, and arrive steadily. 
Evidently, this is consistent with the command input. 

Near k＝15, the system transfers from R3 to R2, 
and the logic variables change from [1, 1] to [0, 1] in 
the lower subplot, which agrees with the definition in 
Eq.(5). Since the control input has a greater force on 
x2 than x1, x2 varies faster than x1. x2 reaches the 
steady value 2.7517 at the 20th sample period with an 
almost 0 static error, while x1 reaches its steady value 
0.5528 at the 30th step with a bigger static error 
0.18% (although not big in fact). The transition is then 
complete. Thereafter, the system works steadily 
around the operating point xs2. 

At the 50th sample period, transition from xs2 to 
xs1 begins, which declares that x1 will continue to 
increase from 0.5528 to 0.856, while x2 will continue 
to decrease from 2.7517 to 0.886. And a similar 
smooth and swift transition as from R3 to R2 recurs. 
Henceforth, the system remains at xs1. 

From the simulation result analyses mentioned 
above, it can be concluded that the MPC technique 
based on an MLD model optimizes the control variable 
systematically and synthetically in a unified MLD 
framework and controls the system to transfer from one 
operating point to another quickly and smoothly, and 
minimizes the transition time on the premise of stability 
of the widely nonlinear system, without oscillating 
during switching from one sub-model to another. 

Second, consider the transition between an oper-
ating point and a non-operating point. Fig.4 shows the 
evolution from 0 [0.8, 0.5]x =   to operating point xs2. 
The parameters are N＝3, Q1＝0, Q2＝0, Q3＝0.65I6, 
Q4＝I2, and Q5＝0.9. It is clear that the evolution in 
Fig.4 is different from that in Fig.3. In this case, x1 
decreases from 0.8 to 0.5528, yet x2 increases from 0.5 
to 2.7517. In the middle subplot, u rises quickly from 
0 to +2 and remains at the value of +2 in the first 38 
steps to transfer the system states at its best, mini-
mizes the time cost, and achieves optimal transition. 
In the upper subplot, the states vary rapidly during this 
time. At the 29th sample interval, the system comes 
into the sub-region R1 to sub-region R2. In the mean-
time, in the lower subplot, the logic vector d changes 
from [0, 0] to [0, 1]. After the 40th step, the system 

approaches the steady point xs2, and meanwhile, the 
control input quickly falls to a big negative value from 
+2, and then slowly rises to zero. Thus, no overshoot 
happens. Thereafter, the system arrives at xs2 steadily, 
and it can also be found in the upper subplot that x2 is 
faster than x1 to reach the steady value with a smaller 
static error. 

From Fig.4, it is apparent that the transition from 
a non-steady point to a steady point is also swift and 
smooth. It demonstrates again that MPC based on 
MLD models has a good control performance, and can 
implement rapid and smooth transition on the premise 
of the stability of widely nonlinear system. 

6  CONCLUSIONS 
CSTRs systems are inherently highly nonlinear, 

which makes the control task nontrivial. Besides, the 
requirement of optimal transition between operating 
points stimulates the need to develop flexible operat-
ing strategies. This article proposes an MLD based 
model predictive control approach for the CSTR sys-
tems. The MLD model, which originates from indus-
trial practice and has a strong application background, 
can capture the nonlinear and hybrid feature of the 
CSTR system. The control law is synthesized in a uni-
fied MLD framework by a moving horizon technique, 
and can thus obtain optimal transition without oscilla-
tion on the premise of wide range stability of the 
nonlinear system as shown in the simulations. 

However, there exist some drawbacks of the 
proposed method. For example, the MLD model of a 
system is not unique. If different auxiliary continuous 
and logic variables are introduced, a different MLD 
model will be obtained. Also, the biggest handicap is 
the computational complexity of the mixed integer 
programming (MIP) problems (both MIQP and MILP), 
which increases exponentially with the number of 
logic variables. More efforts are required to solve 
these problems.  

NOMENCLATURE 
CA  the concentration of resultant A, the 

output of the CSTR system 
CAf feed concentration of CSTR 

 
Figure 4  Transition from non-operating point x0 to 

operating point xs2 
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d       [ ]1 2( ), ( )k kδ δ=  d  
In n×n identity matrix 
N prediction horizon 
n, m, p, r dimension of x, u, δ, z 
P index of norm, P＝1 refers to 2-norm, 

P＝inf, refers to inf-norm 
Qj weighted matrix 
qc the flow rate of the coolant 
R the range of the state variables 
R1, R2, R3 sub-regions of the whole CSTR region 
T  the temperature of the reactor 
Tcf the temperature of the coolant, the in-

put of the CSTR system 
Tf feed temperature 
u(k), ···, u(k+N－1) the optimal control sequence 

1N
k

−u  Short form of { ( ), ( 1), ,k k + ⋅ ⋅ ⋅u u  
}( 1)k N+ −u  

xe, ue, δe, ze, ye values of the steady point 
x(i|k) state predicted at time k+i according to 

x(k) and input sequence { 1
0
N −u } 

xs1, xs2, xs3 steady points (operating points) of the 
CSTR 

z1(k), ···, z6(k) auxiliary continuous variables 
δ(i|k), z(i|k), y(i|k) are similarly defined as x(i|k) 
δ1(k), δ2(k) auxiliary logic variables 

Subscripts 
c continuous variable set 
l binary variable set 
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