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Abstract 

Constructing non-supersingular elliptic curves for pairing-based cryptosystems have 
attracted much attention in recent years. The best previous technique builds curves 
with ρ = lg(q)/lg(r) ≈ 1 (k = 12) and ρ = lg(q)/lg(r) ≈ 1.25 (k = 24). When k > 12, 
most of the previous works address the question by representing r(x) as a cyclotomic 
polynomial. In this paper, we propose a new method to find more pairing-friendly 
elliptic curves with arbitrary embedding degree k by certain special polynomial 
families. The new method generates curves with lg(q)/lg(r) ≈ 1 (k ≥ 48) by random 
forms of r(x). Different representations of r(x) allow us to obtain many new families 
of pairing-friendly elliptic curves. In addition, we propose a equation to illustrate how 
to obtain small values of ρ by choosing appropriate forms of discriminant D and trace 
t. Numerous parameters of certain pairing-friendly elliptic curves are presented with 
support for the theoretical conclusions.     
 
Keywords: pairing-friendly elliptic curves, special polynomial families, cyclotomic 
polynomials 

1. Introduction 

 
After the propositions of identity-based encryption scheme [12] and short signature 
scheme [13], paring-based cryptography has attracted significant attention in modern 
public-key cryptography. Over pairing-based cryptosystems, Elliptic Curve Discrete 
Logarithm Problem (ECDLP) on supersingular elliptic curves can be reduced to 
Discrete Logarithm Problem (DLP) over an extension field by Weil Pairing [10] or 
Tate Paring [15]. Although supersingular elliptic curves provides high efficiency for 
pairing-based cryptosystems [19, 20], since these curves only can be built when 



embedding degree k ≤ 6 [11], researchers have explored other form of curves, e.g. 
non-supersingular elliptic curves. 
 

In 2001, Miyaji, Nakabayashi and Takano [8] first proposed a method to find 
suitable non-supersingular elliptic curves for pairing-based cryptosystems. They 
discussed the problem from the point of view of tract t. Scott and Barreto [1] extended 
the method of Miyaji et al. and found more suitable non-supersingular elliptic curves 
when k ∈ [3, 4, 6]. Gallbraith, Mckee and Valenca [3] summarized the method 
proposed by early researchers and presented some appropriate families of group 
orders of such elliptic curves when embedding degree k ≤ 6. Duan, Cui and Chan [5] 
extended the work of Gallbraith et al. by proposing the idea of effective polynomial 
families of pairing-friendly elliptic curves.  

 
 For larger values of k, Brezing and Weng proposed an alternative method to find 

these curves [7]. They used t − 1 as a kth root of unity modulo prime r. They 
generated the curves with best performance so far as lg(q)/lg(r) = 1.25 (k = 24). 
Dupont, Enge and Morain [16] proposed another method for finding the suitable non-
supersingular elliptic curves. Most of the curves they found had lg(q)/lg(r) ≈ 2. In 
their method, tract t was chosen large enough to make 4q – t2 small as to produce 
effective values of D. Barreto and Naehrig [17] generated non-supersingular elliptic 
curves with lg(q)/lg(r) = 1 when embedding degree k = 12. They presented the best 
curves with prime group order known so far. Their work was actually generated by a 
special polynomial family of q(x), t(x) and r(x), where 4q(x) – t2(x) can be factorized 
as one square polynomial multiplying with one constant number. In the most recent 
work, Murphy and Fitzpatrick [4] extended the work of Brezing et al. and generated 
pairing-friendly elliptic curves over prime fields with discriminant D > 4 for arbitrary 
values of k.    

 
In this paper we propose a new method for finding more pairing-friendly elliptic 

curves. Compared to the previous works, we explicitly present the special polynomial 
families for generating elliptic curves suitable for pairing-based cryptosystmes with 
arbitrary values of embedding degree k. We also illustrate the relation to obtain small 
values of ρ by choosing appropriate forms of discriminant D, trace t and embedding 
degree k. Our method allows to find more pairing-friendly elliptic curves with higher 
security (k ≥ 48) and more efficiency (ρ ≤ 1.2) by various representations of r(x). In 
fact, the work of Brezing et al. [17] and Murphy et al. [4] can be represented as a 
special case of our new method, since they implement r(x) only as cyclotomic 
polynomials in their work. 

 
This paper is organized as the follows. In Sections 2 we give a description of the 

mathematics background. In Section 3 we present the new method and discuss the 
difference compared with previous works. In Section 4 certain special polynomial 
families of pairing-friendly elliptic curves with random forms of r(x) and arbitrary 
embedding degree k are presented. In addition, we propose the idea to construct 



curves with ρ = lg(q)/lg(r) ≈ 1 for large values of k ≥ 48. We draw the conclusion in 
Section 5. The parameters of some pairing-friendly elliptic curves, based on the 
proposed polynomial families, are presented in Appendix (a), (b), (c) and (d) over 
prime fields. 
 

2. Mathematics Background 

 
To find suitable elliptic curves for pairing-based cryptosystems, we need to solve 
certain equations. Assume the cofactor h is an integer, r is the order of a point as a big 
prime number and t is the trace of an elliptic curve, we want to find an elliptic curve 
over Fq, where q = p is a prime number (we only consider the prime fields in this 
paper). ECDLP on such elliptic curves can be reduced to DLP over Fq

k, where k is the 
smallest integer satisfying certain conditions, defined as the embedding degree [1]. 
The following equations determine whether such an elliptic curve exists or not. 
 

In a strict sense, to find the suitable elliptic curves for pairing-based cryptosystems 
[10], we need  

r | qk – 1  (1) 
However, under a mild condition [6], we just consider q as a kth root of unity modulo r 
[7]. Meanwhile, since k is the smallest integer satisfying r | qk – 1, equation (1) should 
be presented as r | qk – 1 and qi – 1 is not divisible by r when 0 < i < k. From [14] we 
have 

dr =Φk(q) (2) 
where d is an integer and Φk(q) is the cyclotomic polynomial of q with embedding 
degree k and  

d’r ≠ Φi(q), 0 < i < k  (3) 
Besides these conditions we need 

hr = q + 1 – t  (4) 
where h is an integer. Combining equation (2) and (4) together, we obtain 

sr = Φk(t – 1)  (5) 
where s is also an integer [1]. Since k is the smallest integer, we have 

s’r ≠ Φi(t – 1), 0 < i < k (6) 
By Hasse’s bound we need 

|t| ≤ 2q1/2  (7) 
With all the above equations, we compute the elliptic curve by solving 

DV2 = 4q – t2  (8) 
where D is chosen by certain conditions [2]. 
 

All the above equations aim for finding suitable elliptic curves for pairing-based 
cryptosystems in integer fields. But it is impossible to search the whole integer fields 
to obtain the suitable solutions. We should transfer the problem into polynomial fields. 
When analyzing in polynomial fields, we assume q, t, r as q(x), t(x) and r(x); 



meanwhile h, d, s, D and V should be considered as h(x), d(x), s(x), D(x) and V(x). 
Duan et al. [5] have proposed a lemma which illustrates the fact that in polynomial 
fields, equation (2) and (5) are already both sufficient and necessary conditions. Thus 
for finding suitable elliptic curves for pairing-based cryptosystems in polynomial 
fields, the equations (2, 4, 5, 7, 8) are required and rewritten as: 

d(x)r(x) =Φk(q(x)) (9) 
h(x)r(x) = q(x) + 1 – t(x) (10) 
s(x)r(x) =Φk(t(x) – 1) (11) 
|t(x)| < 2q(x)1/2  (12) 

 D(x)V(x)2 = 4q(x) – t2(x)  (13) 
 

How to build pairing-friendly elliptic curves by finding the polynomial families 
satisfying equation (9) to (13) were presented in [1, 3, 5, 8, 17]. Most of the work 
concentrated on embedding degree k ≤ 6. Only one special polynomial family whe k 
= 12 was found by Barreto et al. [17], which built the best curves with prime group 
order known so far.  

 
For larger values of k, the polynomial families of q(x), t(x) and r(x) will not satisy 

all the conditions from equation (9) to (13). Only some of the parameters will 
maintain the polynomial relations and the other ones will only be valid for certain x as 
x0. Brezing and Weng [7] proposed a method to find these curves. In their method, in 
polynomial fields, t(x) and r(x) will satisfy equation (11) by representing t(x) – 1 as a 
kth root of unity modulo r(x). The irreducible polynomial r(x) is always set as a 
cyclotomic polynomial. q and DV2 will not have the polynomial relations. They can 
not be represented as polynomials in cyclotomic fields. But all the parameters are 
satisfying equations (9) - (13) for a specific x0. In the next section, we will present a 
new method for finding more pairing-friendly elliptic curves with arbitrary embeddin 
degree k by some special polynomial families. The new method allows r(x) to be an 
irreducible polynomial with different forms.  
 

3. A New Method for Producing More Pairing - Friendly Elliptic 

Curves with Special Polynomial Families 

 
In this section the math evidence for the new method is provided. As proposed in [7], 
from equation (4) and (8), difference between 4q and t2 can be obtained after finding t 
and r: 

DV2 = 4q – t2 = 4(hr + t – 1) – t2 (14) 
Represented in polynomial fields, equation (16) can be rewritten as 
 DV2(x) =4h(x)r(x) – (t(x) – 2)2 (15) 



where D is a square-free integer. This is a standard polynomial family of pairing-
friendly elliptic curves proposed in [1, 3, 5, 8, 17] with the satisfaction to equation (9) 
- (13). In polynomial fields, choose r(x) and t(x) as 
 s(x)r(x) =Φk(t(x) – 1) 
This can be viewed as 
 r(x) |Φk(t(x) – 1) (16) 
We should mention that polynomial families are hard to find for large values of k (e.g. 
k > 12) when equation (15) is satisfied. To find more curves, we choose suitable r(x) 
and t(x) satisfying equation (16). Then for a specific x0, assuming equation (15) is 
satisfied, this can be presented as 
 DV2(x0) =4h(x0)r(x0) – (t(x0) – 2)2 (17) 
Dividing D from both sides of equation (17), we have 
 V2(x0) = [4h(x0)r(x0) / D] – [t(x0) – 2]2 / D (18) 
where 4h(x0)r(x0) and [t(x0) – 2]2 divides D. Assuming [t(x0) – 2]2 | 4Dh(x0), equation 
(18) can be rewritten as 
 V2(x0) = {[t(x0) – 2]2 / D2 }{[4Dh(x0)r(x0) / (t(x0) – 2)2] – D} (19) 
Here we use a technique to consider 4Dh(x0)/ (t(x0) – 2)2 as a polynomial h’(x) for 
certain x0. This means for a specific x0, 4Dh(x0) divides [t(x0) – 2]2 and it can be 
represented in polynomial fields as a polynomial h’(x). Then equation (19) can be 
represented as  
 V2(x0) = {[t(x0) – 2]2 / D2 }{h’(x)r(x) – D} (20) 
Thus if h’(x)r(x) – D can be viewed as a square polynomial S2(x), in equation (20) all 
parameters have square forms. If h’(x)r(x) – D = S2(x), for any suitable x0, equation 
(20) is satisfied and can be written as 
 V2(x0) = {[t(x0) – 2]2 / D2 }S2(x) (21) 
This equation represents a modified polynomial family. For the specific x0, we have  
 DV2(x0) = {[t(x0) – 2]2 / D }S2(x0) (22) 
Representing equation (14) into equation (22), we obtain 
 q = [t2(x0) + DV2(x0)] / 4 (23) 
We choose x0 as to satisfy that r(x0) is a prime integer. Then for the specific x0, if q = 
[t2(x0) + DV2(x0)] / 4 is a prime integer, we find all the suitable parameters with 
satisfaction to a pairing-friendly elliptic curve.  
 

The main idea can be presented as the following procedures. First we choose a 
specific r(x) and trace polynomial t(x) with r(x) |Φk(t(x) – 1). Then after choosing a 
suitable discriminant D, we find polynomial families h’(x) satisfying that h’(x)r(x) – 
D = S2(x) as a square polynomial. In the following steps, we choose a suitable x0 with 
r(x0) is a prime integer and test whether q = {t2(x0) + [(t(x0) – 2)2 / D ]S(x0)} / 4 is also 
a prime integer. Is q is according to the conditions, we have found the suitable 
parameters of a pairing-friendly elliptic curves. In the procedure, 4Dh(x0) / (t(x0) – 2)2 
= h’(x), D | 4h(x0) and D | [t(x0) – 2]2 are three hidden conditions since we represent 
h’(x) as a polynomial. 

 



The main step in the new method is to find a suitable discriminant D and special 
polynomial families h’(x), r(x), S(x) with h’(x)r(x) – D = S2(x). The other work to test 
prime r(x0) and q(x0) is trivial. When r(x) is taken as a standard cyclotomic 
polynomial, finding suitable S(x) is equal to find the polynomial representations of (-
D)1/2 in cyclotomic fields. This is because 

S2(x) + D ≡ 0 mod r(x) (24) 
In such circumstances, our method is same with the methods proposed by Brezing and 
Weng [7] since equation (24) can be rewritten as  
 DV2(x) = {[t(x) – 2]2 / D}S2(x) (25) 
where S(x) is the representation of (-D)1/2 in cyclotomic fields. This equation is same 
as the main relation proposed in [7]. Thus the work of Brezing et al. is a special case 
of our new method since in their method r(x) is only taken as a standard cyclotomic 
polynomial. Our proposed method ignores the restrictions imposed on the form of r(x). 
By our method more pairing-friendly elliptic curves are found by various forms of 
r(x). 
 

Based on the above analysis, we propose a new algorithm for finding the suitable 
pairing-friendly elliptic curves.  
 
Algorithm 1 
Input: embedding degree k, qk ≥ 21024 and r ≥ 2160 
Output: x0, q(x0), t(x0), r(x0), DV2(x0) 

1. Choose an irreducible polynomial r(x). 
2. Compute trace polynomial t(x) by Φk(t(x) – 1) ≡ 0 mod r(x). 
3. Choose a polynomial family h’(x) and a suitable discriminant D with h’(x)r(x) 

– D = S2(x), where S2(x) is a square polynomial. 
4. Find a specific x0 with r(x0) is a prime integer and q(x0) = {t2(x0) + S2(x0) [(t(x0) 

– 2)2 / D] } / 4 is also a prime integer. 
5. Output x0, q(x0), t(x0), r(x0), DV2(x0) 
6. Establish the elliptic curve by CM method with the above parameters. 
7. If no suitable parameters are found, repeat from step 1 

 
Because the key procedure of the new method is to find special polynomial 

families h’(x), r(x) and S2(x), in the next section we will list some polynomial families 
with different embedding degree k, ρ = lg(q)/lg(r) and r(x). 

 

4. Special Polynomial Families for Producing More Pairing - 

Friendly Elliptic Curves 

 
In this section we will present some special polynomial families obtained by the new 
method. These families can be used to generate more pairing-friendly elliptic curves 



with different forms of r(x), small values of ρ and arbitrary values of embedding 
degree k.  

4.1 Special Polynomial Families with Small Values of ρ 

The new method indicates that the value of ρ is related to the choice of r(x), t(x) and 
h’(x). It is because ρ = lg(q)/lg(r) = degree(q(x)) / degree(r(x)). Since DV2(x0) = 
{[t(x0) – 2]2 / D }{h’(x)r(x) – D}, we have degree(q(x)) = degree(DV2(x)) ≈ 
2degree(t(x)) + degree(h’(x)) + degree(r(x)). Thus the value of ρ = degree(q(x)) / 
degree(r(x)) = [2degree(t(x)) + degree(h’(x)) + degree(r(x))] / degree(r(x))  = 1 + 
[2degree(t(x)) + degree(h’(x))] / degree(r(x)). It is to say that ρ will always be larger 
than 1. This can also be deduced from the conditions used in the new method. Since 
we assume [t(x0) – 2]2 | 4Dh(x0) in the algorithm, when ρ = 1, h(x) will be a constant 
integer as h. Then [t(x0) – 2]2 | 4Dh will not be satisfied since |t2(x0)| > 4Dh. When 
the degree of h’(x) is 0 (h’(x) is a constant number), ρ has the smallest values as 1 + 
2degree(t(x)) / degree(r(x)). Thus for finding ρ close to 1, h’(x) should be chosen as a 
constant number and t(x) should be chosen with smallest degrees.  
 

Table 1 presents all the different special polynomial families when embedding 
degree k ∈ [12, 14, 15, 16] over cyclotomic fields. All the results satisfy the nice 
representations of (-D)1/2 in the work of Murphy and Fitzpatrick [4]. 

 
 h’(x) r(x) D S2(x) t(x) ρ 

k = 12 x2 + 1 Φ12(x) 1 x6 x + 1 2 
k = 12 4 Φ12(x) 3 (2x2 – 1)2 x + 1 1.5 
k = 14 4x2 + 4x + 8 Φ14(x) 7 (2x4 + 2x2 – 2x + 1)2 x + 1 1.66 
k = 15 4x2 + 4x + 4 Φ15(x) 3 (2x5 + 1)2 x + 1 1.5 
k = 15 4x6 + 4x5 – 4x4 + 

8x3 + 4x2 + 24 
Φ15(x) 15 (2x7 – 2x5 + 4x4 – 2 

x3 + 2x2 + 4x – 3) 
x + 1 2 

Table 1: Special polynomial families when k = 12, 14, 15 
 
In Table 2 we tabulate all the possible special polynomial families when k = 28. 

When r(x) is fixed as a cyclotomic polynomial with embedding degree k, h’(x) and t(x) 
should be chosen with smallest degrees. Thus t(x) always should be taken as x + 1 if 
r(x) = Φk(x). Although in cyclotomic fields we can modulo S2(x0)[t(x0) - 2)]2 / D by 
Φk(x0) to a smaller integer; from the deductions of section 3 we can find that the best 
choice is still to set t(x) as x + 1. Murphy et al. [4] implemented t(x) as x3 + 1 with 
standard cyclotomic polynomial r(x) when k = 28. They found the elliptic curves with 
ρ ≈ 1.8. We will present some pairing-friendly elliptic curves when k = 15, 28 in 
Appendix (a). These curves have smaller values of ρ compared to the work of 
Murphy et al. [4] when representing t(x) as x + 1. 

 
 h’(x) r(x) D S2(x) t(x) ρ 

k = 28 x2 + 1 Φ28(x) 1 x14 x + 1 1.3 



k = 28 4x4 + 4x2 + 8 Φ28(x) 7 (-2x8 – 2x4 + 2x2 – 1)2 x + 1 1.5 
Table 2: Special polynomial families when k = 12, 14, 15 

 
Brezing et al. [7] and Murphy et al. [4] have implemented r(x) as Φik(x) for a 

given embedding degree k, where i is an integer. In fact, such techniques can not 
obtain elliptic curves with smaller values of ρ. First we analyze the situation when k is 
an even number. When r(x) is taken as Φik(x), we have degree(r(x)) = degree(Φik(x)) 
= i × degree(Φk(x)); meanwhile, we have i × degree(t(x)) and i × degree(h’(x)). Thus 
the value of ρ is not related to the choice of cyclotomic polynomials since the degrees 
of r(x), t(x) and h’(x) are increased with same multiples. When k is an odd number, 
the analysis is similar. Brezing et al. [7] have found the best curves with ρ ≈ 1.25, k = 
24. They took r(x) as Φ48(x) and t(x) as x2 + 1. In Table 3, we tabulate some 
polynomial families when k = 24 which illustrates that ρ ≈ 1.25 is also obtained for k 
= 24 when t(x) = x + 1, r(x) = Φ24(x). These polynomial families prove that the value 
of ρ has no relation with the choice of the degrees of Φk(x) and t(x). 

 
 h’(x) r(x) D S2(x) t(x) ρ 

k = 24 4 Φ24(x) 3 (2x4 – 1)2 x + 1 1.25 
k = 24 4 Φ48(x) 3 (2x8 – 1)2 x2 + 1 1.25 
k = 24 x2 + 2 Φ24(x) 2 (x5 + x3 – x)2 x + 1 1.5 
k = 24 x4 + 2 Φ48(x) 2 (x10 + x6 – x2)2 x2 + 1 1.5 

Table 3: Special polynomial families when k = 24 

4.2 Special Polynomial Families with Arbitrary Values of k 

As finding the special polynomial families, we notice a fact which can be 
implemented to construct pairing-friendly elliptic curves with arbitrary embedding 
degree k. When k is an even integer, Φsk(x) will have the same form as Φk(x) where s 
= 2i (i is a positive integer). The only difference is that x in Φk(x) will be represented 
as xs in Φsk(x). Meanwhile, h’(x) will also have the same property. Thus if we find a 
special polynomial family for embedding degree k, we can easily obtain the families 
with the same forms for embedding degree sk (s = 2i). The only work is to represent x 
as xs, where s is a positive integer power of 2.  
 

The beauty of this property is to find curves with larger embedding degree k with 
smaller ρ. It is because ρ = 1 + [2degree(t(x)) + degree(h’(x))] / degree(r(x)). When 
degree of r(x) is increased with same multiples of h’(x), if the degree of t(x) is not 
changed, the value of ρ will be decreased. When h’(x) is a constant integer, the 
situations are more easily to analyze. Since if we always choose t(x) as x + 1, the 
values of ρ equals 1 + [2 / degree(r(x))]. By choosing larger values of embedding 
degree k, the degree of r(x) will increase, then the value of ρ will be decreased (but it 
can not reach 1 for ever). 

 
Koblitz and Menezes [18] have suggested to find pairing-friendly elliptic curves 



with k = 2i3j as large as possible. In Table 4, we tabulate the polynomial families 
when k = 12, 24, 48, 96. The value of ρ is decreased close to 1 when taking larger 
values of k. Since in these families the value of h is always 4, the small values of ρ is 
obtained when k = 96. When k = 48, we construct the parameters of certain paring-
friendly elliptic curves with ρ ≈ 1. 125. When k = 96, we construct the parameters of 
certain paring-friendly elliptic curves with ρ ≈ 1. 06. These curves have better 
performance compared to previous works, since they have smaller values of ρ for 
larger values of k. The results are presented in Appendix (b). 

 
 h’(x) r(x) D S2(x) t(x) ρ 

k = 12 4 Φ12(x) 3 (2x2 – 1)2 x + 1 1.5 
k = 24 4 Φ24(x) 3 (2x4 – 1)2 x + 1 1.25 
k = 48 4 Φ48(x) 3 (2x8 – 1)2 x + 1 1.12 
k = 96 4 Φ96(x) 3 (2x16 – 1)2 x + 1 1.06 

Table 4: More special polynomial families when k = 12, 24, 48, 96 
 
With this technique we could find any pairing-friendly elliptic curves with 

arbitrary embedding degree k, e.g. finding curves with larger k than 96 is not a hard 
task. But since the suitable values of x become sparse when k is increased, finding 
parameters of elliptic curves with the essential security level (r is a 160 bits prime) [9] 
is more difficult with large k. This is the reason we find the parameters of an elliptic 
curve with r as a 416 bits prime integer when k = 96.  In addition, it is still not aware 
how large the embedding degree k should be for a pairing-friendly curve with best 
performance. (To find curves with prime r close to 160 bits integer for larger values of 
k, e.g. k = 96, we should use some other techniques. This question will be further 
discussed in section 4.4.) 
 

4.3 Special Polynomial Families with Different Forms of r(x) 

 
Brezing and Weng [7] had successfully found pairing-friendly elliptic curves with 
arbitrary embedding degree. But the limitation of their work was that r(x) was only 
represented as the standard cyclotomic polynomial. It was because their method was 
to derive kth roots of unity and polynomial representations of (-D)1/2 in the cyclotomic 
fields. They did not provide any explanations to the circumstances when r(x) was 
taken as an arbitrary irreducible polynomial. The work of Murphy and Fitzpatrick [4] 
was also based on the standard representations of r(x) as Φk(x).  
 

Our method ignores the limitation imposed on the forms of r(x) since we only 
need to find h’(x) and D with h’(x)r(x) – D = S2(x). For this point, r(x) can be any 
irreducible polynomials satisfying r(x) |Φk(t(x) – 1). This allows us to find much more 
ellitpc curves by various representations of r(x). In Table 5 we tabulate more special 
polynomial families with different r(x) when k = 12, 14 and 28. The trace t(x) is taken 



with degree as small as possible to obtain desired values of ρ. In Appendix (c) we 
generate certain parameters of pairing-friendly elliptic curves by the polynomial 
families listed in Table 5. 

 
k r(x) t(x) D ρ 
12 2197x4 – 1352x3 + 299x2 – 28x + 1 13x – 1 3 1.5 
14 20511149x6 – 30413083x5 + 18803919x4 – 6205739x3 + 

1153069x2 – 114381x + 4733 
29x – 6 7 1.67 

14 x12 + x11 – x9 – x8 + x6 – x4 – x3 + x + 1 x3 + 1 3 1.67 
28 x24 + x22 – x18 – x16 + x12 – x8 – x6 + x2 + 1 x3 + 1 3 1.4 

Table 5: More special polynomial families with different r(x) when k = 12, 14, 28 
 
Table 5 just tabulates some new polynomial families of different r(x) when k = 12, 

14 and 28. When the irreducible polynomial r(x) is not limited as a cyclotomic 
polynomial, more values of the discriminant D will be suitable for generating pairing-
friendly elliptic curves. Appendix (c) presents parameters of curves with D = 3 when 
embedding degree k = 14 and 28. Such curves have not been proposed in any relative 
works before. By the new method, more polynomial families can be found for other 
values of k. It is no way to list all the special polynomial families with various values 
of embedding degree k. Table 6 presents such special polynomial families with 
different forms of r(x) when k = 13, 14 and 15. These new polynomial families will 
be implemented for finding much more pairing-friendly elliptic curves. 

 
k r(x) t(x) 

13 x22 – 11x20 + 56x18 – 173x16 + 359x14 – 524x12 + 548x10 – 410x8 + 215x6 – 75x4 
+ 16x2 – 1 

x2 

13 x22 + 11x20 + 56x18 + 173x16 + 359x14 + 524x12 + 548x10 + 410x8 + 215x6 + 
75x4 + 16x2 + 1 

–x2 

14 343x6 – 343x5 + 147x4 – 49x3 + 21x2 – 7x + 1 7x2 + 1 
14 343x6 + 343x5 + 147x4 + 49x3 + 21x2 + 7x + 1 7x2 + 1 
15 81x8 + 81x7 + 54x6 + 27x5 + 9x4 + 9x3 + 6x2 + 3x + 1 –3x2 + 1 
15 625x8 + 625x7 + 250x6 + 125x5 + 75x4 + 25x3 + 10x2 + 5x + 1 5x2 + 1 
15 50625x8 + 50625x7 + 27000x6 + 10125x5 + 2925x4 + 675x3 + 120x2 + 15x + 1 –15x2 + 1 

Table 6: More special polynomial families with different r(x) when k = 13, 14, 15 
 

4.4 More r with a small factor 

 
In fact, when it is allowed that r contains a small factor s as r = sn (n is a prime larger 
than 2160), much more suitable elliptic curves are found. The same technique has been 
used in [1]. When r = s × n, n should be a large prime bigger than 2160 [9] and 
cofactor h will be multiplied with the small factor s. Brezing et al. [7] and Murphy et 
al. [4] only implemented r as a large prime in their methods. By our method it is easy 
to find that the condition of prime r(x) can be loosed to r = sn without effecting the 
values of ρ much. Thus more elliptic curves different with their work are found. The 
value of ρ will not increase much if s is carefully chosen. In Appendix (d), we 



presented some examples with this technique when k = 96. By this technique, we 
effectively decrease the length of r.      
 

5. Conclusion 

In this paper, we propose a new method to find more pairing-friendly elliptic curves 
with arbitrary embedding degree k by certain special polynomial families. This 
method allows us to obtain new families of pairing-friendly elliptic curves by 
representing r(x) with various forms. In addition, we propose a new technique to let 
prime r contain a small factor s. Numerous parameters of new pairing-friendly elliptic 
curves are found with the proposed method. These curves have higher security (k ≥ 48) 
and more efficiency (ρ ≤ 1.2) compared to the previous work for paring-based 
cryptosystems.  
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Appendix     

(a) Special Polynomial Families with Small Values of ρ 

(1) k = 15, ρ ≈ 1.5  
S(x)2 = 4x10 + 4x5 + 1 = ( 2x5 + 1)2, D = 3, h'(x) = 4x2 + 4x + 4, r(x) = x8 – x7 + x5 – x4 
+ x3 – x + 1; t = x + 1  
 
x = 962542 
r = 736812625806875488411619464155914329720828004251 (160 bits) 
t = 962543 
q = 210821116242423781273928707154678491170030343072612390007530063190082481 
DV2 = 3 × 5301837621585227705195563314577478552 

 
x = 963691 
r = 743878444107727695162122767267461445685217722161 (160 bits) 
t = 963692 
q = 213860944736631842553256727901553298223449065045182728561325970849274791 
DV2 = 3 × 5339924403168167730089675391368106902 
 
(2) k = 28, ρ ≈ 1.3 
S(x)2 = x14 = ( x7)2, D = 1, h'(x) = x2 + 1, r(x) = x12 – x10 + x8 – x6 + x4 – x2 + 1 
 
x = 9803 
r = 787604206770071823093201411395167729501255763497 (160 bits) 
t = 9804 
q = 1818006543181202958475850993256242972686798649470526225526834373 
DV2 = 1 × 852761758800475986371318138157742 

 
x = 11137 
r = 3640982842728443680116187727215542591828879918337 (162 bits) 
t = 11138 
q = 14000821814204596012836731558538128718548474370588182108224768897 
DV2 = 1 × 2366501368197753315031167615578882 
 



(3) k = 28, ρ ≈ 1.5 
S(x)2 = 4x16 + 8x12 – 8x10 + 8x8 – 8x6 + 8x4 - 4x2 + 1 = ( -2x8 – 2x4 + 2x2 – 1)2, D = 7, 
h'(x) = 4x4 + 4x2 + 8, r(x) = x12 – x10 + x8 – x6 + x4 – x2 + 1; t = x + 1 
 
x = 41707 
r = 27701763920994110467659972445730100441267452808766711657 (160 bits) 
t = 41708 
q = 208277458642659286262143174064593219937166390246750999549996523200303792983 

73672379 
DV2 = 7 × 1090943127082929853215344524469782706355062 

(b) Special Polynomial Families with Arbitrary Values of k 

(1) k = 24, ρ ≈ 1.25 
S(x)2 = 4x8 – 4x4 + 1 = ( 2x4 – 1)2, D = 3, h'(x) = 4, r(x) = x8 – x4 + 1 
 
x = 962833 
r = 738597331833134695682651527040098006595721222721 (160 bits) 
t = 962834 
q = 228237767803155599843901956912501345675531789475531151146001 
DV2 = 3 × 5516493666610529154082978851042 
 
x = 965365 
r = 754279653484785063609361644146986474789548990001 (160 bits) 
t = 965366 
q = 234311355599190690060865477933001341274428958628739903196197 
DV2 = 3 × 5589410888447197706886083132122 
 
(2) k = 48, ρ ≈ 1.125 
S(x)2 = 4x16 – 4x8 + 1 = ( 2x8 – 1)2, D = 3, h'(x) = 4, r(x) = x16 – x8 + 1; t = x + 1 
 
x = 2470 
r = 1919337073641697218700435018344997774751611743900000001 (181 bits) 
t = 2471 
q = 3900067982257971406335440851621796993324203292652129302034457 
DV2 = 3 × 22803707249065070695405999991772 
 
x = 5479 
r = 659509122132996966757981555872075218495015674349333558784961 (199 bits) 
t = 5480 
q = 6596956313127361783001807130560758413668060647820395503153853875187 
DV2 = 3 × 29657952982018975439914161301765462 
 
(3) k = 96, ρ ≈ 1.06  



S(x)2 = 4x32 – 4x16 + 1 = ( 2x16 – 1)2, D = 3, h'(x) = 4, r(x) = x32 – x16 + 1; t = x + 1 
 
x = 8053 
r = 978692749574626480538230483695999678074871490897268541981732772686715308827 

46626642467570423271029692259277387159136085590721 (416 bits) 
t = 8054 
q = 211510849085390112587526446980689883706931943167877001092990725747474905933 

6578748454299585997310640624280446883451996334997687068581 
DV2 = 3 × 16793286320645724546395741908139966484886888380448141772569659444442 

(c) Special Polynomial Families with Different Forms of r(x) 

(1) k = 12  
r(x) =2197x4 – 1352x3 + 299x2 – 28x + 1, t(x) = 13x – 1 
 
x = 137438953782 
r = 783915802287873738784769281395853185119086316917 (160 bits) 
t = 1786706399165 
q = 10844209581049657402029453962827548199750866489317427585866728276041510847 
DV2 = 3 × 38024920917822051230350291383772163112 
ρ ≈ 1.5 
 
(2) k = 14  
r(x) = 20511149x6 – 30413083x5 + 18803919x4 – 6205739x3 + 1153069x2 – 114381x 
+ 4733, t(x) = 29x – 6  
 
x = 5936652 
r = 897923694407722064866709188398349353035596592369 (160 bits) 
t = 172162902 
q = 326811759720835564714732775797503236447913111267853657917916780522421188688 

3682901 
DV2 = 7 × 432145319288933879814785107185576180841002 
ρ ≈ 1.7 
 
(3) k = 14  
r(x) = x12 + x11 – x9 – x8 + x6 – x4 – x3 + x + 1, t(x) = x3 + 1  
 
x = 15232 
r = 155995361021362964986617313981716948403826318130049 (167 bits) 
t = 3534034567169 
q = 150666731193060465857318079463252879097159019829490149782649859359850965103 

446502059 
DV2 = 3 × 4482063976831216776190228563210827094207152 
ρ ≈ 1. 63 



 
 
x = 20407 
r = 5216404427914503790876787321022549418762696795540849 (172 bits) 
t = 8498406359144 
q = 522952248798243310204873263632960856258466277996750710866325979985092879120 

71180641259 
DV2 = 3 × 83502674511917545742339959134594621851352902 
ρ ≈ 1. 64 
 
(4) k = 28 
r(x) = x24 + x22 – x18 – x16 + x12 – x8 – x6 + x2 + 1, t(x) = x3 + 1  
 
x = 4771 
r = 1934755172897947994728410192480110834394779405134439011249404032388632622350 

0566190371441 (294 bits) 
t = 108599606012 
q = 394093170064435167699977896702602761176849345869715722490624647866252375122 

25087429072337377153934782355126366807430018348711 
DV2 = 3 × 2292286107984589163102148226430615780564889744551566505799398702 
ρ ≈ 1. 4 
 
x = 11482 
r = 2756900067682603914910428454190159455946018000396363226508589807671190772572 

0348452657645369203301 (324 bits) 
t = 1513744672169 
q = 365995032854028830181112733247410682700743071734828589143267860527579628417 

228792670715862301671800267296582683863393831025766200151340707 
DV2 = 3 × 6985652275476536392271825766370207017600309452882150334904590408712832 
ρ ≈ 1. 4 
 

(d) More r with a small factor 

(1) k = 96 
 
x = 790 
r = 10434720951603582380562581218122202100877840495787457852353 (193 bits) 
t = 791 
DV2 = 3 × 121065166821654956774192774537524599999999999997372 
q = 109925809631663581112233601417794309888777824519815968844486928993958095044 

494654530000000000208297 
ρ ≈ 1.67 
 



x = 1075 
r = 9602444773024990186558868308887683846050319720923974013729 (193 bits) 
h = 193 × 189697 × 5 548897 × 44511 743233 × 116 517189 305089 
t = 1076 
DV2 = 3 × 22774478984574661338473130929283797740936279296871422  
q = 389007669764124673056208123236933160496464959539104119574614994745358704230 

5725812911987304687500385567 
ρ ≈ 1.75 
 
x = 1462 
r = 7998565106006563123727929799215532040801815430031249192586457180982904662797 

1851073 (276 bits) 
h = 97 × 24464261226891361 
t = 1463 
DV2 = 3 × 4243428792486717802991307284426585084195237795786910972 
q = 135050159376789629563661162494941702923787864008293359224562874946890295339 

329479610347558831805883810832649 
ρ ≈ 1.3 
 
x = 1990 
r = 4995305491877891169028998357156355876186080752202802023341143310844554193252 

3117458511731692993 (315 bits) 
h = 769 × 95237953 
t = 1991 
DV2 = 3 × 802033939506683756041610933761788055812599999999999993372  
q = 482443830090458143970598719142978471444730710196094627023340791823785775650 

9183337390177849436930000000001320697 
ρ ≈ 1.17 
 
(5) 
x = 2344 
r = 3265344136080389756117061362948346136410185602877472164948887012210851476357 

2456390768929387700504882561 (344 bits) 
h = 21121 
t = 2345 
DV2 = 3 × 12971874761632176402622474504460802316195215015492158742912 
q = 126202151123602375023567112106696114961035327131602564074987641333594437147 

7169742695240677028410003616420637439267 
ρ ≈ 1.1 
 


