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Abstract. ID-based encryption allows for a sender to encrypt a message
to an identity without access to a public key certificate. Based on the
bilinear pairing, Boneh and Franklin proposed the first practical ID-
based encryption scheme and used the padding technique of Fujisaki-
Okamto to extend it to be a chosen ciphertext secure version. In this
letter, we would like to use another padding technique to propose a new
ID-based encryption scheme secure against chosen ciphertext attacks.
The security of our scheme is based on the Gap bilinear Diffie-Hellman
assumption in the random oracle model.
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1 Introduction

The concept of ID-based cryptosystem was first introduced by Shamir [1] in
1984. In such an ID-based cryptosystem, the public key of a user is derived from
his identity information and his private key is generated by a trusted third party
called Private Key Generator (PKG). The advantage of an ID-based cryptosys-
tem is that it simplifies the key management process which is a heavy burden in
the traditional certificate based cryptosystem. In an ID-based cryptosystem, if
Alice wants to send an encrypted message to Bob, she only needs to use Bob’s
identity information as public key to encrypt the message.

In 2001, Boneh and Franklin [2] proposed the first full functional ID-based
encryption scheme BasicIdent from bilinear pairings and applied the padding
technique of Fujisaki-Okamoto [3] to extend BasicIdent to FullIdent, which
is secure against chosen ciphertext attacks. However, the security reduction of
FullIdent is far from tight.

In this letter, based on the Gap bilinear Diffie-Hellman problem, we would
like to use another padding technique [4] to propose a new ID-based encryption
scheme secure against chosen ciphertext attacks and use the technique from prov-
able security [5] to analyze its security. The advantage of our proposed scheme
is that the security reduction is quite tight.
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2 Definitions

2.1 Notations

We let N = {1, 2, 3, . . .} be the set of positive integers. If x is a string, then |x|
denotes its length, while if S is a set then |S| denotes its size and s

R←− S denotes
the operation of picking a random element s of S uniformly. If m is a string, [m]k1

denotes the most significant k1 bits of m and [m]k2 denotes the least significant
k2 bits of m. Besides, ⊕ denotes XOR operation and ‖ denotes a concatenation
throughout this letter.

2.2 Definition of ID-based Encryption Scheme

An ID-based encryption scheme E uses four algorithms: Setup, Extract, Encrypt
and Decrypt. The functions of these algorithms are described as follows:

Setup: Given a security parameter k, it returns the system parameters params
and the master key master-key. The params will be publicly known, while the
master-key will be known only to PKG.

Extract: Given params, master-key and an arbitrary id ∈ {0, 1}∗, it returns
a private key Sid. Here id will be used as the public key.

Encrypt: Given params, an identity id, and a message m, it returns a cipher-
text c.

Decrypt: Given params, a private key Sid, and a ciphertext c, it returns a
message m.

These algorithms must satisfy the standard consistency constraint of ID-
based encryption, i.e. the private key Sid is generated by Extract when it is
given id as the public key, then

∀m Decrypt(params, c, Sid) = m;
where c = Encrypt(params, id, m).

2.3 Chosen Ciphertext Security

Boneh and Franklin [2] strengthened the IND-CCA model to deal with an ad-
versary who possesses private keys corresponding to identities of its choice and
attacks an identity id in an ID-based encryption scheme. They called it IND-ID-
CCA model. The IND-ID-CCA model is described through the following game
between the challenger C and an adversary A.

Setup: The challenger C takes a security parameter k and runs the Setup
algorithm. It gives the adversary A the resulting system parameters params, and
keeps the master-key itself.

Phase 1: The adversary A adaptively issues queries q1, . . . , qm where query
qi is one of:

– Extraction query < idi >. The challenger C responds by running Extract to
generate the private key Sidi

corresponding to the pubic key < idi >, and
sends Sidi

back to A.
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– Decryption query < idi, ci >. The challenger C responds by running algo-
rithm Extract to generate the private key Sidi

corresponding to idi. It then
runs algorithm Decrypt to decrypt the ciphertext ci using the private key
Sidi , and returns the resulting plaintext to A.

Challenge: Once A decides that Phase 1 is over it outputs two equal
length plaintexts m0,m1, an identity id on which it wishes to be challenged.
The only constraint is that id did not appear in any private key extraction
queries in Phase 1. The challenger C picks a random bit b ∈ {0, 1} and sets
c = Encrypt(params, id, mb). It responds c to A.

Phase 2: A issues more queries qm+1, . . . , qn where qi is one of:

– Extraction query < idi > where idi 6= id. C responds as in Phase 1.
– Decryption query < idi, ci >6=< id, c >. C responds as in Phase 1.

Guess: Finally, A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.
We define A’s advantage as the following function of security k, where k is

given as input to C:
AdvA(k) = |2Pr[b = b′]− 1| .

We say that an ID-based encryption scheme is IND-ID-CCA secure, if no polyno-
mially bounded adversary A has non-negligible advantage against the challenger
C.

3 Basic Concepts on Bilinear Pairings

Bilinear pairing is an important cryptographic primitive [2]. Let G1 be a cyclic
additive group generated by P , whose order is a prime q, |q| = k, and G2 be
a cyclic multiplicative group of the same order q. A bilinear pairing is a map
e : G1 ×G1 → G2 with the following properties:

– Bilinear : For any P, Q ∈ G1 and a, b ∈ Z∗q , we have e(aP, bQ) = e(P, Q)ab.
– Non-degenerate: There exists P ∈ G1 and Q ∈ G1 such that e(P, Q) 6= 1.
– Computable: There is an efficient algorithm to compute e(P, Q) for all P, Q ∈
G1.

We note that the Weil and Tate pairings associated with supersingular elliptic
curves or abelian varieties can be modified to create such bilinear maps [2].

Next, we describe three mathematical problems in G1, G2, namely the Bi-
linear Diffie-Hellman (BDH) Problem, the Decisional Bilinear Diffie-Hellman
(DBDH) Problem and the Gap Bilinear Diffie-Hellman (GBDH) Problem.

– BDH Problem: For a, b, c ∈ Z∗q , given P , aP , bP , cP ∈ G1, compute e(P, P )abc ∈
G2.

– DBDH Problem: For a, b, c ∈ Z∗q , given P , aP , bP , cP ∈ G1 and r ∈ G2,
decide whether r = e(P, P )abc or not.
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– GBDH Problem: For a, b, c ∈ Z∗q , given P , aP , bP , cP ∈ G1, compute
e(P, P )abc ∈ G2 with the help of a DBDH oracle (which answers whether a
given tuple is a BDH tuple or not.)

We define by SuccGBDH
G1,G2

(A) the success probability of an algorithm A in
solving the GBDH Problem as

SuccGBDH
G1,G2

(A) = Pr[A(P, aP, bP, cP ) = e(P, P )abc].

We say that the GBDH assumption holds if SuccGBDH
G1,G2

(A) is negligible for any
probabilistic polynomial time adversary A.

4 Our Proposed Scheme

In this section, based on the formal definition in Section 2, we will introduce our
ID-based encryption scheme from bilinear pairings.

– Setup: PKG chooses a random number s
R←− Z∗q and sets Ppub = sP , then

defines three cryptographic hash functions H0 : {0, 1}∗ → G1, H1 : G2 →
{0, 1}k1+k2 and H2 : {0, 1}k1 ×G2 → {0, 1}k2 , where k1, k2 are two security
parameters. Finally, PKG publishes {G1,G2, q, e, P, Ppub,H0,H1,H2} and
keeps s as the master-key secret.

– Extract: A user submits his identity id to PKG. PKG computes the user’s
public key as Qid = H0(id), and returns Sid = sQid to the user as his private
key.

– Encrypt: To encrypt a message m ∈ {0, 1}k1 for a user with the identity id
do the followings:
• Pick a random number r

R←− Z∗q and compute gr, where g = e(Ppub, Qid) ∈
G2.

• Compute c1 = rP and c2 = H1(gr)⊕ (m‖H2(m, gr)).
• Output a ciphertext c = (c1, c2).

– Decrypt: To decrypt the ciphertext c = (c1, c2), the following steps will be
run:
• Use the private key Sid to compute gr as follows,

e(c1, Sid) = e(rP, sQid) = e(Ppub, Qid)r = gr

• Compute w = c2 ⊕H1(gr);
• Check whether H2([w]k1 , gr) = [w]k2 . If it holds, accept c = (c1, c2) and

define m as [w]k1 and output m. Otherwise, output “reject”.

5 Security Analysis

In this section, based on GBDH assumption, we will show our proposed scheme
is IND-ID-CCA secure.
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Theorem 1. Our proposed ID-based encryption scheme is secure in the sense
of IND-ID-CCA in the random oracle model, providing that the GBDH Problem
is intractable.

Proof. Assume A be an IND-ID-CCA adversary, who can, with running time τ
and advantage ε, break our proposed scheme after making at most q0, q1, q2, qe

and qd queries to the random oracles H0, H1, H2, the extraction oracle and the
decryption oracle, respectively. A is also allowed to access DBDH oracle ODBDH

to check whether a tuple is a BDH tuple or not. Then we can use A to construct
another algorithm C to resolve the GBDH Problem with another probability ε′

within time τ ′, where

ε′ ≥ ε− qd · (2−(k1+k2) + 2−k2)
τ ′ ≤ τ + 2 · (q1 − 1) · Tpmul + qd · TDBDH

with Tpmul the time for point multiplication in G1 and TDBDH the time for an
ODBDH operation.

Initially, C is given an instance (P, xP, yP, zP ) of the GBDH Problem, and
its goal is to compute e(P, P )xyz ∈ G2. Then C runs A as a subroutine and
simulates its attack environment.

Setup: C sets Ppub = xP and gives pubic parameters {G1,G2, q, e, P, Ppub,H0,H1,H2}
to A. To illustrate our proof idea simply and clearly, we here assume the identity
id of A’s challenge is determined in advance. That is, A won’t make decryption
queries on other identity idi 6= id afterwards.

At the same time, without loss of generality, we assume all queries to the
random oracles H0, H1, H2, the extraction oracle and the decryption oracle are
distinct, and the extraction query is preceded by an H0 query. To avoid collision
and consistently respond to these queries, C should maintain three lists ΛH0 , ΛH1

and ΛH2 , which are initially empty. Note that, to resolve the GBDH Problem, C
is allowed to query to the DBDH oracle ODBDH , when it processes decryption
oracle query.

H0-query: When A makes an H0 query idi, if idi = id, then C returns
Qid = H0(id) = yP . Otherwise, C chooses a random number ti

R←− Z∗q , adds
< idi, ti, tiP, tixP > to ΛH0 and returns Qidi

= H0(idi) = tiP .
H1-query: When A makes a new H1 query gi, C chooses a random number

h1i
R←− {0, 1}k1+k2 , adds < gi, h1i > to ΛH1 and returns H1(gi) = h1i.

H2-query: When A makes a new H2 query (mi, gi), C chooses a random
number h2i

R←− {0, 1}k2 , adds < mi, gi, h2i > to ΛH2 and returns H2(mi, gi) =
h2i.

Phase 1:

– Extraction query: When A asks an extraction query on idi 6= id, C finds
< idi, ti, tiP, tixP > in ΛH0 . Then C returns tixP as the private key to A.

– Decryption query: When A asks a decryption query on (id, ci = (c1i, c2i)),
C asks to the DBDH oracle ODBDH to check whether a tuple (Qid =
yP, Ppub = xP, c1i, gi) is a valid BDH tuple and then returns a right plaintext
mi to A. More precisely, C does the followings:
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• If there exists < gi, h1i > in ΛH1 such that < Qid, Ppub, c1i, gi > is a valid
BDH tuple by asking ODBDH , C computes wi = c2i ⊕ h1i. Otherwise, C
reports failure and terminates.

• If there exists < mi, gi, h2i > in ΛH2 such that mi = [wi]k1 and h2i =
[wi]k2 , C outputs and returns mi. Otherwise, C also reports failure and
terminates.

Challenge: Once A decides the Phase 1 is over, he outputs id and two
messages m0,m1 ∈ {0, 1}k1 on which it wishes to be challenged. C will respond
as follows:

– Set c1 = zP , randomly choose b ∈ {0, 1} and select a random number
c2

R←− {0, 1}k1+k2 .
– Return c = (c1, c2) as the ciphertext of mb.

Phase 2:

– Extraction query: Same as in Phase 1.
– Decryption query: Same as in Phase 1, and the challenge (id, c = (c1, c2)) is

excluded.

Guess: Finally, A outputs a guess b′ ∈ {0, 1} for b.
In an information theoretical sense, the adversary A cannot gain any ad-

vantage in distinguishing m0,m1 if it has not asked for e(P, P )xyz to H1 or
(?, e(P, P )xyz) to H2. Therefore, we denote E1 the event that A has asked
e(P, P )xyz to H1 and E2 the event that A has asked (?, e(P, P )xyz) to H2. Then,

Pr[b = b′] = 1
2 ± 1

2AdvA(k)
= Pr[b = b′ ∧ (E1 ∨ E2)] + Pr[b = b′ ∧ ¬(E1 ∨ E2)]
= Pr[b = b′ ∧ (E1 ∨ E2)] + 1

2 Pr[¬(E1 ∨ E2)]
= Pr[b = b′ ∧ (E1 ∨ E2)] + 1

2 − 1
2 Pr[(E1 ∨ E2)]

⇒ ±AdvA(k) = Pr[(E1 ∨ E2)]− 2Pr[b = b′ ∧ (E1 ∨ E2)]
⇒ Pr[(E1 ∨ E2)] ≥ AdvA(k)

During the decryption query, some decryptions may be incorrect, but only
rejecting a valid ciphertext: a ciphertext is refused if the query gi has not been
asked to H1 or (mi, gi) has not been asked to H2. However, the adversary A
might have guessed the right values for H1(gi) and H2(mi, gi) without having
asked for them, but only with probability 2−(k1+k2) + 2−k2 .

Thus, by checking ΛH1 and ΛH2 , we can obtain the solution e(P, P )xyz. Then,

Pr[(E1 ∨ E2) ∧ no incorrect decryption]
≥ AdvA(k)− qd · (2−(k1+k2) + 2−k2)

⇒ ε′ ≥ ε− qd · (2−(k1+k2) + 2−k2)

Here, if we only consider the time-consuming operations, namely the point
multiplication operation and the ODBDH operation, and neglect other oper-
ations, then the total running time of C in resolving the GBDH Problem is
bounded by

τ ′ ≤ τ + 2 · (q1 − 1) · Tpmul + qd · TDBDH .

Thus, the proof is completed.
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From the above Theorem 1, it is clear that the security reduction of our
proposed scheme is quite tight.

6 Conclusion

In this letter, based on GBDH Problem, we have proposed a new ID-based
encryption scheme and used the techniques from provable security to analyze
the security of our proposed scheme. By analysis, our proposed scheme is secure
against chosen ciphertext attacks with tight reduction.
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