
How to Break and Repair a Universally
Composable Signature Functionality

Michael Backes† and Dennis Hofheinz?

Abstract. Canetti and Rabin recently proposed a universally com-
posable ideal functionality FSIG for digital signatures. We show that
this functionality cannot be securely realized by any signature scheme,
thereby disproving their result that any signature scheme that is exis-
tentially unforgeable under adaptive chosen-message attack is a secure
realization.
Next, an improved signature functionality is presented. We show that our
improved functionality can be securely realized by precisely those signa-
ture schemes that are secure against existential forgery under adaptive
chosen-message attacks.

Keywords: digital signature schemes, universal composability, adaptive chosen-
message attack.

1 Introduction

In this contribution, we investigate the idealization FSIG of digital signatures,
as defined in [CR02] for the framework of universal composability [Can01]. This
framework enjoys a composition theorem which states that specifically, larger
protocols may be formulated and investigated by means of an idealization of,
e. g., digital signatures, while later a concrete digital signature scheme may be
plugged in for the idealization while preserving the security of the large protocol.
Certainly, this does not work for any signature scheme, but the scheme must—in
a specified sense—securely realize the considered idealization, which makes the
notion of secure realization (often also called emulation) the central notion of
the framework.

We show that the idealization FSIG cannot be securely realized by any real
signature scheme. This in particular invalidates the results of [CR02, Claim 2]
and [Can01, Claim 14 of full version].1,2

† IBM Zurich Research Lab, mbc@zurich.ibm.com
? IAKS, Arbeitsgruppe Systemsicherheit, Prof. Dr. Th. Beth, Fakultät für Informatik,

Universität Karlsruhe, hofheinz@ira.uka.de
1 Our proof applies to the FSIG-formulation from [CR02] as well as to the slightly

older formulation in [Can01].
2 After we had completed and submitted this manuscript, the paper [CR02] was up-

dated; in the updated version [CR03], the functionality FSIG was replaced by a
functionality FCERT. Furthermore, a modification of FSIG—independent of the one
described here—was put forward in [Can03]. The generic attack discussed in this
paper does not apply to the modified FSIG functionality in [Can03].

Next, we propose an improvement of FSIG and we show that it can be securely
realized by suitable real signature schemes, i.e., by precisely those ones that
are secure against existential forgery under adaptive chosen-message attack as
defined in [GMR88].

The proof of unrealizability reveals a general problem with detached idealiza-
tions of digital signatures: In case of a corrupted signer, signatures for arbitrary
messages may be generated locally by anyone who has knowledge of the signing
key, hence it cannot be guaranteed that the ideal functionality, i. e., the ideal-
ization of digital signatures is notified upon every single signature generation.
(Consider a larger protocol that honestly generates digital signatures using the
publicly distributed signing key of a corrupted signer.) Thus, considering signa-
tures as invalid which are not explicitly “registered” at the ideal functionality
causes problems and indeed leads to our attack on FSIG discussed below. On the
other hand, all signatures not obtained via explicit signing queries to the ideal
functionality should intuitively be rejected when they are verified. Our modifi-
cation of FSIG does not have this intuitive rejection property, and in Remark 3,
we sketch an approach to milden this problem.

1.1 Overview of this paper

We first briefly review the universal composability framework in Section 2 to
prepare the ground for our subsequent results.

In Section 3, we review the ideal signature functionality proposed by Canetti
and Rabin and show that it is not securely realizable at all.

In Section 4, we propose an improved functionality for digital signatures, and
we show that it can be securely realized precisely by those signature schemes
that are existentially unforgeable under adaptive-chosen message attack.

The paper ends with a conclusion (Section 5).

2 Preliminaries

To start, we shortly outline the framework for multi-party protocols as defined
in [Can01]. First of all, parties, denoted by P1 through Pn, are modeled as in-
teractive Turing machines (ITMs) and are supposed to run some fixed protocol
π. There also is an adversary, denoted A and modeled as an ITM as well, which
carries out attacks on protocol π. A may corrupt parties in which case it learns
their current and all past states as well as the contents of all their tapes; further-
more, it controls their future actions. A may further intercept or, when assuming
unauthenticated message transfer (which is called the “bare” model in [Can01]),
also fake messages sent between parties. If A corrupts parties only before the
actual protocol run of π takes place, A is called non-adaptive, otherwise A is
said to be adaptive. The respective local inputs for protocol π are supplied by
an environment machine, which is also modeled as an ITM and denoted Z, that
may read all outputs locally made by the parties and communicate with the
adversary. Here we only consider environments that guarantee a polynomial (in

2

the security parameter) number of total steps of all participating ITMs. Further
discussions on this issue will be given later on, cf. Remark 4.

The model we have just described is called the real model of computation.
In contrast to this, the ideal model of computation is defined just like the real
model with the following exceptions. First, we have an additional ITM called the
ideal functionality F that is allowed to send messages to and receive messages
from the parties privately, i. e., the adversary can neither eavesdrop nor intercept
these messages. The ideal functionality cannot be corrupted by the adversary,
yet may send messages to and receive messages from it. Secondly, the parties
P1, . . . , Pn are replaced by dummy parties P̃1, . . . , P̃n that simply forward their
respective inputs to F and take messages received from F as output. Finally,
the adversary in the ideal model is denoted S and often called a simulator. The
attack capabilities of the simulator are restricted to corrupting parties, delaying
or even suppressing messages sent from F to a party, and all actions that are
explicitly specified in F . In particular, S does not have access to the contents
of the messages sent from F to the dummy parties unless the receiving party is
corrupted, nor are there any messages actually sent between uncorrupted parties
that S could intercept. Intuitively, the ideal model of computation or, more
precisely, the ideal functionality F itself should represent what we ideally expect
a protocol to do. In fact, for a number of standard tasks, there are formulations
as such ideal functionalities, e.g., in [Can01].

To decide whether a given protocol π is a secure realization of some ideal
functionality F , the framework of [Can01] uses a simulatability-based approach:
At a time of its choice, Z may enter its halt state and leave output on its output
tape. The probability for Z’s first output bit to be 1 in the real model, when
running on security parameter k ∈ N and with adversary A and protocol π is
denoted P(Z → 1 | π,A)(k). The corresponding probability in the ideal model,
running with simulator S and ideal functionality F , is denoted P(Z → 1 |
F ,S)(k). Now the protocol π is said to securely realize the functionality F if for
any adversary A in the real model, there exists a simulator S in the ideal model
such that for every environment Z, we have that

|P(Z → 1 | π,A)(k)−P(Z → 1 | F ,S)(k)| (1)

is a negligible3 function in k.4 Intuitively, this means that any attack carried
out by an adversary in the real model can also be carried out in the idealized
modeling with an ideal functionality by a simulator such that no environment
is able to tell the difference. In the framework of [Can01], the above definition
of security is equivalent to the seemingly weaker requirement that there is a
simulator S so that (1) is a negligible function in k for any environment Z and
the special real-model dummy adversary Ã which follows explicit instructions
from Z.
3 A function f : N → R is called negligible if for any c ∈ N there exists k0 ∈ N such

that |f(k)| < k−c for all k > k0.
4 The formulation in [Can01] is slightly different but equivalent to the one chosen here

which allows to simplify our presentation.

3

Both the original functionalities FSIG of [Can01,CR02] and our variation
are immediate functionalities. This means that only those simulators are al-
lowed in the ideal model which respect commands from the ideal functionality
to deliver a message to a party immediately. This models that only “local” and
non-interactive protocols are desired for realizing some functionality. In the case
of FSIG, this intuitively captures that signatures and signature verifications are
to be made locally and instantly. Finally and analogously to [Can01], we restrict
to terminating protocols, i.e., those ones that generate output if all messages are
delivered and no party gets corrupted.

Remark 1. In [Can01], the environment machine is modeled as a non-uniform
ITM, i. e., as an ITM whose initial input z = z(k) depends on the security param-
eter k. However, it has been shown in [HMQS03] that the composition theorem
of [Can01] remains valid if one restricts to uniform environment machines, i. e.,
those ones whose initial inputs do not depend on k. Hence it makes sense to
alternatively consider only uniform environments where appropriate. In particu-
lar, all proofs given below hold for both uniform and non-uniform environments;
alone the respective assumptions, i. e., security of a signature scheme with re-
spect to uniform/non-uniform attackers have to be considered with respect to
the uniformity class in question.

Remark 2. The modeling of [Can01] does not involve explicit notifications of
the ideal functionality upon corruptions of parties. However, a change of model
causing ideal functionalities to be informed upon party corruptions was taken
in [CK02,CLOS02]. As it is very helpful in our situation and allows for catching
adaptively secure realizations of signature schemes, we assume that ideal func-
tionalities are notified upon party corruptions. For our unrealizability result,
this makes no difference; see also the remark in the original description of FSIG

in [CR02].

3 The Attack on the Signature Functionality

In this section, we prove the ideal functionality FSIG from [CR02], as depicted
in Figure 1, to be unrealizable even with respect to non-adaptive adversaries.
In particular, this disproves Claim 2 of [CR02] which asserts any existentially
unforgeable signature scheme to be securely realizing FSIG. Although there is
also a formulation of FSIG in the full version of [Can01] that slightly differs
from the newer formulation in [CR02], we remark that our proof applies without
changes also to this former version of FSIG.

Before we show that FSIG cannot be securely realized in general, we point
out why the proof of [CR02, Claim 2] goes wrong. The proof is conducted by
reduction to the security of the considered signature scheme. It is shown that if an
environment Z existed that distinguished whether it is run with an adversary
A and the signature scheme or with a special simulator S = S(A), which is
explicitly constructed in [CR02] for any given A, and FSIG, one could define an
attacker G that is able to forge signatures under an adaptive chosen-message

4

Functionality FSIG

FSIG proceeds as follows, running with parties P1, . . . , Pn and an adversary S.
Set-up: In the first activation, expect to receive a value (signer,sid) from some
party Pi. Then, send (signer,sid,Pi) to the adversary. From now on, ignore all
(signer,sid) values.
Signature Generation: Upon receiving a value (sign,sid,m) from Pi, hand
(sign,sid,m) to the adversary. Upon receiving (signature,sid,m,σ) from the
adversary, set sm = σ, send (signature,sid,m,σ) to Pi, and request the adver-
sary to deliver this message immediately. Save the pair (m, sm) in memory.
Signature Verification: Upon receiving a value (verify,sid,Pi′,m,σ) from Pj ,
do:

1. If i = i′ (i. e., the sender identity in the verification request agrees with the
identity of the actual signer) then do: If m was never signed then let f = 0. If
m was signed before (i. e., sm is defined) and sm = σ then let f = 1. If m was
signed but sm 6= σ then let the adversary decide on the value of f . (That is,
hand (verify,sid,Pj,Pi′,m,σ) to the adversary. Upon receiving φ ∈ {0, 1}
from the adversary, let f = φ.)

2. If i 6= i′ then do: If Pi′ is uncorrupted then set f = 0. If Pi′ is corrupted then
let the adversary decide on the value of f , as in Step 1.

3. Once the value of f is set, send (verified,sid,m,f) to Pj , and request the
adversary to deliver this message immediately.

Fig. 1. The signature functionality FSIG reproduced from [CR02]

attack. In the reasoning that G successfully forges signatures, it is argued that
“[. . .] as long as event B does not occur, Z’s view of an interaction with A and
parties running the protocol is distributed identically to its view of an interaction
with S5 and FSIG in the ideal process.” Here, B denotes the event that during
a protocol run in the real model, “[. . .] ver(v,m, σ) = 1 for some message m
and signature σ, but the signer is uncorrupted and never signed m during the
execution of the protocol,” where ver denotes the signature verification algorithm
and v the verification key. This statement is wrong. In case of a corrupted signer,
S takes no actions to signal signatures of messages to FSIG—however, messages
may be signed “legitimately” in case of, e. g., a passively corrupted signer. We will
even show below that there is no way to circumvent this problem for the given
functionality, since intuitively, there can be no way for S to determine which
messages have been signed by an environment taking the role of a corrupted
signer. As a consequence, verification requests of such signatures are answered
differently in the real model and the ideal one.

In our proof, we use the fact that FSIG answers verification requests in the
positive only if the corresponding message was already signed by FSIG itself.
In Section 4, we will introduce an improved idealization of digital signatures
which drops this requirement if the signing party gets corrupted: In case of a
corrupted signer, we have to expect even the environment to be able to produce
valid signatures for arbitrary messages.

5 Here we have corrected what seems to be a typo in [CR02].

5

Theorem 1. The functionality FSIG, as specified in [CR02] and depicted in
Figure 1, cannot be securely realized by any terminating n-party-protocol π (n ≥
2), even when assuming authenticated message transfer and only non-adaptive
adversaries.

Proof. Suppose that a protocol π that has the mentioned termination property
securely realizes FSIG. Fix two different parties Pi and Pj , and also a simulator
S which in the ideal model mimics attacks carried out by the dummy adversary
Ã on the protocol π. Consider the following environment Z1, expecting to be
run with Ã in the real model; of course, in the ideal model, the simulator S is
not bound to these instructions:

1. Activate Pi with input (signer,sid) and ask the adversary to deliver all
messages possibly sent between parties.

2. In the following steps, do not request the adversary to deliver any more
messages sent between parties.

3. Randomly pick a message r and activate Pi with (sign,sid,r); extract the
signature σ from Pi’s answer (signature,sid,r,σ).

4. Activate Pj with input (verify,sid,Pi,r,σ); output whatever Pj outputs.

Since π is terminating, we may assume that Z1 finishes the first of these steps
in polynomial time in the real model, and thus in the ideal model. Moreover,
the remaining party queries of Z1 are answered instantly in the ideal model by
definition of FSIG, and thus this also has to hold in the real model. By definition
of FSIG, it follows that Z1 always outputs 1 if it is run in the ideal model,
regardless of the simulator. If it does not do so also in the real model except with
negligible probability, Z1 successfully distinguishes π and FSIG, which finishes
the proof.

Hence assume that Z1 outputs 1 in the real model with overwhelming prob-
ability. Consider the following environment Z2 that we expect to run with the
dummy adversary Ã in the real model as well:

1. Tell the adversary to corrupt Pi. Run a local simulation P
(s)
i of Pi.

2. Activate P
(s)
i with input (signer,sid) and ask the adversary to deliver—in

the name of the corrupted “relay” Pi—all messages sent by the simulated
P

(s)
i and vice versa.

3. Randomly pick a message r and activate P
(s)
i with input (sign,sid,r), but

suppress messages sent to or from P
(s)
i . Wait for P

(s)
i to produce output

(signature,sid,r,σ).
4. Invoke Pj with input (verify,sid,Pi,r,σ); output whatever Pj outputs.

Note that the corruption of Pi is completely passive until step 3. So also Z2

runs in polynomial time by the termination property of π in the real model,
and thus we may assume so also in the ideal model. We analyze the behavior of
Z2 when it is run in the real model. From Pj ’s point of view, a “regular” run
of protocol π exactly as with environment Z1 takes place. Particularly, since we
know that Z1 outputs 1 with overwhelming probability, we can conclude that σ is

6

accepted by Pj as a valid signature of r in step 4 with overwhelming probability.
Consequently, Z2 will output 1 with overwhelming probability if it is run in the
real model.

On the other hand, suppose Z2 is run in the ideal model with simulator S.
Since S is asked in step 1 to corrupt the signing party Pi, it has the ability to
sign message of its choice, i. e., send the corresponding (sign,sid,m) message
to FSIG. However, the randomly chosen message r for which Z2 locally generates
a signature in step 3 cannot be known to S before step 4. Hence r is registered
in FSIG as signed (i. e., there is an entry (r, σ) in FSIG’s list of messages and
signatures) in step 4 only with negligible probability. By definition of FSIG, this
means that the uncorrupted party Pj replies in step 4 with 1 only with negligible
probability.6 So in the ideal model, Z2 outputs 0 with overwhelming probability
and therefore distinguishes protocol π and FSIG. ut

4 The Repaired Signature Functionality

We now present a modification of FSIG, which is realizable even in the bare
model by any signature scheme that is existentially unforgeable under adap-
tive chosen-message attacks. Such schemes exist under reasonable assumptions,
e.g., [GMR88,Rom90,CD95,CD96,DN98].

Consider the family of functionalities {F (i)
SIG}Pi

, where functionality F (i)
SIG is

described in Figure 2. Note that we parameterized the ideal functionality with
the identity of the signer. This seems to be necessary since a trivial distinguisher
could otherwise activate two parties with input (signer,sid) and then simply
check which of these parties is able to actually sign messages. In the ideal model,
this is the party that was activated first by definition of FSIG, yet in the real
model this order of activations cannot even be decided by any protocol. We refer
to [HMQS03] for a similar problem that arises with the public-key encryption
functionality FPKE. Furthermore, our functionality ensures that signatures never
change their validity status which is not always guaranteed in the original formu-
lations of FSIG. Finally, just like these original formulations, our functionalities
F (i)

SIG are immediate.
Now analogously to the construction in [CR02], we regard a signature scheme

S = (K, S, V) consisting of probabilistic polynomial-time algorithms for key gen-
eration, signing and verifying signatures as a protocol aimed at securely realizing
FSIG. Moreover, if we restrict the execution of K and S to a fixed party Pi and to
return the verification key upon (signer,sid) requests instead of distributing
it, we obtain a protocol called π

(i)
S that is tailored towards realizing F (i)

SIG. Note

6 There is a subtlety here: The functionality FSIG is not completely specified in [CR02],
and it is not clear what happens when signature or verification requests take place
without prior “(signer,·,·)” initialization, which S is not forced to send to FSIG

in the name of an initially corrupted Pi. We find it reasonable to assume that such
requests are then ignored; however, our proof applies also to other completions of
the specification.

7

Functionality F (i)
SIG

F (i)
SIG proceeds as follows, running with parties P1, . . . , Pn and an adversary S. (All

messages not covered here are simply ignored.)

– Upon receiving (signer,sid) from Pi (and Pi alone) for the first time, send a
message (key,sid) to S; then, upon receiving an answer (key,sid,v) from S,
forward this answer to Pi and store v. Ignore further (signer,sid) requests.
The following rules apply only after this initial (signer,sid) message.

– Upon receiving (sign,sid,m) from Pi (and only Pi), forward this message
to S; upon receiving an answer (signature,sid,m,σ) from S, forward this
answer to Pi. Also store the pair (m, σ, 1).

– Upon receiving (verify,sid,m,σ,v′) from any party Pj , where v 6= v′ or v
is not determined yet, send this entire tuple to S; upon receiving an answer
(verified,sid,m,f) from S, forward this answer to Pj .

– Upon receiving (verify,sid,m,σ′,v′) from any party Pj , where v = v′, an-
swer with (verified,sid,m,f), where f is determined as follows:
• If there is a pair (m, σ, g) with σ = σ′ stored, let f = g.
• If Pi is uncorrupted and there is no pair (m, σ, g) for any σ and g stored,

let f = 0.
• In all other cases, send this entire tuple to S; upon receiving an answer

(verified,sid,m,f) from S, extract f from this answer and store the
pair (m, σ′, f).

Fig. 2. The modified signature functionality F (i)
SIG

that in contrast to the construction in [CR02], the distribution of the verification
key does not have to be covered here, since it is simply a parameter of signature
verification requests.

Theorem 2. For a fixed party Pi, protocol π
(i)
S securely realizes F (i)

SIG if and
only if the signature scheme S is existentially unforgeable under adaptive chosen-
message attacks.

Proof. For proving the “only if” direction, consider an attacker G that takes
part in the following experiment Expef-cma

G,S (k) which is used to define security
of digital signature schemes against existential forgery under adaptive chosen-
message attack., cf. [GMR88]. Here, S = (K, S, V) denotes a signature scheme
and G

Ss(·)
k means that G interacts with the corresponding signature oracle with

respect to a signing key s.

1. (s, v)← K(k)
2. (m,σ)← G

Ss(·)
k (v)

3. Return (Vv(m,σ)→ accept) ∧ “Ss(·) was never queried on m in step 2”.

Let Z be the environment that performs the above experiment with a simulated
G: Z triggers G with the public key v gathered through an initial request for key
generation to Pi and carries out G’s signing requests by redirecting them to Pi

in an F (i)
SIG-compatible form. Moreover, the verification request in step 3 is also

redirected to Pi. Finally, Z outputs 1 exactly if the experiment returns true.

8

The simulator S(i)
SIG

– Communication with F (i)
SIG:

• Upon receiving a message (key,sid) from F (i)
SIG, run algorithm K to receive

a keypair (s, v); keep s in memory and send (key,sid,v) back to F (i)
SIG.

• Upon receiving (sign,sid,m) from F (i)
SIG, let σ ← Ss(m) and send

(signature,sid,m,σ) back to F (i)
SIG; if s has not yet been initialized (i. e.,

if there was no former request for key generation), then hand back an error

message just as π
(i)
S would do.

• Upon receiving (verify,sid,m,σ,v′) from F (i)
SIG, let f ← Vv′(m, σ) and

send (verified,sid,m,f) back to F (i)
SIG.

• Deliver all messages sent from F (i)
SIG to the parties immediately.

– Communication with Z:
• When being requested by Z to check for messages sent by parties, reply

that no messages were sent.
• When being asked by Z to deliver a message m to some party Pj , store

this request for future use.
• When being told by Z to corrupt some party Pj , first corrupt the dummy

party P̃j to gather information about Z’s communication with P̃j ; then
prepare state information for Pj taking into account all of P̃j ’s communi-

cation with Z, all messages S(i)
SIG was asked to deliver to P̃j and, if i = j,

add to this information the signing key s if there was a key generation
request and prepare a random tape consistent with the one used by F (i)

SIG

during a possible key generation.

Fig. 3. The simulator S(i)
SIG

Now in the real model, since all requests to Pi are answered “authentically” as
it would happen in Expef-cma

G,S (k), the probability that Z returns 1 is precisely
P(Expef-cma

G,S (k) → true). On the other hand, Z’s output in the ideal model
cannot be 1 at any time regardless of the simulator S since the condition in
step 3 is never fulfilled by definition of F (i)

SIG. So for any simulator S we have:∣∣∣P(Z → 1 | π(i)
S , Ã)(k)−P(Zk → 1 | F (i)

SIG,S)(k)
∣∣∣ = P(Expef-cma

A,S (k)→ true).

That means that if G is able to forge signatures under an adaptive chosen-
message attack with non-negligible probability, then we can construct an envi-
ronment Z that successfully distinguishes F (i)

SIG and π
(i)
S .

Now for the “if” direction, consider the simulator S(i)
SIG as described in Fig-

ure 3 that mimics attacks carried out by the dummy adversary Ã on π. Fix an
environment Z. From Z’s point of view, there is no difference between commu-
nicating with S(i)

SIG in the ideal model and talking to Ã in the real model by
construction of the simulator S(i)

SIG. The only way for Z to detect a difference
between real and ideal model is consequently through requests to parties—note
here that the protocol π

(i)
S does not involve any communication which could

possibly be eavesdropped or altered by Ã.

9

The following event is defined in analogy to the notation in [CR02]. Let B
denote the event that at some point in time at which the signing party Pi is not
corrupted, Z requests any party to verify a valid signature σ of a message m
(valid in the sense that V(m,σ)→ accept), where m has not been signed before
by an explicit request to Pi. Let B̄ denote the event that B does not occur.

We show that by construction of F (i)
SIG and π

(i)
S , Z’s views in the real and

the ideal model do not differ until the event B occurs. If Pi is corrupted, all
verification requests of signatures that are not explicitly generated or evaluated
by S(i)

SIG are relayed to it, hence requests are answered exactly as in the real
model. On the other hand, if Pi is not corrupted, then the ideal functionality
F (i)

SIG answers on its own only verification requests for signatures that either have
been formerly generated or checked by S(i)

SIG, or signatures for messages that have
never been signed before. In that case, an answer may only be different to the
corresponding answer in the real model if F (i)

SIG is requested to verify a valid
signature of a message that has never been signed before. This is exactly what
the event B captures.

It follows that for any fixed security parameter k, we have

(a) P(B | F (i)
SIG,S(i)

SIG) = P(B | π(i)
S , Ã)

(b) P(Z → 1 | B̄,F (i)
SIG,S(i)

SIG) = P(Z → 1 | B̄, π
(i)
S , Ã).

Let G be an attacker on the signature scheme S built from Z in the following
way:

1. Run a simulation of Z.
2. When Z requests a key generation from party Pi, deliver Z with the challenge

public key v.
3. When Z asks Pi to sign a message m, redirect this request to the signing

oracle Ss(·).
4. When Z lets a party Pj verify a signature σ of some message m, compute

f ← Vv(m,σ). If f = accept and m was not requested to be signed before
by the simulated Z, quit the simulation and exit with (m,σ); else answer
Z’s request with f .

5. When Z asks the adversary to report messages sent between parties, reply
that no messages were sent; when Z asks the adversary to deliver a message
to a party, ignore this request.

6. When Z halts or asks the adversary to corrupt Pi, exit with failed.

Taking into consideration (a) and (b) from above, we obtain for a fixed security
parameter k:∣∣∣P(Z → 1 | π(i)

S , Ã)−P(Z → 1 | F (i)
SIG,S(i)

SIG)
∣∣∣

=
∣∣∣P(B) ·

(
P(Z → 1 | B, π

(i)
S , Ã)−P(Z → 1 | B,F (i)

SIG,S(i)
SIG)

)∣∣∣
≤ P(B) = P(Expef-cma

G,S → true).

10

Therefore, if Z successfully distinguishes π
(i)
S and F (i)

SIG, then G successfully
forges signatures. ut

Remark 3. We stress that this formulation has a significant drawback compared
to the (as we have shown, “over-idealized”) functionality FSIG: In case of a
corrupted signer Pi, it is always possible that signature verification requests are
answered in the positive, even if FSIG itself was not used to sign the message. In
view of our proof of Theorem 1, this does not seem to be easily avoidable since
in any digital signature scheme, when considered as a non-interactive protocol,
the environment can always use the state, i.e., the signing key of a corrupted
signer to sign arbitrary messages locally. In a sense, this property of F (i)

SIG allows
for “non-committing” signatures, i.e., with a corrupted signer, it is possible to
send signatures whose validity may be determined by the simulator at the time
of verification.

One way to milden the “non-committing” property of such signatures is to
have the simulator fix a verification algorithm right from the start. More pre-
cisely, the simulator S may be expected to supply the ideal functionality with
probabilistic algorithms for signing and signature verification at the beginning
of a protocol execution in the ideal model; these algorithms are then executed by
the ideal functionality instead of explicitly asking S for signatures and signature
verifications. In this case, the mentioned effect of “non-committing” signatures
in case of a corrupted signer is mitigated since the simulator may no longer
determine the validity of signatures dynamically, i. e., dependent on data gath-
ered during the protocol run. Moreover, this would circumvent that in the above
formalization (just like in the original formulations of FSIG) the simulator S is
informed about every single message to be signed. Such a modification to F (i)

SIG

could still be shown to yield a security notion equivalent to security under an
adaptive chosen-message attack with respect to existential forgeries; in fact, just
a small modification to the simulator S(i)

SIG used in the above proof is necessary
to do so. (Note that S(i)

SIG itself uses only the algorithms S and V for signature
generation respectively verification.) However, the drawback of such an idealiza-
tion is that it then itself has to execute cryptographic algorithms, which makes
it more difficult to analyze in larger contexts.

Remark 4. In this exposition, certain timing issues have been neglected: For the
validity of the composition theorem of [Can01], it is essential that all machines,
in particular environment machines and adversaries, underlie computational re-
strictions. For example it is mandated in [Can01] that all machines only perform
a polynomial number of total steps. However, to avoid a “trivial” distinction of
real and ideal model, it may make more sense to require machines which are
polynomially bounded only per activation, and to consider only environments
explicitly bounded in their total running time, cf. the approach in [HMQS03].
For the environments Z1 and Z2 from the proof of our Theorem 1, this is clear
by assumption about the protocols π inspected there. Yet, it remains to ensure
a polynomial number of steps per activation for our proposed functionalities
F (i)

SIG and the corresponding simulators. One way might be to bound these ma-

11

chines explicitly by a polynomial, thus yielding a family of functionalities and
simulators. (Note that also the “original” dummy adversary Ã from [Can01]
is not computationally bounded in any way—so when bounding the simulator,
we may assume a bounded real-model adversary, too.) This issue is not treated
anywhere in the UC framework, and, given the fundamental importance for this
framework, it seems questionable to simply neglect these details in the specifica-
tion of functionalities and simulators. We refer the reader to the simulatability
approach of Pfitzmann et. al. [PW00,PW01,BPW03] for a rigorous treatment of
issues of polynomial runtime.

5 Conclusion

We have shown the idealization of signature schemes FSIG from [CR02] to be un-
realizable, thus invalidating the results of [CR02, Claim 2] and [Can01, Claim 14
of full version]. We have proposed a variant of this digital signature functionality,
and we have proven it to be securely realizable by precisely those digital signa-
ture schemes that are existentially unforgeable under adaptive chosen-message
attacks.

However, we point out that this proof has to be seen in the context of the
underlying model: In the present form, the UC framework does not provide a
suitable level of detail to allow for rigorous proof techniques to show, e.g., the
correctness of a simulator, and issues of polynomial runtime are not treated
carefully although they are fundamental for the framework.

References

[BPW03] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A simulatable
cryptographic library with nested operations (extended abstract). In Proc.
10th ACM Conference on Computer and Communications Security (CCS),
2003. Extended version in IACR Cryptology ePrint Archive 2003/015, http:
//eprint.iacr.org/.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In Proc. 42nd IEEE Symposium on Foundations of
Computer Science (FOCS), pages 136–145. IEEE Computer Society, 2001.
Full version at http://eprint.iacr.org/2000/067.

[Can03] Ran Canetti. On universally composable notions of security for signature,
certification and authentication. Cryptology ePrint archive, November 2003.

[CD95] Ronald Cramer and Ivan Damg̊ard. Secure signature schemes based on
interactive protocols. In Advances in Cryptology: CRYPTO ’95, volume
963 of Lecture Notes in Computer Science, pages 297–310. Springer, 1995.

[CD96] Ronald Cramer and Ivan Damg̊ard. New generation of secure and practical
RSA-based signatures. In Advances in Cryptology: CRYPTO ’96, volume
1109 of Lecture Notes in Computer Science, pages 173–185. Springer, 1996.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key
exchange and secure channels. In Advances in Cryptology: EUROCRYPT
2002, volume 2332 of Lecture Notes in Computer Science. Springer, 2002.
Full version at http://eprint.iacr.org/2002/059.

12

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In Proc. 34th
Annual ACM Symposium on Theory of Computing (STOC), pages 494–503,
2002. Full version at http://eprint.iacr.org/2002/140.

[CR02] Ran Canetti and Tal Rabin. Universal composition with joint state. Cryp-
tology ePrint archive, April 2002. Short version appeared in Advances in
Cryptology: CRYPTO 2003.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. Cryp-
tology ePrint archive, November 2003.

[DN98] Cynthia Dwork and Moni Naor. An efficient existentially unforgeable sig-
nature scheme and its applications. Journal of Cryptology, 11(3):187–208,
1998.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, 1988.

[HMQS03] Dennis Hofheinz, Jörn Müller-Quade, and Rainer Steinwandt. On modeling
IND-CCA security in cryptographic protocols. Cryptology ePrint Archive,
Report 2003/024, February 2003. http://eprint.iacr.org/2003/024.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preserva-
tion of secure reactive systems. In Proc. 7th ACM Conference on Computer
and Communications Security, pages 245–254, 2000.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive
systems and its application to secure message transmission. In Proc. 22nd
IEEE Symposium on Security & Privacy, pages 184–200, 2001.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure
signatures. In Proc. 22nd Annual ACM Symposium on Theory of Computing
(STOC), pages 387–394, 1990.

13

