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Abstract. Nowadays, there exists a manifold variety of cryptographic
applications: from low level embedded crypto implementations up to high
end cryptographic engines for servers. The latter require a flexible imple-
mentation of a variety of cryptographic primitives in order to be capable
of communicating with several clients. On the other hand, on the client
it only requires an implementation of one specific algorithm with fixed
parameters such as a fixed field size or fixed curve parameters if using
ECC/ HECC. In particular for embedded environments like PDAs or
mobile communication devices, fixing these parameters can be crucial
regarding speed and power consumption. In this contribution, we pro-
pose a highly efficient algorithm for a hyperelliptic curve cryptosystem
of genus two, well suited for these constraint devices.

In recent years, a lot of effort was made to speed up arithmetic on genus-
2 HEC. This work is based on the work of Lange [Lan02a,Lan03] and
presents a major improvement of HECC arithmetic for curves defined
over fields of characteristic two. We optimized the group doubling oper-
ation for certain types of genus-2 curves and we were able to reduce the
number of required multiplications to a total of 9 multiplications. The
saving in multiplications is 47% for the cost of one additional squaring.
Thus, the efficiency of the whole cryptosystem was drastically increased.

Keywords: hyperelliptic curves, explicit formulae, efficient implementation,
genus two

1 Introduction

Modern cryptographic implementations vary from highend server applications to
applications on conventional PCs, Workstations, and applications on embedded
devices such as PDAs and mobile communications devices. Every implementa-
tion is adapted to its requirements given by the application. If we consider, e.g., a
scenario consisting of a central server controlling access from and to a network of
several PDAs, each PDA will use a different cryptographic primitive (algorithm,
curve, field polynomial etc. ). To be capable of communicating with all PDAs,
the cryptographic engine running on the server has to support a whole suite of
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cryptographic algorithms whereas each algorithm has to cope with different in-
put parameters. In contrast, the implementations on constrained platforms (like
the PDA) usually require only one cryptographic algorithm with a fixed set of
input parameters. Hence, implementations with fixed parameters are attractive
for embedded applications and those with flexible parameters for systems with
fewer constraints such as servers.

During the last decade, asymmetric cryptosystems based on elliptic curves
have become very popular, especially for embedded applications. Elliptic curve
cryptosystems (ECC) benefit from shorter operand sizes when compared to RSA
or DL based systems. This fact makes ECC particularly well suited for small
processors and memory constrained environments. Since their introduction, ECC
have been extensively studied by the research community and in industry.

Elliptic curves are a special case of hyperelliptic curves (HEC). In 1988,
Koblitz suggested HEC for the use in cryptosystems [Kob88]. In contrast to the
EC case, it has only been until recently that the idea to use HEC for cryp-
tographic applications has been analyzed and implemented both in software
[Kri97,5598,5S198,Eng99b,SS00] and in more hardware-oriented platforms such
as FPGAs [Wol01,WP02,BCLW02]. Since the HEC operand size is only a frac-
tional amount of the EC operand size, HECC is a cryptosystem of choice when
targeting embedded environments.

In 1999, [Sma99] concluded that there seems to be little practical benefit
in using HEC, because of the difficulty of finding hyperelliptic curves and their
relatively poor performance when compared to EC. However, quite recently the
efficiency of HEC group operation has been improved in such way, that HECC
has become an attractive alternative to other cryptosystems like RSA or ECC
[Har00,MCT01,MDM*02,Tak02,Lan02a,Lan03,PWGP03,PWP03].

In this contribution, we improved the arithmetic of doubling a divisor on
genus-2 HEC. When using windowing methods for a divisor scalar multiplica-
tion, doubling becomes the crucial step for the performance of the entire cryp-
tosystem. Thus, improving the arithmetic of doubling has a direct impact on the
efficiency of the whole system.

The remainder of the paper is organized as follows: Section 2 summarizes con-
tributions dealing with previous improvements of group operations for HECC.
Section 3 gives a brief overview of the mathematical background related to
HECC. Section 4 describes the derivation of the new explicit formulae for genus-2
curves. Finally, we present our results in Section 5 and conclude with a discussion
of our results in Section 6.

2 Previous Work

In this section, we briefly summarize previous attempts to refine group oper-
ation on genus-2 curves. Since the proposal of HECC for the use in cryptog-
raphy in 1988 [Kob88], it took several years until the rise of first improve-
ments of its arithmetic. Nagao [Nag00] proposed several improvements of the
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polynomial arithmetic of Cantor’s algorithm [Can87]. The same year, Harley
came up with the first explicit formulae for Cantor’s algorithm for genus-2 HEC
[Har00] resulting in a drastic speed up of the cryptosystem. After Harley’s pro-
posal, several contributions containing improvements of the explicit formulae fol-
lowed. The authors in [MCT01,MDM™*02,Tak02,Lan02a,Lan03,Lan02b,Lan02c]
targeted genus-2 curves whereas [KGM102,Pel02,PWGP03,PWP03] deal with
the derivation and improvement of explicit formuale for HEC of genus 3 or 4.
For more details on previous improvements made to the explicit formulae the
interested reader is referred to [Pel02,PWP03,PWGP03].

The publication by Lange [Lan02a] is the first to address formulae for curves
of arbitrary characteristic. In particular curves of characteristic two are impor-
tant from an implementational point of view since operands in the underlying
field can be represented as binary vectors. The formulae for a group addition
and a group doubling can be found in Appendix A in Table 2 and Table 3,
respectively.

3 Mathematical Background

In this section we present an elementary introduction to some of the theory
of hyperelliptic curves over finite fields of arbitrary characteristic, restricting
attention to material that is relevant for this work. For more details the reader
is referred to [Kob89,Kob98].

3.1 Hyperelliptic Curves

Let F be a finite field, and let F be the algebraic closure of F. A hyperelliptic
curve C of genus g > 1 over F is the set of solutions (z,y) € FXTF to the equation

C:y? + h(z)y = f(2)

The polynomial h(z) € F[z] is of degree at most g and f(z) € F[z] is a monic
polynomial of degree 2g + 1. For odd characteristic it suffices to let h(z) = 0
and to have f(x) squarefree. Such a curve is said to be non-singular if there are
no pairs (z,y) € F x F which simultaneously satisfy the equation of the curve C
and the partial differential equations 2v + h(z) = 0 and h'(z)v — f'(z) = 0.

If we want to define the Jacobian over F, denoted by Jo(F), we say that a
divisor D = )" m;P; is defined over F if D” = > m;Pf is equal to D for all
automorphisms o of F over F [MWZ96].

Each element of the Jacobian can be represented uniquely by a reduced
divisor [Ful69,Can87]. This divisor can be represented as a pair of polynomials
u(r) and v(z) with degv(z) < degu(z) < g, with u(z) dividing y%+h(z)y — f()
and where the coefficients of u(z) and v(x) are elements of F [Mum84, page 3.17].
In the remainder of this paper, a divisor D represented by polynomials will be
denoted by div(u,v). Cantor’s algorithm describes the group addition of two
divisors on Jo(F) [Can87]. In 2000, Harley proposed the first explicit formulae
for a group addition and a group doubling of divisors on J¢(F) [Har00].
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3.2 Group Operations on the Jacobian

This section will provide a brief description of the algorithms used for adding
and doubling divisors on J¢(F). We will solely concentrate on Harley’s algorithm
which is the starting point for all further improvements done on genus-2 curve
arithmetic.

In [GHOO], Gaudry and Harley could reduce the number of operations by
distinguishing between possible cases according to the properties of the input
divisors. They described an efficient algorithm (using Karatsuba multiplication,
CRT, and Newton Iteration) to reduce the overall complexity of the group op-
erations. All further contributions dealing with explicit formulae concentrated
solely on the (frequent) case where the two input divisors are coprime and of
weight two. For HEC of genus 2 over Fa- , this case occurs with overwhelming
probability of P ~ 1 — 278 and, thus, is within main concern of all implemen-
tations.

Algorithm 1 combines all steps of the most frequent case of doubling a divi-

sor for arbitrary characteristic. Algorithm 2 depicts all steps when adding two
divisors.

Algorithm 1 Frequent Case for Group Doubling (g=2)

Require: D; = div(ui,v1)
Ensure: D = div(us2,v2) = 2D
C k= 'u%—vlh—f

w1
u2 = v made monic
v2 = —(h + su1 + v1) mod v’

1 ot (exact division)

2: s = ﬁ mod u1

3w = 8% + E2E2) (onact division)
4:

5:

Algorithm 2 Frequent Case for Group Addition (g=2)
Require: D; = div(u1,v1), D2 = div(uz, v2)
Ensure: D3 = div(us,v3) = D1 + D>

k= f—vih—v?
w1

(exact division)
s = 2= mod u2
w1
Z = su1
ul _ k—s(z+h+2v1)
= featiatu)
, .
u3 = w made monic
v3 = —(h+ 2z + v1) mod us

(exact division)
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3.3 Security of HECC

Most cryptographic applications based on EC or HEC require a group order of
size of at least ~ 2'%. Thus, for HECC over F, we will need at least g -log, ¢ ~
2160 where g is the genus of the curve. In particular, for a curve of genus two,
we will need a field F, with |F,| ~ 28 i.e., 80-bit long operands. It is well
known that the best algorithm to compute the discrete logarithm in generic
groups such as the Jacobian of a HEC is Pollard’s rho method or one of its
parallel variants [Pol78,vOW99]. They solve the DLP with complexity O(y/n)
in generic groups of order n. In [FR94,Riic99], attacks against special cases of
HECC were discovered with complexity smaller than O(y/n). An algorithm to
compute the DL in subexponential time for sufficiently large genera and variants
of this algorithm were published in [ADH94,FS97,Eng99a,Gau00,EG02]. The
complexity of these algorithms is only better than the Pollard’s rho method for
g > 3. In [Gau00] it is shown that index-calculus algorithms in the Jacobian of
HEC have a higher complexity than the Pollard rho method for curves of genus
greater than 4. Recent results by Thériault [Thé03] show progress in attacks
against HEC of genus 3 and higher. In the case of genus-3 curves, the group size
should be increased by = 5% according to [Thé03].

4 New Improvements of the Arithmetic

Quite recently, the research community put a lot of effort into increasing the
efficiency of HEC group operations [MCT01,MDM*02,Tak02,Lan02a]. The most
efficient formulae known for group operations on genus two HEC over fields of
even characteristic are summarized by Lange [Lan02a]. In this section we briefly
outline our improvements on the formulae presented in [Lan02a]. All formulae are
based on the ideas of Gaudry and Harley [GHOO0], who introduced the first explicit
formulae with which the group operations were computed using the original
algorithm presented by Cantor [Can87]. They noticed that one can reduce the
number of operations required to add/double divisors by distinguishing between
possible cases according to the properties of the input divisors. This technique
is combined with the use of the Karatsuba multiplication algorithm [KO63] and
the Chinese remainder theorem to further reduce the complexity of the overall
group operations. All following contributions including this paper improved the
algorithm proposed in [Har00].

With this work, we further optimized the formulae for doubling a divisor for
fields F2- . Table 2 and Table 3 present the explicit formulae for a group addi-
tion and a group doubling [Lan03] and Table 1 presents the optimized explicit
formulae for doubling a divisor as derived in this paper.

The starting point for the improvements are the formulae displayed in Ta-
ble 3. According to [Lan03], for even characteristic and deg[h(z)] = 1, we can
achieve fy = f3 = fs = 0. With the substitution z — x — f4/5 we obtain a curve
where fy = 0. y = y + hy f32? provides f3 = 0. In addition, if we can find a b
such that fshg + b%hy + bh3 = foh; has a solution, we can achieve fo = 0 by
substituting y — y + hy fsz? + bz.
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For our improvements we assume curves of the form y2 +zy = 2% + fiz + fo
where fo, fi € Fan . The following modifications are applied to the steps of Table 3
to reduce the required number of multiplications from 17 to 9 as diplayed in
Table 1:

— Steps 1-3 stay the same: the resultant turns out to be r = ug and the inverse
is inv = = + uy; solely the computation of k = kjx + ko costs 1M.

— In the calculation of Step 4, s" = s{z+ s, costs only two multiplications, since
the terms kiinv; = k; = w; and wiu; = k; are already computed in Step 3.
Furthermore, s§ = invoky +invi ko —uiw; reduces to s] = urky +ko—u1k; =
ko. Instead of computing s = koinve — uokiinvy = kou1 — uok: we compute
so = (uo + u1)(ko + k1) — urkr — uoko = (uo + u1)(ko + k1) — t1 — to.
Since t; is precomputed in Step 3, the calculation of (ug + u1)(ko + k1) and
t2 has to be carried out (2M). Note that t2 is required in Step 5, where
1/(rst) = 1/(kouo) = 1/t5.

— In Step 5, we do not normalize the s-polynomial as suggested by Takahashi
[Tak02] and compute s; = sjws. Instead of computing so, we set tg = sou; =
u? +u%sl = ki (u1+s1), which is required in Step 6. Thus, we do not need the
former value wy from Table 3 and can reduce the cost by two multiplications
at the cost of one additional squaring.

— With the previously calculated value tg, the computation of z = su comes
for free, reducing the cost by 2M compared to Table 3. These savings are
possible due to s being not monic.

— Contrary to Step 7 in Table 3, we have to normalize the u' polynomial
by multiplicating with 1/s? = wy in Step 7. This results in u} = w4 and
ul = wysd + k1 + ws. wyst can be computed as wys? = wy(u? + 3)u? =
wauttwysiu? = wyui+u? = wyk?+k; (due to the fact that sg = k1 +uys; <
so/uy = ki Jus + $1 = uy + s1). Thus, Step 7 consumes only 1M + 1S.

— With s not monic, v' simply is obtained by v' = —(h + z + v) mod «'. Us-
ing Karatsuba style reduction and some values computed in previous steps,
Step 8 can be carried out with two multiplications only.

5 Results

Table 1 presents the new improved doubling algorithm according to the modifi-
cations described in Section 4. The total cost of doubling a divisor on a HEC of
genus 2 over fields Fe- is one field inversion, 9 field multiplications, and 6 field
squarings. The saving in multiplications is 47% for the cost of one additional
squaring. From a computational point of view, squarings can be neglected in
fields >~ since their calculation is almost for free.
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The main operation of a hyperelliptic cryptosystem is a scalar multiplication
with a divisor. If we assume a scalar of bitsize n and a windowing method to
perform the multiplication, we have to compute n group doublings and approxi-
mately 0.2n additions. Thus, with the new proposed formulae, the cryptosystem
obtains a speed up of ~27%' compared to a system based on the doubling for-
mulae in Table 3.

Table 1. Optimized explicit formulae for doubling a divisor on a HEC of genus two
over ]an

Input |Weight two reduced divisors D = (u,v) with

u =z + uwix + uo

V= v1Z + Vo

furthermore:

h=wzand f =25+ fiz + fo

Output|A weight two reduced divisor D' = (u',v") = [2]D with
w =z 4+ uiz + u6;

v =iz + vg;

Step |Procedure Cost
1 Compute resultant r of u and h + 2v: -
T = U0,

2 |Compute almost inverse inv = r /o mod wu1: —
v = 1; invy = uz;
3 |Compute k = [(f — hv — v*)/u] mod u: 1M + 28
wo = v7; w1 = u; ki = wi;
t1 = uik1; ko = t1 + wo + v1;
4 |Compute s’ = kinv mod u: 2M
ta = uoko; 81 = ko; 5o = (uo + u1)(ko + k1) +t1 + to;
If 54 = 0 perform Cantor’s Algorithm

5 |Compute s1 and sou1: I+3M+3S
ty =15 (= 1/(rsh)); w3 = r’t3(= 1/s1); wa = w3;
51 = s{t3; te = t1 + k1s1(= Sou1);

6 |Compute z = su (Karatsuba): —

! !
20 = Sp; 21 = t6 + S1; 22 = W1; 23 = Sy

7 |Compute u' = 1/s3((su + h +v)* + f)/u*: M+ S
uy = 1; ui = wa; up = waki + k1 + ws;
8 |Compute v' = h + 2z + v mod v’ (Karatsuba): 2M

ts = ws; tr =ta + 22; t5 =t7u6;
vy = (23 + t7)(up + uy) +ta+t5 + 1+ 21 + v1; vo = t5 + 20 + vo;
[ Total | [T +9M + 65|

! For this approximation, it is assumed that one field inversion is as costly in time
as 7 field multiplications. This approximation is based in several observations of
implementations, e.g., in [PWGP03]
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6 Conclusions

With this contribution, we introduce a major speed-up of the arithmetic on
genus-2 hyperelliptic curves over fields of characteristic two. We were able to re-
duce the number of multiplications for doubling a divisor by approximately 47%.
Since doubling is the crucial step for performing a divisor scalar multiplication,
this improvement results in a performance gain of approximately 27% for HECC

of genus 2.
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A Explicit Formulae for Genus Two HEC

The explicit formulae for the group operations adding and doubling on a HEC

of genus 2 over Fy» are presented in Tables 2 and 3, respectively.

Table 2. Explicit formulae for adding two divisors on a HEC of genus two over Fan

[Lan03]
Input [Weight two reduced divisors D1 = (u1,v1) and Ds = (us2, v2) with
ur = 2 + un@ + uio;
uz = 2% + U T + u20;
V1 = v11% + V10;
vV = V21T + V20;
furthermore:
h=zand f =2+ fiz + fo
Output|A weight two reduced divisor D' = (uv',v") = Dy + D, with
v =2+ vz + up;
v = vz + s
Step |Procedure Cost
1 |Compute resultant r of u; and us: 3M +18
21 = U1l — U21, Z2 = U20 — U10, Z3 = U11R1 + 22
r = 2223 + 212U10
2 |Compute almost inverse inv = 7/u2 mod u;: -
NV = 21, 1NV = 22
3 |Compute s' = rs = (v1 — v2)inv mod u: 5M
w1 = V10 — V20, W2 = V11 — V21, W3 = INVW1, W4 = INV1W2
51 = (invo + inv1 ) (w1 +w2) — ws — wa(l +u11), so = w3 — Urew4
If 1 = 0 perform Cantor
4 |Compute s =z + s0/s1 = = + su/s} and s1: I+5M+2S
wi = (rsy) ™", we = rwi(= 1/s}), ws = 5'1211)1(: s1)
wa = rwa(=1/81), ws = w3, s§ = spw2
5 |Compute I = s"us = 2° + lha® + ljx + lj: 2M
Iy = u21 + 8o, 11 = u20 + u2180, Lo = u2080
6 |Compute v’ = (s(I+h+2v1) — k)ul' =z +ujz + up: 2M
uy = sy + 15 — w1l — ws
uy = (56' - u11)(l'2 —u11) —uo + I +wa+ (w11 + u21)ws
7 |Compute v' = —(h + 1+ v2) mod u': 4M
wir = Iy —ul, wo = viwr +up — 11, v] = waws —va1 — 1
wy = upwi — 1y, vy = wawg — Va0
| Total | I +21M + 35|
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Table 3. Explicit formulae for doubling a divisor on a HEC of genus two over Fan»

[Lan03]

Input

Weight two reduced divisors D = (u,v) with
u=m2+uw+uo;

v = 11T + Vo;

furthermore:

h = ha2® + hix + ho; where h; € {0,1};

f =%+ fax* + f22® + fox® + fix + fo; where f1 € {0,1};

Output

A weight two reduced divisor D' = (v/,v") = [2] D with
' =z + ulz + up;

7 ! 7
v = 01T + vp;

Step |Procedure Cost

1 Compute resultant r of u and h + 2v: 3M +2S
let © = h + 2v mod u:
01 = hy + 2v1 — h2U1; Do = ho + 2vg — h2U0;
wo = v w1 = ud; wy = 75 ws = widy;
7 = wow2 + Vo(Vo — w3);

2 |Compute almost inverse inv = 7/ mod u;: —
1NV = —01; 1NV = Vg — W3;

3 |Compute k = [(f — hv — v®)/u] mod w: 1M
w3 = f3 + wi1; wa = 2uo;
k1 = 2(w1 — faur) + w3 — ws — v1ho;
ko = u1(2ws — w3 + faur +vih2) + fo —wo — 2fauo — vih1 —voha;

4 |Compute s’ = kinv mod u: 5M
wo = koi’n’vo; w1 = k1i’rw1;
s1 = (invo + inv1) (ko + k1) — wo — w1 — waws;
80 = Wo — UoW1;
If s} = 0 perform Cantor’s Algorithm

5 |Compute s = = + sp/s] and s1: I+5M+2S
wi = (rsh) ™' we = rwi(= 1/s1); ws = 81 wi(= s1);
wa = rwa(= 1/51); ws = wi;
S0 = 8611)2;

6 |Compute | = su: 2M
lo = w1 + so; l1 = u1so + uo; lo = uoso

7 |Compute v’ = [IZ + wal(2v + h) — ws(f — vh — v?)]/u’: 2M + 18
u'1 = 280 + wah2 — ws;
ug = s + wa(ha(so — u1) + 201 + h1) + ws(2u1 — fa);

8 |Compute v' = —(h + w3l + v) mod u': 4M
wy = la —uh; we = viwr +uy — 1
vl = waws — vy — h1 + haul;
wa = upwi — lo;
’U6 = w3w4 — Vo — ho + hzub;

Total I+20M +5S8

with h(ib) =hix+hoand fo=f3=0 I+ 17M + 58




