

Whitenoise
Laboratories Inc.

Software Specifications

For

Tinnitus Utilizing Whitenoise Substitution
Stream Cipher

(Revised)

Written by
Stephen Boren email: sboren@bsbutil.com
Andre Brisson email: brisson@bsbutil.com

Unlike the encryption algorithms submitted to Advanced Encryption Standards competition, Whitenoise is not a
free algorithm. We encourage aggressive and widespread testing of Whitenoise. However, any unauthorized use
or deployment in any non-academic context, or in any context with commercial implications, without written
authorization or a license from the owners is strictly prohibited. The patent firm of Oyen Wiggs Green and Mutala
fully intends to be diligent in enforcing all Intellectual Property rights associated with United States patent
application no. 10/299,847 and with the Patent Cooperation Treaty filing for patent rights in 125 countries.

Created: 6/24/2002 By: Stephen Boren
Last Modified: 2/24/2004 By: Stephen Boren

 Whitenoise Laboratories Inc.

Table of Contents

TABLE OF CONTENTS ... 2
ABSTRACT... 2
1. KEYWORDS: .. 2
2. SUMMARY OF DESIGN GOALS... 3
3. ALGORITHM DESCRIPTION .. 3
4. ALGORITHM IMPLEMENTATION ... 4

KEY CREATION INTERFACE: ... 5
OUTPUT GENERATION INTERFACE:.. 5
KEY CREATION ALGORITHM:.. 6

5. KEY CREATION RULES .. 7
6. KEY FILE FORMAT... 8
7. NOTES: .. 8

Abstract
This paper introduces an iteration of a new generation stream cipher called Whitenoise
and more specifically how it is implemented in an application called Tinnitus. Initial
research supports that in its base state Whitenoise is among the fastest stream ciphers
known while maintaining a very high security level when deployed from software.
Whitenoise holds out great potential for significant speed increases when deployed from
hardware or a chip, and the speed of Whitenoise will be readily scalable upwards
because of the ability to optimize its performance. Optimization includes pre-processing
and pre-caching. The Whitenoise bit independent architecture also holds out great
promise for dramatic speed improvements because of its ability to be deployed in
multiple channels with many parallel threads encrypting, transmitting, and decrypting
simultaneously. Testing also indicates that the level of randomness generated is among
the highest levels of entropy generated. A Security Evaluation of Whitenoise is posted at
http://eprint.iacr.org/2003/218/.

By utilizing a two-byte draw on the substitution, a one-way function is created. This
iteration of Whitenoise utilizes an s[65536].

This is a large substitution box with 65536 slots for the full 16 bit (2 bytes) addressing,
but only outputs 1 byte or 8 bits for one slot. This makes for 256 outputs that would be
the same value and 256 different values but would be arranged randomly (each value 0
to 255 would appear 256 times) to completely delinearize the output stream. To
improve the data to noise ratio, the output is XORed with a third Whitenoise generated
byte. This improved cipher was revised based on the attack given at
http://eprint.iacr.org/2003/250/.

1. Keywords:
secret-key cryptography, cryptanalysis, stream cipher, Whitenoise

 2 of 8

 Whitenoise Laboratories Inc.

2. Summary of design goals
It was desirable to design a symmetric stream cipher algorithm that would be very
flexible, very fast, very random, and very secure. It was desirable to be able to rapidly
create key streams of specific sizes and to be able to make and rapidly utilize keys of
enormous size. It was necessary that the key streams always be larger than the data
encrypted, that the offsets and counters had variable starting points and that identical
sequences were never used more than once. Rapid key generation is desirable to
overcome the difficulties of identifying primes and prime composites attendant with other
encryption techniques. The ability to jump to any part of a stream is useful. Finally, it was
desirable to have an algorithm that could be used in varied contexts. For instance, the
algorithm can be used either in a Public Key Infrastructure or in an independent context.
Overall, the goal was to create a cipher that would mimic multi-dimensionalism in a two
dimensional context.

3. Algorithm Description

Whitenoise Substitution Stream Cipher is a multi-key-Super key hierarchical
cryptographic process. This cryptographic system utilizes a method of encryption that
can reasonably be described conceptually as an algorithmic representation of a multi-
dimensional encrypting cipher matrix. The Whitenoise algorithm takes several sub keys
and then creates a very long non-repeating key stream.

The resulting key stream is then put through a 2 byte substitution cipher that returns only
1 byte which is then XORed with a 3rd byte, the output of which is used to randomize the
plaintext.

The Whitenoise component. The mechanism for computing the “SuperKey” from the

“sub keys” works as follows. Let denote the j-th byte of the i-th “sub key”. Let

denote the length of the i-th “sub key.” For example, we might have = 13,
= 17, and so on. Create from the “sub key” i the unending sequence of bytes

}{i
js

}{il }1{l }2{l

LL
l

}{
1

}{
0

}{
)1(

}{
2

}{
1

}{
0 ,,,,,, }{

iiiiii ssssss t −

Let denote the j-th byte of the above sequence, if j is any number 0 to ; or, in

other words, we implicitly reduce the subscript of modulo . Then, the j-th byte

of the “SuperKey,” call it , is defined by

}{i
js ∞

}{i
js }{il

jZ

}{}2{}1{ n
jjjj sssz ⊕⊕⊕= L

Here, “ ” denotes the XOR operation. In other words, to be more explicit, ⊕

 3 of 8

 Whitenoise Laboratories Inc.

}{
mod

}2{
mod

}1{
mod }{}2{}1{

n
jjjj nsssz

lll
L⊕⊕⊕=

Where j mod returns an integer in the range 0,1,2,…,
}{il)1(}{ −il

The “SuperKey” has a j value that ranges from 0 to .)1)((}{}3{}2{}1{ −×× nlLlll

Let P0,P1,P2,P3,.. be the bytes of the plaintext, and C0,C1,… the bytes of the ciphertext, in
order. Also, z0,z1,… denotes the bytes of the "SuperKey" (computed as already
described in Section 1).
The Substitution portion is used to delinearize the above stream. This is done by having
a substitution using two bytes of the Superkey stream that are used to index the full
65536 array. This array is a random scrambling of values 0 to 255, 256 of each value.

We define the ciphertext by Ci := Pi xor S[z(i-10)*256 + z(i-3)] xor zi. The ciphertext C is
formed by concatenating the bytes C0,C1,..,and then C is returned as the result of the
encryption process.

Decryption works in reverse in the obvious manner.

4. Algorithm Implementation

The interface to Whitenoise Substitution is as follows. The input to the stream cipher is
two seed values, used to create the key. In this implementation this is done during fob
creation and never done by the user.

 ENCRYPTION INTERFACE:
 INPUTS:
 a key K = created by (seed1, seed2)
 a big number counter T(set by key creation and updated as it is used.
 a L-bit plaintext P, for some L
 OUTPUT:
 a L-bit ciphertext C, which is the encryption of P

 DECRYPTION INTERFACE:
 INPUTS:
 a key K = created by (seed1, seed2)
 a big number counter T(same as above)
 a L-bit ciphertext C, for some L
 OUTPUT:
 a L-bit plaintext P, which is the decryption of C

The counter T is set during key creation for the first message, then incremented by the
size of the plaintext for the next message, and so on, for the third message, …etc.

In this implementation, the user is the only one using the encrypt/decrypt, so no keys
need to be transmitted.

We can assume that the counter T is known to any eavesdropper/thief who can acquire
all ciphertexts. The attacker cannot exert any influence over T; T will always simply

 4 of 8

 Whitenoise Laboratories Inc.

count from starting point on up. The counter value T might not appear in the actual
programming API for any real implementation of Whitenoise Substitution-- for instance,
the Whitenoise Substitution implementation might instead be stateful and implicitly
maintain T as part of its private state -- but the effect is the same, and this way we can
specify Whitenoise Substitution as though it were a stateless, deterministic mathematical
function.

The key K is pair of values, termed seed1 and seed2. Seed1 is a N-digit (our big
number library uses char digits to do limitless math, and it is only necessary to preset the
offsets) value chosen secretly, uniformly at random, independently of everything else,
and never disclosed. Seed2 is a 32-bit value chosen secretly, uniformly at random,
independently of everything else, and never disclosed. The value N is a security
parameter, and will typically be in the range of 500-700 digits or 1600-2400 bits. Any
choice in this range should lead to acceptable security. The value N may be safely
made public, without endangering the security of the system, and it might be the same
for all users (for instance, it might be hard-coded in the software). All security resides in
the secrecy & unpredictability of the key K.

Whitenoise Substitution encryption is decomposed into two components:
(1) key setup, and (2) output generation. The interface to key setup is as follows:

 KEY CREATION INTERFACE:
 INPUTS:
 a key K = (seed1, seed2)
 OUTPUTS:
 an integer n, in the range 10,11,..,30
 a list (l1,l2,..,ln) of n lengths
 a list (s1,s2,..,sn) of n sub keys
 a big number counter T
 an array S[65536] of bytes

The integer n is the number of sub keys. Each length li of the first 10 is a prime number
in the range 2,3,5,.., 15991 (there are 1862 different primes in this range), and li
represents the length in bytes of the ith sub key, and the remainder of the subkeys are of
the range 2,…,16000 with no prime requirement but stipulated that it is not divisible by a
previous size. Each sub key si is li bytes long. S[] is the substitution; it is a permutation
on bytes. We will sometimes write to denote the ji

js th byte of si, for j in the range
0,1,..,li-1. All the outputs of the key setup phase must be kept secret, and they may be
different for each message enciphered.

The interface to output generation is as follows:

 OUTPUT GENERATION INTERFACE:
 INPUTS:
 an integer n, in the range 10,11,..,30
 a list (l1,l2,..,ln) of n lengths
 a list (s1,s2,..,sn) of n sub keys
 a big number counter T
 an array S[65536] of bytes

 5 of 8

 Whitenoise Laboratories Inc.

 a L-bit plaintext P, for some L
 OUTPUT:
 a L-bit ciphertext C, which is the encryption of P

Whitenoise Substitution is obtained by plugging the implementation of the key setup
phase into the implementation of the output generation phase. To fully specify
Whitenoise Substitution, it suffices to separately specify each of these two phases.

KEY CREATION ALGORITHM:
 1. Treat seed1 as the decimal representation of an integer in the range of 500-700
digits.
 2. Let X := seed1
 3. Let Y := X is the irrational number generated by square rooting X
 4. Let Z1, Z2, Z3, Z4, .. be the digits after the decimal point in the decimal representation
of Y. Each Zi is in the range 0,..,9.
 5. Call srand(seed2). // only the first time
 6. Call rand() to get the irrational starting point, start.
 7. Let start := rand() mod 100. start is in the range 0,1,..,99.
 8. Throw away Z1 and Z2 all the way to Zstart.
 9. Let tmp := 10*Z(start +1) + Z(start +2). Throw away those used values.
 10. Let n := 11 + (tmp mod 20) and n is in the range 11,12,..,30.
 11. For i := 1,2,..,10, do:
 12. Let j = 4*(i-1)
 13. Let tmp be the next byte from the Z stream.
 14. Let tmp := 1000*Zj+1 + 100*Zj+2 + 10Zj+3 + Zj+4
 15. Let t := 1862 - (tmp mod 1862) and t is in the range 1,2,.., 1862.
 16. Let u be the tth prime among the sequence 2,3,5,.., 1862.
 17. If u is equal to any of l1, l2, .., l{i-1}, set t to (t+1)mod 1862 goto 16
 18. Set li = u.
 19. Next I : goto 11 until all 10 subkey sizes are set.
 20. Then get remainder of lengths
 21. For i := 11,..,n, do:
 22. Let j = 5*(i-1)
 23. Let tmp be the next byte from the Z stream.
 24. Let tmp := 10000*Zj+1 + 1000*Zj+2 + 100Zj+3 + 10*Zj+4 + Zj+5
 25. Let t := 16000 - (tmp mod 16000). t is in the range 1,2,..,16000.
 26. Let u be the t.
 27. If u is divisible by any of l1, l2, .., l{i-1}, (or u is not co-prime)

set t to (t+1)mod 16000 goto 26
 28. Set li = u.
 29. Next I : goto 21 until all subkey sizes are set.
 30. For i := 1,2,..,n, do:
 31. For j := 0,1,2,..,li, do:
 32. Let k := 4*j
 33. Let tmp be the next byte from the Z stream.
 34. Let tmp := (1000*Zk + 100*Zk+1 + 10*Zk+2 + Zk+3) mod 256
 35. Let := tmp i

js
 36. Next j : Next subkey byte
 37. Next I : Next subkey

 6 of 8

 Whitenoise Laboratories Inc.

 38. For i := 0,1,2,..,65535, do:
 39. Set S[i] := Int(i / 256) (integer value only, truncated)
 40. Next i: initialize S-box to 256 of each value
 41. For i := 0,1,2,..,65535, do:
 42. Let j := 4*i
 43. Let tmp := (10000*Zj + 1000*Zj+1 + 100*Zj+2 + 10*Zj+3 + Zi+4) mod 65536
 44. Set tmp2 := S[i]
 45. Set S[i] := S[tmp].
 46. Set S[tmp] := tmp2.
 47. Next i
 48. Let offset := ZiZi+1…Zi+9
 49. Return n, (l1,l2,..,ln), (s1,s2,..,sn), S[65536] and offset.
 50. Save in keyfile and add seed1 and start value to DB
 51. Increment seed1 and goto 2 //repeat until enough keys are created

It is possible to use srand() and rand() as they are only used to create the keys at the
manufacturing stage and saving the resulting keys on the FOB. In a distributed system
seed2 would just be used directly as only 1 key is made from the two seeds.

5. Key Creation Rules

Tinnitus is a personal security system deployed from a key FOB which you plug into your
computer and which contains your key. You can encrypt all the files that you wish to
secure. Therefore, there is no key distribution system required. It is not for use in any
kind of broadcast situation. Without your FOB you cannot access the encrypted files.

Each FOB contains its own unique key (the business version will contain two such keys
for use with a master key for limited communication abilities). The manner in which
those keys are created is in the following definitions.

First the system must be seeded with two random seed values. The first seed value will
be in the range of 500 to 700 decimal digits. The second seed value is a 32-bit value
simply used to seed the rand function. To create the keys the square root of the first
value is used to create a pseudo random sequence to be used to create the key. The
second seed value is used to initialize this using the srand function and rand is then
used to set the starting offset (0 to 100). The next key is created using seed1 + 1 and
the next rand call, and this is continued…(of course each seed1 is tested to make sure it
is not a perfect square).

For Tinnitus, the maximum subkey size is 16000 bytes. This means there are 1862
different subkey lengths that follow the rule that the first ten subkey lengths must be
prime and the subsequent subkeys greater than ten need only to be not divisible by any
of the previous subkey lengths. The first number to be calculated is the number of
subkeys to be used. This is calculated by taking the first two digits generated by our
random stream. MOD this by 20 and add 11 to give the key structure of between 11 and
30 subkeys. Then use the following system repeatedly to generate each subkeys
length. A 4-digit section is generated and then is MODed by 1862 then you take 1862
minus this value to choose the prime value. If this value is already used it takes the next
available larger value. This is used to get the prime lengths, the remaining lengths are

 7 of 8

 Whitenoise Laboratories Inc.

then filled similarly but only must be co-prime. Then the subkeys are filled in turn byte
by byte. The substitution cipher is then created by grabbing a byte in sequence to
randomize it. Once the key is created it is saved into a file using the file format defined
in the next section and the next key is started until the entire sequence of keys
requested have been created.

For Tinnitus, there is no key distribution system. This is because the key is only being
used for personal security on the users’ computer. Therefore the key is created during
the manufacturing process of each FOB and is unique for each device. For retrieval
purposes the seed values used to create each key will be stored for authenticated
retrieval in the event of a lost FOB. Each key is then stored on each FOB.

As each file is encrypted a new file named {OLDFILENAME}.wn, which has a small
header added to handle versions and different keys (see file header section). The
OLDFILENAME includes the extension to allow for easy decryption and maintaining the
same file format for functionality. As each file is encrypted, it is immediately decrypted
and compared to the original and then both the test copy and the original file are deleted
using a clean sweep deletion process (the entire file rewritten as 0’s and then 1’s and
then deleted).

6. Key File Format

The Tinnitus key file format is defined as below.

typedef struct wnkeyfiletype {
 char fileid[2]; // must be WN to identify file format
 char version; // file type version number to allow changes
 ulong64 offset; // the offset is a large number stored as a
 // string of decimal digits delineated by “”’s
 long numsk; // the number of subkeys
 long sklen[numsk]; // the individual subkey lengths
 char sk1[sklen[1]]; // the 1st subkey
 char sk1[sklen[2]]; // the 2nd subkey
 char sk1[sklen[3]]; // the 3rd subkey
 … … … …
 char sknumsk[sklen[numsk]]; // the numskth subkey
 char substit[65536]; // the substitution cipher key
} WNKEYFILE;

The Tinnitus Key file format is fairly standard.

7. Notes:

We would like to thank David Wagner and Hongjun Wu for all their invaluable input and
advice.

 8 of 8

