
Improved Cryptanalysis of SecurID

Scott Contini

Computing Department

Macquarie University

NSW 2109 Australia

scontini@comp.mq.edu.au

Yiqun Lisa Yin

EE Department

Princeton University

Princeton, NJ 08540

yyin@princeton.edu

October 21, 2003

Abstract

SecurID is a widely used hardware token for strengthening authentica-
tion in a corporate environment. Recently, Biryukov, Lano, and Preneel
presented an attack on the alleged SecurID hash function [1]. They showed
that vanishing differentials – collisions of the hash function – occur quite
frequently, and that such differentials allow an attacker to recover the
secret key in the token much faster than exhaustive search. Based on
simulation results, they estimated that given a single 2-bit vanishing dif-
ferential, the running time of their attack would be about 248 full hash
operations.

In this paper, we first give a more detailed analysis of the attack in [1]
and present several techniques to improve it significantly. Our theoretical
analysis and implementation experiments show that the running time of
our improved attack is about 244 hash operations, though special cases
involving ≥ 4-bit differentials (which happen about one third of the time)
reduce the time further. We then investigate into the use of extra informa-
tion that an attacker would typically have: multiple vanishing differentials
or knowledge that other vanishing differentials do not occur in a nearby
time period. When using the extra information, it appears that key re-
covery can always be accomplished within about 240 hash operations.

1 Introduction

The SecurID, developed by RSA Security, is a hardware token used for strength-
ening authentication when logging in to remote systems, since passwords by
themselves tend to be easily guessable and subject to dictionary attacks. The
SecurID adds an “extra factor” of authentication: one must not only prove
themselves by getting their password correct, but also by demonstrating that

1

they have the SecurID token assigned to them. The latter is done by entering
the 6- or 8-digit code that is being displayed on the token at the time of login.

Each token has within it a 64-bit secret key and an internal clock. Every
minute, or every half-minute in some tokens, the secret key and the current
time are sent through a cryptographic hash function. The output of the hash
function determines the next two authenticator codes, which are displayed on
the LED screen display. The secret key is also held within the “ACE/server”,
so that the same authenticator can independently be computed and verified at
the remote end.

If ever a user loses their token, they must report it so that the current token
can be deactivated and replaced with a new one. Thus, the user bears some
responsibility in maintaining the security of the system. On the other hand,
if the user were to temporarily leave his token in a place where it could be
observed by others and then later recover it, then it should not be the case that
the security of the device could be entirely breached, assuming the device is
well-designed.

The scenario just described was considered in a recent publication by Biryukov,
Lano, and Preneel [1], where they showed that the hash function that is alleged
to be used by SecurID [3] (ASHF) has weak properties that could allow one
to find the key much faster than exhaustive search. The attack they describe
requires recording all outputs of the SecurID using a PC camera with OCR
software, and then later searching the outputs for indication of a vanishing dif-

ferential – two closely related input times that result in the same output hash.
If one is discovered, the attacker then has a good chance of finding the internal
secret key using a search algorithm that they estimated to be equivalent to 248

hash function operations. On a 2.4 GHz PC, 248 hash operations take about
38 years. It would require about 450 of these PC’s to find the key in a month,
which is attainable by anyone in a typical medium-sized corporation.

In this paper, we first go through a deeper analysis of the [1] algorithm, giving
further justification of their conjectured running time of 248. We present three
techniques to significantly speed up the filtering step, which is the bottleneck
of their attack. Our theoretical analysis and implementation experiments show
that the time complexity can be reduced to about 244 hash operations when
using only a single vanishing differential. If the vanishing differential involved
≥ 4-bits, which happens about one third of the time, then the running time can
be further reduced to about 240 hash operations.

We then investigate into the use of extra information that an attacker would
ordinarily have, in order to speed up the attack further. This information con-
sists of either multiple vanishing differentials, or knowledge that no other van-
ishing differentials occur in a nearby time period of the observed one. In either
case, the running time can be reduced significantly. Our analysis suggests that
after a vanishing differential is observed, the attacker would nearly always be
able to perform the key search algorithm in 240 hash operations or less. On a
typical PC, this can be done in about 2 months, making the computing power

2

requirements for the search attainable by almost any individual.
The success probability of all attacks (including [1]) depend upon how long

the attacker must wait for a vanishing differential to occur - the longer the
period is, the higher the chance that a token will have a vanishing differential.
For example, simulations have shown that in any one-week period, 1% of the
SecurID cards will have a vanishing differential; in any one-year period, 35% of
the tokens will have a vanishing differential.

We should note, however, that the longer the device is out of a user’s control,
the more likely that the user will recognise it and have it deactivated. So, we
consider two realistic scenarios in which the token could be be compromised.
In the first scenario, a user may be on vacation for one week and left his token
behind in a place where others could observe it, in which case there is a 1%
chance that a collision would happen. This probability is small, but definitely
non-negligible, especially considering that a single large corporation may have
thousands of SecurID users. In the second scenario, the success is much more
likely. Since the cost of SecurID tokens is very expensive, tokens are often
reassigned to new users when a previous owner leaves a company [4]. This is
a very bad idea, since the original user would have a high chance of being able
to find the internal key, assuming he recorded many of the outputs while it was
in his possession. In light of our new results, the token reassignment scenario
becomes a very serious risk.

RSA Security has begun to upgrade their tokens to use an AES based hash.
Based on the attacks described in this paper and [1], we recommend that all of
the older tokens be replaced with the upgraded AES based tokens.

2 The SecurID hash function

In this section, we provide a high level description of the alleged SecurID hash
function. Detailed descriptions can be found in [1, 3]. We will follow the same
notation as those in [1] wherever possible.

The function can be modeled as a keyed hash function y = H(k, t), where k
is a 64-bit secret key stored on the SecurID token, t is a 24-bit time obtained
from the clock every 30 or 60 seconds, and y is two 6- or 8-digit codes. The
function consists of the following steps:

• an expansion function that expands t into a 64-bit “plaintext”,

• an initial key-dependent permutation,

• four key-dependent rounds, each of which has 64 subrounds,

• an exclusive-or of the output of each round onto the key,

• a final key-dependent permutation (same algorithm as the initial one),
and

3

• a key-dependent conversion from hexadecimal to decimal.

Throughout the paper, we use the following notation to represent bits, nib-
bles, and bytes in a word: a 64-bit word b, consisting of bytes B0, ..., B7, nibbles
B0, ..., B15, and bits b0b1...b63. The nibble B0 corresponds to the most significant
nibble of byte 0 and the bit b0 corresponds to the most significant bit. The
other values are as one would expect.

For our analysis, only the time expansion, key-dependent permutation, and
the key-dependent rounds are of interest. In the next three sections, we will
describe them in more detail.

2.1 Time expansion

The time t is a 24-bit number representing twice the number of minutes since
January 1, 1986 GMT. So the least significant bit is always 0, and if the token
outputs codes every minute, then the expansion function will clear the 2nd least
significant bit as well. Let the result be represented by the bytes T0T1T2 where
T0 is the most significant. The expansion is of the form T0T1T2T2T0T1T2T2.
Note that the least significant byte is replicated 4 times, and the other two
bytes are replicated two times each.

2.2 Key-dependent permutation

We give a more insightful description of how the ASHF key-dependent permu-
tation really works. The original code, obtained by I.C. Wiener [3] (apparently
by reverse engineering the ACE/server code), is quite cryptic. Our description
is different, but produces an equivalent output to his code.

The key-dependent permutation uses the key nibbles K0 . . . K15 in order to
select bits of the data for output into a permuted data array. The data bits will
be taken 4 at a time, copied to the permuted data array from right to left (i.e.
higher indexes are filled in first), and then removed from the original data array.
Every time 4 bits are removed from the original data array, the size shrinks by
4. Indexes within that array are always modulo the number of bits remaining.

A pointer m is first initialised to the index K0. The first 4 bits that are taken
are those right before the index of m. For example, if K0 is 0xa, then bits 6, 7,
8, and 9 are taken. If K0 is 0x2, then bits 62, 63, 0, and 1 are taken. As these
bits are removed from the array, the index m is adjusted accordingly so that it
continues to point at the same bit it pointed to before the 4 bits were removed.

The pointer m is then increased by a value of K1, and the 4 bits prior to this
are taken, as before. The process is repeated until all bits have been taken.

Note that once the algorithm gets down to the final 3 or less key and data
nibbles, the number of data bits remaining is at most 12 yet the number of
choices for each key nibble is 16. Hence, multiple keys will result in the same

4

permutation, which we call “redundancy of the key with respect to the permuta-
tion.” This was used in the attack [2], and to a lesser extent in [1]. Interestingly,
[1] mentions that there are 14-bits of redundancy on average, yet the attacks
presented so far have exploited only a few of them.

2.3 Key-dependent rounds

Each of the four key-dependent rounds takes as inputs a 64-bit key k and a
64-bit value b0, and outputs a 64-bit value b64. The key k is then exclusive-ored
with the output b64 to produce the new key to be used in the next round.

One round consists of 64 subrounds. For i = 1, ..., 64, subround i transforms
bi−1 into bi using a single key bit ki−1. Depending on whether the key bit ki−1 is
equal to bi−1

0 , the value bi−1 is transformed according to two different functions,
denoted by R and S. This particular property causes the hash function to have
many easy-to-find collisions (called vanishing differentials) after a small number
of subrounds within the first round. At the end of each subround, all the bits
are shifted one bit position to the left.

We remark that both the R function and the S function are byte-oriented,
that is, they update each of the 8 bytes in b separately. After the update, only
two of the 8 bytes (B0 and B4) are modified, and the rest of the 6 bytes remain
the same.

3 The attack of Biryukov, Lano, and Preneel

Biryukov, Lano, and Preneel recently presented a full key recovery attack that
uses a single 2-bit vanishing differential. The attacker first guesses the subround
N in which the vanishing differential occurs, and for each N a filtering algorithm
is used to search the set of candidate keys that make such a vanishing differential
possible. In [1], they only described the attack for N = 1 and stated that the
algorithm would be similar for other N . According to their simulations, one
only needs to do up to N = 12 to have a 50% chance of finding the key. Our
own simulations suggest that N = 16 is a more accurate number. Although this
discrepancy has little practical implications, we suggest a reason for it in section
8.1. For larger values of N , the cost of precomputation becomes prohibitive.
On the other hand, it is expected that a hybrid algorithm between the attacks
discussed here and [2] can be used to find more keys somewhat efficiently.

We now give a high-level description of the filtering algorithm for N = 1.
Before the beginning, a table with entries of the form

(k0, B0, B4, B
′
0, B

′
4)

is precomputed. The entries contain all combinations of key bit k0 and data
bytes B0, B4, B

′
0, and B′

4 going into the first round (i.e. after the initial per-
mutation) that will result in a vanishing differential at the end of the first

5

subround. Note that none of the other data bytes have any involvement in the
first subround, so whether a vanishing differential can happen or not for N = 1
is completely characterised by this table.

The filtering algorithm proceeds in four steps.

• First Step. For each entry in the precomputed table, try all possible values
of k1, ..., k27. Together with k0, 28 key bits are set, which determines 28
bits of b0 from the initial key-dependent permutation. Since these bits
overlap with the entries in the table by one nibble B9, key values that
do not produce the correct nibble for both plaintexts in the vanishing
differential are filtered out.

• Second Step. An entry that passes the first step is taken as input and the
key bits k28, ..., k31 are guessed. Filtering is done based on the overlap in
nibble B8.

• Third Step. Key bits k32, ..., k59 are guessed. Filtering is done based on
the overlap in nibble B1.

• Fourth Step. Key bits k60, ..., k63 are guessed. Filtering is done based on
the overlap in nibble B0.

Finally, each candidate key that passes the filtering steps is tested by per-
forming a full hash function to see if it is the correct key.

As we can see, the running time of the above attack depends on the time
complexity of each filtering step and the number of candidate keys that pass
all four filtering steps. Based on simulation results [1], they estimated that the
dominant factor is the third filtering step, which is equivalent to about 248 full
hash operations for N up to 12.

4 Improved analysis of the Biryukov, Lano, and

Preneel attack

Biryukov, Lano, and Preneel only gave simulated results for N = 1. They
suggested that

for higher N , the overlap will be higher (because more bits play a role
in the vanishing differential) and thus the filtering will be stronger.

and

For N > 1, we expect the complexity of the attack to be lower due
to stronger filtering.

6

Here we show that the results of their simulations can be justified by mathe-
matical arguments, and that the conjecture of the filtering improving for larger
N appears to be correct. We first analyse the case N = 1, and then generalise
the argument to arbitrary N . Our analysis is an average-case analysis. The
actual time complexity will depend upon the particular pair of plaintexts that
caused the vanishing differential.

There is one subtlety that the reader should keep in mind in our analysis.
During the first two filtering steps, only the values (k0, B4, B

′
4) of the precom-

puted table are involved. There may be more than one table entry overlapping
in these values. In this case, we assume that the multiple entries are grouped
together into a single entry until a later filtering step requires testing for the
overlap separately. Since, as we will see, the number of multiple entries is very
small, we assume that this does not incur a noticeable speed penalty.

4.1 Analysis of the attack for N = 1

Their simulations showed that the first step reduced the number of possibilities
to 227, the second step further reduced the count to to 225, the third step
increased the count to 245, and the fourth step resulted in 241 true candidates.
We analyse the second and fourth steps only: the other two can be analysed
similarly.

Some properties of the precomputed table are necessary in the analysis. In
[1], it is stated that the size of the precomputed table is 30 for N = 1, which we
agrees with our computation. In Appendix A, we provide an analytical way of
constructing the entries.

Analysis of the second step: We start by examing the precomputed table to
count number of unique entries of the form (k0, B4, B

′
4). In total, there are only

23, which is broken down into 7 with no difference, 16 with a 1-bit difference,
and none with 2-bit differences.

There are a total of 232 possible partial keys (each 32 bits) up to step two.
Among them,

• A fraction of
(

56

2

)

/
(

64

2

)

≈ .76 will put no difference in the tuple (B4, B
′
4).

• A fraction of
(

8

1

)

×
(

56

1

)

/
(

64

2

)

≈ .22 will put a 1-bit difference in (B4, B
′
4).

• A fraction of only
(

8

2

)

/
(

64

2

)

≈ .01 will put 2 difference bits in (B4, B
′
4).

Of the 232×0.76 keys that result in no difference in (B4, B
′
4), only a fraction

of 7

256
will match one of the 7 unique entries in the table for B4 (which is the

same as B′
4). Of those, only half will have the right key bit corresponding to

what is stored for that entry of the table. Thus, the expected number of 32-bit
keys resulting in no difference in B4 that pass the second filtering step is

232 × 0.76×
7

256
×

1

2
≈ 225.4.

7

For 1-bit differences, the calculation is similar, except we have 16 unique ta-
ble entries, and there are 256×8 possible tuples (B4, B

′
4) with B4

⊕

B′
4 differing

in 1-bit. The expected number here is

232 × 0.22×
16

256× 8
×

1

2
≈ 221.8.

For 2-bit differences, there are 0 in the table, so none of those will get through.
Combining these results, the expected number of 32-bit keys that pass

through step 2 is
225.4 + 221.8 ≈ 225.5

which closely agrees with the 225 observed by simulation in [1].

Analysis of the fourth step: Without considering outcomes of previous steps,
we can directly analyse the fourth step. This is because anything that matches
an entry in the precomputed table will result in a vanishing differential for
N = 1. In other words, the entries in the table are not only a necessary set
of cases for a vanishing differential to occur at N = 1, but also sufficient. So,
analysing the outcome of the fourth step is equivalent to determining the true
number of candidates that need to be tested with the full SecurID hash function.

For each of the 30 table entries, we have:

• Only a portion of about 1

216 of the 264 keys will permute the bits of the
first plaintext so that the bytes (B0, B4) match the table entry.

• Of those keys, only a portion of 1/
(

64

2

)

will permute the 2 difference bits
in the right locations to match the (B′

0, B
′
4) of that table entry.

• Only half of those keys will have the right key bit k0 corresponding to
what is in that entry of the table.

Thus, the expected number of final candidate keys is

30 × 264 ×
1

216
×

1
(

64

2

) ×
1

2
≈ 240.9

which is approximately 241 that was observed in [1].
Another way of interpreting this result is that the probability of a randomly

chosen 2-bit differential disappearing in subround 1 is 2
40.9

264 ≈ 2−23.1. This
property will be useful in our later analysis.

4.2 Analysis of the attack for N > 1

Here we derive general formulas for the number of candidate keys that will pass
the second and fourth steps, respectively, as well as the time complexity for
the third step. As we discussed before, these are the dominating factors in

8

estimating the running time of the attack. Similar to the case of N = 1, the
formulas depend upon properties of the precomputed tables.

In the general case, the precomputed tables consist of the following entries:

• legal values for the key bits in indices 0, . . . , N − 1,

• legal values for the plaintext pairs after the initial permutation in bit
indices 32, 33, . . . , 38 + N which we label as (W4, W

′
4), and

• legal values for the plaintext pairs after the initial permutation in bit
indices 0, 1, . . . , 6 + N which we label as (W0, W

′
0).

By legal values we mean that the combination of key bits and plaintext bits will
cause the difference to vanish in subround N . The words W0, W

′
0, W4, W

′
4 each

consist of 7 + N bits and the number of key bits is N . Using this notation, ob-
serve that when N = 1 we have (W4, W

′
4) = (B4, B

′
4) and (W0, W

′
0) = (B0, B

′
0).

Analysis of the second step: Of the of 232 key bits considered up to step 2,

• A fraction of
(

57−N

2

)

/
(

64

2

)

will put no difference in the tuple (W4, W
′
4).

• A fraction of
(

7+N

1

)

×
(

57−N

1

)

/
(

64

2

)

will put a 1-bit difference in (W4, W
′
4).

• A fraction of only
(

7+N

2

)

/
(

64

2

)

will put a 2-bit difference in (W4, W
′
4).

Define C0 to be the number of unique table entries of the form (k0, . . . , kN−1, W4, W
′
4)

where W4 = W ′
4, C1 similarly except W4

⊕

W ′
4 having hamming weight 1, and

C2 similarly except W4

⊕

W ′
4 having hamming weight 2. The expected number

of keys causing no bit difference in (W4, W
′
4) that will pass the filter in step two

is:

232 ×

(

57−N

2

)

(

64

2

) ×
C0

27+N
×

1

2N

= 219−2N ×
3192− 113N + N2

63
× C0.

For 1-bit differences, the equation is

232 ×

(

7+N

1

)

×
(

57−N

1

)

(

64

2

) ×
C1

27+N ×
(

7+N

1

) ×
1

2N

= 220−2N ×
57− N

63
× C1.

For 2-bit differences, the equation is

232 ×

(

7+N

2

)

(

64

2

) ×
C2

27+N ×
(

7+N

2

) ×
1

2N

9

= 220−2N ×
C2

63
.

Hence, the expected number of candidates to pass the second step is then

T =
219−2N

63
×

[

(3192− 113N + N2)C0 + (114− 2N)C1 + 2C2

]

. (1)

In [1], the third step is the most time consuming. For each candidate that
passes the second step, they must guess 28 bits of key and then perform a
fraction of 28

64
of the permutation for both plaintexts. Under the assumption

that the permutation is 5% of the time required to do the full SecurID hash,
the running time is equivalent to

T × 228 ×
28

64
× 2× 0.05

full hash operations.
Note that when deriving the above formula, we assumed that for larger N ,

exactly four filtering steps (same as what was done when N = 1) were used.
The filtering algorithm was not completely described for N > 1 in [1], but it is
likely that they imagined that the number of filtering steps would increase. In
particular, one may presume that the third step would involve guessing enough
key bits so that the resulting permuted data bits just begin to overlap with W0

and W ′
0, and an additional layer of filtering would be added for each key nibble

guessed beyond that1. This speeds up the third step, which we will assume
is still the most time consuming of the remaining filtering steps2. We proceed
under this assumption.

In this way, the exact number of key bits guessed in the third step is 4 ×
b 29−N

4
c, and its running time is

T × 24×b 29−N

4
c ×

4 × b 29−N
4

c

64
× 2 × 0.05× s (2)

full hash operations, where s is the speedup factor that can be obtained by
taking advantage of the redundancy in the key with respect to the permutation.
The value of s is 96

256
for N = 1, 12

16
for N = 2..5, and 1 for all other values.

1The same idea should be applied to the first filtering step as well, but for the sake of
brevity, we avoid making the description too complex.

2A sufficient but not necessary condition for the third step to be the most time consuming

in the algorithm as it is stated is if the fraction of values that remain is less than
b 29−N

4
c

16
of

the values considered. This is usually the case. In the rare exceptions, the fourth step may
be more time consuming. However, modifications to the fourth step can be made in order to
speed it up significantly. For example, a large portion of false candidates can be eliminated
in the fourth step by checking whether the hamming weights of the remaining bits for both
plaintext pairs matches those of the table.

10

N table C0 C1 C2 T Time for Time for Total
size third step last step time

1 30 7 16 0 225.5 247.6 240.9 247.6

2 350 24 128 84 225.4 244.2 241.5 244.4

3 2366 171 660 248 226.1 245.0 241.2 245.1

4 16784 1047 3778 1392 226.7 245.5 241.0 245.6

5 116184 6349 22700 8264 227.2 246.1 240.8 246.1

6 729236 37257 125824 42836 227.7 242.7 240.5 243.0

Table 1: Computing the running time estimates of algorithm [1] for N = 1..6.

Analysis of the fourth step: Following section 4.1, the general formula for
the number of final candidates is:

table size × 264 ×
1

22N+14
×

1
(

64

2

) ×
1

2N
≈ 239.0−3N × table size. (3)

Combined analysis: The running time of algorithm [1] for a particular value
of N is expected to be the approximately the sum of equations 2 and 3. For
N = 1..6, these running times are given in Table 1.

Notice that even though the number of candidates T after the second filter
steps are approximately the same as N goes from 1 to 2 and also from 5 to
6, the running times of the third steps drop greatly. This is because one less
nibble of the key is being guessed, and an extra filtering step is being added.
In general, we see the pattern that larger values of N are contributing less and
less to the sum of the running times, which agrees with the conjecture from [1].
The total running time for N = 1 to 6 is 248.5 and larger values of N would
appear to add minimally to this total.

5 Faster filtering

As illustrated in the previous section, the trick to speeding up the key recovery
attack in [1] is faster filtering. We have found three ways in which their filtering
can be sped up:

1. In the original filter, a separate permutation is computed for each trial
key. This is inefficient, since most of the permuted bits from one particular
permutation will overlap with those from many other permutations. Thus,
we can amortize the cost of the permutation computations.

2. We can detect ahead of time when a large portion of keys will result in
“bad” permutations in steps one and three, and the filtering process can
skip past chunks of these bad permutations.

11

3. For N = 1, we can further speed up the third step of filtering by using a
table-lookup to determine what the legal choices are for K14 (this would
apply to other N as well, but the memory requirements quickly become
quite large). Each table lookup replaces trying 8 choices for the nibble
K14.

In what follows, we describe each of the above techniques in more detail.

The first technique is aimed at reducing the numerator of the factor
4×b 29−N

4
c

64
=

b 29−N

4
c

16
in equation 2. To do this, we view the key as a 64-bit counter, where

k0 is the most significant bit and k63 is the least. In step three of the filter,
the bits k0, . . . , k31 are fixed and so are some of the least significant bits (the
exact number depends upon N), so we can exclude these for now. The keys
are tried in order via a recursive procedure that handles one key nibble at a

time. At the jth recursive branch, each of the possibilities for nibble K7+j are
tried. The part of the permutation for that nibble is computed, and then the
j + 1st recursive branch is taken. The level of recursion stops when key nibble
K
7+b 29−N

4
c is reached. Thus, the b 29−N

4
c from equation 2 gets replaced with the

average cost per permutation trial, which is

b 29−N

4
c−1

∑

i=0

2−4i ≈ 1.07.

Observe that when N = 1, this results in a factor of 7

1.07
≈ 6.5 speedup. This

trick alone knocks more than 2 bits off the running time.
The second speedup is dependent upon the first. It will apply to both the

first and third filtering steps. During the process of trying a permutation, there
will be large chunks of bad trial keys that can be identified immediately, and
skipped. For example, consider N = 1 in the first filtering step. Whenever one
of the difference bits is put into any of the bit indices 40..63 of the permuted
data array, it can be skipped because the difference is not in a legal position.
More generally, in the recursive procedure for key trials, we check during each
trial key nibble whether it will result in a difference bit being put in an illegal
place. If affirmative, then any key having the same most significant bits will
also result in misplacing the difference bit, so the recursive branch for that key
nibble can be skipped. This substantially reduces the number of trial keys. In
the first step, this will skip past all but a fraction

(

39+N

2

)

/
(

64

2

)

of the candidates.
More importantly, between the first and third steps the amount of keys looked
at in the search becomes a fraction

(

14+2N

2

)

/
(

64

2

)

of the amount for the attack
in [1].

These two strategies combined result in the following running time for the
third filtering step:

T ×

(

14+2N

2

)

(

64

2

) × 24×b 29−N

4
c ×

1.07

16
× 2 × 0.05× s (4)

12

N Time for Time for Total
third step last step time

1 237.8 240.9 241.0

2 238.0 241.5 241.6

3 239.0 241.2 241.5

4 239.9 241.0 241.6

5 240.7 240.8 241.8

6 237.8 240.5 240.7

Table 2: Running times using our improved filter, for N = 1..6.

where T is still the T from equation 1 (though it no longer represents the number
of candidates at the end of step two) and s is 96

256
for N = 1, 12

16
for N = 2..5,

and 1 for all other values.
We only apply the third speedup for N = 1, due to increasing memory

requirements. When we arrive at a leaf to try K14, there are only 8 data bits
remaining to choose from. Let x represent the final 8 bits for the first plaintext,
and x′ for the second. We could precompute the legal choices for K14 for each
possible (k0, B4, B

′
4, x, x′) where (k0, B4, B

′
4) are from the 23 unique choices in

the main filtering precomputation table. Thus the legal choices for K14 are
obtained from a single table lookup, which replaces trying all possibilities. For
N = 1, this gives a time of approximately:

T ×

(

16

2

)

(

64

2

) × 224 ×
1.07

16
× 2 × 0.05×

12

16
.

The combined speedups give the run times in Table 2. In all cases, the third
filtering step has become faster than the time for the last step. The total time
for N = 1..6 is 244.0, and larger values of N are expected to add minimally to
it since all steps are getting faster.

Although it appears that we cannot do much better using only a single
vanishing differential, we can improve the situation if we use other information
that an attacker would have. In later sections we will show that we can improve
the time greatly if we take advantage of multiple vanishing differentials, or if we
take advantage of knowledge that no other vanishing differentials occur within
a small time period of the observed one.

6 Implementation

The attack of Biryukov, Lano, and Preneel was specially designed to keep RAM
usage low - only one of the precomputed table entries needs to be in program

13

memory at a time. We tested our ideas only for N = 1 and 2-bit differences only,
and since the table size is small, we took the freedom of implementing a slight
variant of their attack which kept the whole precomputed table in memory at
once.

We programmed all three filtering speedups and all filtering steps. Our
code was written so that whenever a candidate past the first filtering step, it
was immediately sent to the second. If a candidate past the second, then it
immediately went to the third, and so on. So, we were doing a full key search
in numerical order, when the key is viewed as a counter as described in Section
5. The only thing we did not do was testing the final candidates using the real
function. Instead, we just stopped when we arrived at the target key. So our
implementation was designed to test and time the filtering only, in order to
confirm that filtering is significantly faster than testing of the final candidates.
According to Table 2, the running time is expected to be about 237.8 hash
operations, which should take about 2 weeks on our 2.4 GHz PC.

At the time of writing, we have not done the full key search yet. However,
we have done a search that starts out knowing the correct first nibble of the key.
The key we were searching for is 356b48b3ae15c271 which yields a vanishing
differential when times 0x1c3ba8 and 0x1c3aa8 are sent in. We were able to
find the key in 42.3 hours. If we pessimistically assume that the full search will
take at most 24 times longer, the full running time would be 4 weeks, which
is twice the expectations. To understand why we believe this is pessimistic,
observe that the first difference is at bit index 15. So, whenever the first two
key nibbles add up to a value between 16 and 19, the entire recursive branch
corresponding to the second key nibble is skipped, according to our second
filtering speedup. Since our search fixed the first key nibble at 3 at the second
nibble went through values from 0 to 5, none of these big skips have happened
yet. Thus, the second filtering speedup will become more effective during a
full search. As further proof of this, we searched the space that had first key
nibble set to 0xf in 30.5 hours. We therefore have strong evidence that the
implementation is close to the expectations from our analysis. Note also that
since we are doing all filtering steps in this time, our results further substantiate
the claim that the third filtering step is the dominant cost.

7 Vanishing differentials with ≥ four-bit differ-

ences

According to our simulations, about 25% of the first collisions (first occurrence of
a vanishing differential for a given key) are actually from a 4-bit difference, and
about 7% from larger differences. We would expect that our filtering algorithm
performs exceptionally well in these circumstances. For example, consider 4-bit
differences. When N = 1, we expect our second filtering speedup to skip all

14

N table size run time
1 910 237.5

2 9202 237.9

3 53358 237.4

4 311566 237.0

Table 3: Cost of the final step using a 4-bit differential for N = 1..4.

except a fraction of
(

16

4

)

/
(

64

4

)

≈ 2−8.4 of the incorrect keys between filter steps
one through three. Without going through the analysis, it seems reasonable to
assume that the final testing of candidates is still the bottleneck.

The formula for number of final candidate keys for 4-bit differences can be
derived similar to that of equation 3:

table size × 264 ×
1

22N+14
×

1
(

64

4

) ×
1

2N
.

The formula is the same as that for 2-bit differences, except that term
(

64

2

)

has been replaced by
(

64

4

)

, giving a factor of 28.3 reduction in the number. There-
fore, as long as the table size does not increase significantly, it is conceivable
that 4-bit differentials could result in a faster attack than 2-bit differentials.
In Table 3 we see that this is indeed the case for N = 1..4. The table size for
N = 1 can also be verified analytically as described in Appendix A. We therefore
conjecture that the total run time for an attack using one 4-bit vanishing dif-
ferentials is equivalent to about 240 hash operations, and for larger differentials,
the algorithm should improve more.

Note that for N = 1, we have a probability of 2
37.5

264 = 2−26.5 for a 4-bit
vanishing differential to occur, and the corresponding probability for a 2-bit
vanishing differential is 2−23.1. It may then seem hard to believe that 25% of the
vanishing differentials are 4-bits, as claimed above. However, one should keep
in mind that there are more input 4-bit differences because the least significant
byte of the time is replicated 4 times in the time expansion function.

8 Multiple vanishing differentials

There are two scenarios for multiple vanishing differentials: when they have the
same difference and when they have different differences. The former is more
likely to occur, but in either case we can speed up the attack.

15

8.1 Multiple vanishing differentials with the same differ-

ence

According to computer simulations, about 45% of the keys that had a collision
over a two month period will actually have at least 2 collisions. There is a
simple explanation for this, and a way to use the observation to speed up the
key search even more.

Consider a vanishing differential corresponding to plaintexts B and B ′, which
come from times t = T0T1T2 and t′ = T ′

0T
′
1T

′
2. As we saw earlier, the only

bits that determine whether the vanishing differential will occur at a particular
subround are those that get permuted into words W0, W

′
0, W4, and W ′

4. Suppose
we flip one of the bits in T2 and T ′

2 (the same bit in each). This bit will be
replicated four times in the time expansion. If, after the permutation, none of
those bits end up in W0, W

′
0, W4, or W ′

4, then we will witness another vanishing
differential. The new vanishing differential will follow the same difference path
and disappear in the same subround. Thus, new information is learned that can
be used to speed up the key search, which we explain below. In the case that
another vanishing differential does not occur, information is also learned which
can improve the search, which is detailed in Section 9.

Following the above thought process, it is evident that:

• Flipping time bits in T1, T
′
1 or T2, T

′
2 will only replicate the flipped bit

twice in the expansion. Since there are only two bits that are not allowed
to be in W0, W

′
0, W4, and W ′

4, the collision is more likely to occur. On the
other hand, the time between the collisions is increased, since these are
more significant time bits.

• Multiple vanishing differentials are more likely to occur when the first
collision happened in a small number of subrounds. This is because the
words W0, W

′
0, W4, and W ′

4 are smaller, giving more places where the
flipped bits can land without interfering with the collision.3

• The converse of these observations is that when multiple vanishing differ-
entials occur, it is most often the case that the collisions all happened in
the same subround and followed the same difference path. Moreover, the
collision usually happens early (within a few subrounds).

By simply eying the time data that caused the multiple vanishing differen-
tials, one can determine with close to 100% accuracy whether this situation has
happened. The signs of it are:

• Same input difference for all vanishing differentials.

3We suspect that this is the reason for the discrepancy between the paper [1] claiming that
≥ 50% of the collisions happened in 12 subrounds and our own simulations which suggest 16
subrounds. Specifically, their data probably included multiple collisions, which made it biased
towards a smaller number.

16

N Time for last step using Time for last step Time for last step Time for last step
only a single collision using z = 2 using z = 4 using z = 8

1 240.9 240.1 239.2 237.3

2 241.5 240.5 239.5 237.4

3 241.2 240.1 239.0 236.6

4 241.0 239.8 238.5 235.8

5 240.8 239.4 238.0 235.0

6 240.5 239.0 237.4 234.0

Table 4: Time for the last step assuming the attacker became aware of z-bits
that do not get permuted into words W0, W

′
0, W4, or W ′

4.

• All input times differ in only a few bits.

• It is the same bits that differ in all cases.

An example is given in Appendix B.
The attacker learns z ≥ 2 bits which cannot be permuted to words W0, W

′
0, W4,

or W ′
4. This new knowledge can be combined with our second filtering speedup

to skip past more bad keys. The expected number of final key candidates to be
tested becomes a fraction of

(

50−2N

z

)

/
(

64

z

)

of the values given in Table 2. See
Table 4 for a summary of these figures when z = 2, z = 4, and z = 8. The times
can be further reduced using information about where certain related plaintexts
did not cause a vanishing differential: see Section 9.

8.2 Multiple vanishing differentials with different differ-

ences

Given two vanishing differentials with different differences, the number of can-
didate keys can be reduced significantly by constructing more effective filters in
each step. Denote the two pairs of vanishing differentials V1 and V2, and their
N values N1 and N2.

We first make a guess of (N1, N2). The number of guesses will be quadratic
in the number of subrounds tested up to. The following is a sketch for the new
filtering algorithm when N1 = N2 = 1. Other cases can be handled similarly.

• First Stage. Take V1 and guess the first 32 bits of the key. For each 32-
bit key that produces a valid (B4, B

′
4), test it against V2 to see if it also

produces a valid (B4, B
′
4). (This is the first and the second filtering steps

in the original attack.)

• Second Stage. For 32-bit keys that pass the above stage, do the same thing
to guess the second 32 bits of the key. (This is the third and the fourth
filtering steps in the original attack.)

17

The main idea here is to do double filtering within each stage so that the
number of candidate keys is further reduced in comparison to when only a single
vanishing differential is used.

Based on analysis in Section 4, we know that the probability that a 32-bit
key passes the first stage is 225.5/232 = 2−6.5 (assuming using the original filter
of [1] - it is even more reduced using our improved filter), and the probability
that a 64-bit key passes both stages is 240.9/265 = 2−23.1. If the two vanishing
differentials are indeed independent, we would expect the number of keys to pass
the first filtering to be

232 × 2−6.5 × 2−6.5 = 219, and

and the number of keys to pass both filterings to be

264 × 2−23.1 × 2−23.1 = 217.8.

Experimental results will reveal whether these figures are attainable in practice,
but even if they are not, a big speed up is still expected. The situation should
be better in the cases where differences with hamming weights ≥ 4 are involved.

We should mention the caveat that the chances of success using the above
technique are lower, since we need both difference pairs to disappear within
16 subrounds. On the other hand, the cost of trying this algorithm for two
difference pairs is expected to be substantially cheaper than trying the previous
algorithms for only one. Therefore, the double filtering should add negligible
overhead to the search in the cases that it fails, and would greatly speedup the
search when it is successful.

9 Using non-vanishing differentials with a van-

ishing differential

In Section 8.1, we argued that even if only a single vanishing differential occurs
over some time period, the search can still be sped up if one takes advantage of
knowing where related differentials do not vanish. Here, we give the details.

Assume a vanishing differential occurred at times t and t′, but no vanishing
differential occurred among the time pairs (t ⊕ 2i, t′ ⊕ 2i) for i = 2, . . . , j. We
start with i ≥ 2 because in the most typical case, where authenticators are
displayed every minute, the least two significant bits of the time are 0 (see
Section 2.1). For the values 2 ≤ i ≤ 7, the difference is replicated 4 times in the
time expansion, and for i ≥ 8, it is replicated twice.

For each value of i, we learn a set of 2 or 4 bits for which at least one in each
set must be permuted into the words W0, W

′
0, W4, or W ′

4. Let us label these
sets as U2, . . . , Uj . For simplicity, we will take j = 13, which corresponds to
no other vanishing differential within a window of 2.8 days before or after the
observed one. So, we are interested in the probability of at least one bit in each

18

of these sets getting permuted into words W0, W
′
0, W4, or W ′

4. We were unable
to find a simple formula that represents this probability. Fortunately, there is a
wonderful computer algebra package known as Magma [5] that can be used to
evaluate seemingly complex probabilities.

We say a set Ui is represented with ci ≥ 1 bits if exactly ci bits from Ui get
permuted into W0, W

′
0, W4, or W ′

4. The number of ways 2N + 14 bits can be
selected to end up in W0, W

′
0, W4, or W ′

4 is
(

64

2N+14

)

. The number of ways that
exactly ci bits are represented in the selection for 2 ≤ i ≤ 13 is

7
∏

i=2

(

4

ci

)

×
13
∏

i=8

(

2

ci

)

×

(

28

2N + 14 −
∑13

i=2
ci

)

.

The first product tells the number of ways of selecting ci bits from each set that
has 4 bits, the second product is the same except for among sets with 2 bits,
and the third product is the number of ways of selecting the remaining bits from
the 28 bits that are not among any of the Ui. Thus, our desired probability is:

∑

all valid cr, 2 ≤ r ≤ 13

∏7

i=2

(

4

ci

)

×
∏13

i=8

(

2

ci

)

×
(

28

2N+14−
∑

13

i=2
ci

)

(

64

2N+14

) (5)

where valid cr means that each value is at least 1, but the sum of all values is
no more than 2N + 14.

We have computed these probabilities using the Magma code that is given
in Appendix C. The probabilities, and corresponding running time for the
testing of final candidates are given in Table 5. Monte Carlo experiments have
been done to double-check the accuracy of these results. The fact that the
probabilities are so small for low values of N is consistent with the argument
in Section 8.1 that when a collision happens early, other collisions are likely to
follow soon after. Note that Table 5 also tells us that if we only have a single
vanishing differential within a period of about a week or more, it is probably
best to try key recovery by guessing higher values of N first, in order to minimise
the expected run time.

One should not assume that the times for the last step given in Table 5
are the dominant cost in applying this strategy. Unlike the filtering speedups
given in Sections 5 and 8.1, the use of non-vanishing differentials seem to require
more overhead in checking the conditions. So although we do not have an exact
running time, we confidently surmise that the use of non-vanishing differentials
will reduce the time down below 240 hash operations.

10 The threat of token reassignment

In the token reassignment scenario, we are concerned with a user who has had his
token for a long period of time (example: a year or more), and has attempted to

19

N Fraction of keys Time for
having property last step

1 2−14.3 226.6

2 2−11.7 229.8

3 2−9.7 231.5

4 2−8.1 232.9

5 2−6.7 234.1

6 2−5.7 234.8

Table 5: Assuming no more vanishing differentials occur within 2.8 days before
or after of a given vanishing differential, the final testing of candidates can be
improved by the amounts given in this table.

find the secret key before returning it to the company. In 100 randomly chosen
key simulations consisting of 500 days of token outputs, we found:

• 46 keys had at least one vanishing differential.

• Among keys that did have a vanishing differential, the average number of
vanishing differentials was 8.9.

• Only 13 of the 46 had a single vanishing differential. Of them, the least
number of subrounds that the collision occurred in was 13 (supporting the
analysis in Section 9).

• Of the 33 cases with multiple vanishing differentials, there were 11 that
involved at least one instance of different differences. 5 of those met the
requirement of having both differences within 16 subrounds, so that the
algorithm from Section 8.2 would succeed.

• 23 keys had at least one vanishing differential within 16 subrounds, guar-
anteeing that the key could be found by one of our algorithms.

It is therefore quite evident that a significant fraction of users will be able
to find the keys within their cards, assuming they recorded all data outputs.
The user will have very high confidence in his success if he witnesses multiple
vanishing differentials with the same difference, as described in Section 8.1. If
the user only witnessed a single vanishing differential, he can apply the attack
from Section 9. As long as the collision happened within about 16 subrounds,
he will be able to discover the key. Therefore, reassigning a token to a new user
is a serious security risk.

20

11 Conclusion

The design of the alleged SecurID hash function appears to have several prob-
lems. The most serious appears to be collisions that happen far too frequently
and very early within the computation. The involvement of only a small fraction
of bits in the subrounds exacerbates the problem. Moreover, the redundancy of
the key with respect to the initial permutation adds an extra avenue of attack.
Altogether, ASHF is substantially weaker than one would expect from a modern
day hash function.

Our research has shown that the key recovery attack in [1] can be sped
up by a factor of 16, giving an improved attack with time complexity about
244 hash operations. In practice, however, the attacker would typically have
more information than just a single vanishing differential. Using this extra
information appears to reduce the time down to 240 hash operations or lower,
making the attack possible by anybody with a modern PC.

The attacks in this paper and in [1] are real. The main obstacle in mounting
them is waiting for an internal collision. If the user’s token is out of his control
for a matter of a few days, then the chances of the collision happening are small,
but not negligible. This means that most attackers will not have the opportunity
for success, but some will. The attacks also show that once a SecurID card is
assigned to a user, he or she has the ability to find the secret key with high
probability. Thus, reassignment of tokens to other users is a very bad idea.

In contrast, an AES-based hash function ought to prevent any attacker from
having a realistic chance of success. We therefore recommend that all SecurID
cards containing the alleged hash function be replaced with RSA Security’s
newer, AES-based hash.

References

[1] A. Biryukov, J. Lano, and B. Preneel. Cryptanalysis of the Alleged SecurID

Hash Function, http://eprint.iacr.org/2003/162/, 12 Sep, 2003.

[2] S. Contini, The Effect of a Single Vanishing Differential in ASHF, sci.crypt
post, 6 Sep, 2003.

[3] I.C. Wiener, Sample SecurID Token Emulator with Token Secret Import,
post to BugTraq, http://archives.neohapsis.com/archives/bugtraq/2000-
12/0428.html , 21 Dec, 2000.

[4] Tips on Reassigning SecurID Cards and Requesting New SecurID

Cards, AMS Newsletter, March 2002, Issue No. 117. Available at
http://www.utoronto.ca/ams/news/117/html/117-5.htm .

[5] The Magma Computer Algebra Package. Information available at
http://magma.maths.usyd.edu.au/magma/ .

21

A Analysing precomputed tables

Using computer experiments, we were able to exhaustively search for valid en-
tries in the precomputed table up to N = 6 for 2-bit vanishing differentials and
up to N = 4 for 4-bit differentials at this point. It was predicted in [1] that the
size of the table gets larger by a factor of 8 as N grows and it may take up to
244 steps and 500GB memory to precompute the table for N = 12.

Here we make an attempt to derive the entries in the table analytically when
N = 1. If we could extend the method to N > 1, we may be able to enumerate
the entries analytically without expensive precomputation and storage.

We start with Equation (6) in [1]. Note that we are trying to find constraints
for the values in the subround i−1. So for simplicity, we will omit the superscript
i − 1 from now on, and Equation (6) becames the following.

B′
4 = ((((B0 >>> 1) − 1) >>> 1) − 1) ⊕ B4, (6)

B′
0 = 100− B4.

We first note that B0 and B′
0 have to be different in the msb. Therefore,

there is at least one bit difference in (B0, B
′
0). The other bit difference can be

placed either in the remaining 7 bits of (B0, B
′
0) or any of the 8 bits in (B4, B

′
4).

Rewrite Equation 6, we have

B0 = (((B4 ⊕ B′
4) + 1) <<< 1) + 1) <<< 1.

Since there are at most one bit difference in (B4, B
′
4), it can only take on 9

possible values: 0 (for no bit difference) or 2i (for one bit difference in bit i).
For each possible value of (B4, B

′
4), we enumerate the possible values of (B0, B

′
0)

as follows.

• If B4⊕B′
4 = 0, then B0 =0x06. Since there is no bit difference in (B4, B

′
4),

we know that B0 and B′
0 differ in two bits – one of them must be the msb,

and the other can be any of the remaining 7 bits.

B4 ⊕ B′
4 B0 B′

0 k0

0x00 0x06 0x87, 84, 82, 8e, 96, a6, c6 0

• If B4 ⊕B′
4 = 2i, then there is only one bit difference in (B0, B

′
0), which is

the msb. In this case, there are only one choice for B′
0 for each B0.

22

B4 ⊕ B′
4 B0 B′

0 k0

0x01 0x0a 0x8a 0
0x02 0x0e 0x8e 0
0x04 0x16 0x96 0
0x08 0x26 0xa6 0
0x10 0x46 0xc6 0
0x20 0x86 0x06 1
0x40 0x07 0x87 0
0x80 0x08 0x88 0

Combining the above two cases, we have 8 + 7 = 15 pairs of (B0, B
′
0), each

of which giving a valid tuple (k0, B0, B4, B
′
0, B

′
4), where k0 is the msb of B0.

Finally, note that if (k0, a, b, c, d) is a valid tuple, than (k0, c, d, a, b) is also a
valid typle. For example, if (0, 0x06, 0xdd, 0x87, 0xdd) is valid, then (0, 0x87, 0xdd, 0x06, 0xdd)
is also valid. Therefore, the table consists of a total of 2×15 = 30 entries. These
entries match the results from our simulation.

Similar analysis also confirms that the size of the table for 4-bit vanishing
differentials when N = 1 is 910.

B Example of multiple vanishing differentials

Table 6 is an example where 16 vanishing differentials happened within 1.3 days.
All had the same difference path, which collided at N = 2. One can see that
only the 4 least significant bits of time byte T1 differ. Since each of these bits
are duplicated twice, the expected running time of the last steps is given by
z = 8 in Table 4. Taking into consideration N = 2, the total time is expected
to be on the order of 238 operations.

C Magma code

Below is the Magma code that was used to compute the probabilities from
Section 9.

/* this code assumes j >= 7 */

j := 13;

cardinality_sets := 24 + (j-7)*2;

for N in [1..6] do

w0w4size := 2*N + 14;

c := [1: i in [2..j]];

sum := 0.0;

done := false;

while not done do

bits_taken := &+c;

23

First plaintext Second plaintext
1e 80 8c 8c 1e 80 8c 8c 1e 90 8c 8c 1e 90 8c 8c

1e 81 8c 8c 1e 81 8c 8c 1e 91 8c 8c 1e 91 8c 8c

1e 82 8c 8c 1e 82 8c 8c 1e 92 8c 8c 1e 92 8c 8c

1e 83 8c 8c 1e 83 8c 8c 1e 93 8c 8c 1e 93 8c 8c

1e 84 8c 8c 1e 84 8c 8c 1e 94 8c 8c 1e 94 8c 8c

1e 85 8c 8c 1e 85 8c 8c 1e 95 8c 8c 1e 95 8c 8c

1e 86 8c 8c 1e 86 8c 8c 1e 96 8c 8c 1e 96 8c 8c

1e 87 8c 8c 1e 87 8c 8c 1e 97 8c 8c 1e 97 8c 8c

1e 88 8c 8c 1e 88 8c 8c 1e 98 8c 8c 1e 98 8c 8c

1e 89 8c 8c 1e 89 8c 8c 1e 99 8c 8c 1e 99 8c 8c

1e 8a 8c 8c 1e 8a 8c 8c 1e 9a 8c 8c 1e 9a 8c 8c

1e 8b 8c 8c 1e 8b 8c 8c 1e 9b 8c 8c 1e 9b 8c 8c

1e 8c 8c 8c 1e 8c 8c 8c 1e 9c 8c 8c 1e 9c 8c 8c

1e 8d 8c 8c 1e 8d 8c 8c 1e 9d 8c 8c 1e 9d 8c 8c

1e 8e 8c 8c 1e 8e 8c 8c 1e 9e 8c 8c 1e 9e 8c 8c

1e 8f 8c 8c 1e 8f 8c 8c 1e 9f 8c 8c 1e 9f 8c 8c

Table 6: Example of 16 vanishing differentials that happened within 1.3 days,
using key b5 a9 f4 8c 16 23 a6 1a.

if bits_taken le w0w4size then

prod1 := &*[Binomial(4, c[i]) : i in [1..6]];

if j gt 7 then

prod2 := &*[Binomial(2, c[i]) : i in [7..j-1]];

else

prod2 := 1;

end if;

prod3 := Binomial(64 - cardinality_sets, w0w4size - bits_taken);

sum +:= prod1*prod2*prod3;

end if;

index := 1;

c[index] +:= 1;

while ((index le 6 and c[index] eq 5) or

(index ge 7 and c[index] eq 3)) do

/* there is a ’carry’ in the counter */

c[index] := 1;

index +:= 1;

if index ge j then

done := true;

break;

end if;

c[index] +:= 1;

24

end while;

end while;

prob := sum/Binomial(64, w0w4size);

print "Probability is 2^",Log(prob)/Log(2), "for N = ",N;

end for;

25

