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Abstract£ºAn experimental model in which alkylating
agent N-methyl-N'-nitro-N-nitroguanidine£¨MNNG£©with
low concentration was employed to induce genetic instabil-
ity of a monkey kidney vero cell line£¬it was proved that
there were changes in the patterns of protein tyrosine
residue phosphorylation and the activation of stress acti-
vated kinase£¨JNK / SAPK£©. Now with the same experi-
mental conditions£¬it is discovered that the phosphoryla-
tion degree increased in p38MAPK and its upstream ki-
nase MKK3 / MKK6 and upstream activator SEK1 / MKK4
of JNK / SAPK£¬suggesting that both stress signaling path-
ways in mitogen activated protein kinase£¨MAPK£©family
be served by MNNG to activate cellular stress response
and there may be cross talks between different pathways .
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Researches on cellular stress response to
DNA damage have achieved many evidences that
there are activation of signal transduction pathways
and alteration of gene expression induced by ultra-
violet and chemical DNA damaging agents . Al-
though it has been verified on ultraviolet and
chemical DNA damaging agents with high concen-
tration that there is signal transduction activated
not only by damaged but also by undamaged DNA
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pathways£Û1 - 4£Ý£¬there is less knowledge obtained
on details of cellular response to low concentration
of chemicals£¬it is necessary therefore to be ex-
plored.

Using the experimental stress model estab-
lished in our laboratory that a DNA damaging
agent with short half-life named N-methyl-N'-ni-
tro-N-nitroguanidine£¨MNNG£©was employed to in-
duce genetic instability in vero cell line£Û5£Ý£¬it has
been proved that MNNG with low concentration

£¨0.2µmol¡¤L
- 1£©can induce delayed point muta-

tion in the normal sequence unrelated to the dam-
aged nucleotide£¨non-targeted mutation£©which de-
pended on the alteration of gene expression and
were enhanced by cycloheximide£¬the inhibitor of
protein synthesis and activator of stress signal
transduction pathway mediated by mitogen activat-
ed protein kinase£¨MAPK£©£Û6 - 9£Ý. Besides£¬in cells
exposed to MNNG or MNNG plus cycloheximide£¬
there were changes in the patterns of protein phos-
phorylation and protein tyrosine residue phosphory-
lation as well as the activation of stress activated
protein kinase£¨JNK / SAPK£©£Û10 - 12£Ý. All of above
demonstrated that chemical DNA damaging agent
could activate cellular signaling pathways even at
low concentration£¬though its relationship to non-
targeted mutagenesis remained unclear . Among
MAPK£¬both JNK / SAPK and p38MAPK play im-
portant roles in cellular stress signal transduction
and there are always cross talks between different
signaling pathways in cells . In present study the
changes of phosphorylation ratio of p38MAPK and
its upstream kinase MKK3 / MKK6 and upstream
activator of JNK / SAPK£¬the SEK1 / MKK4£¬were
observed with the same experimental system so
that accumulating knowledge for clarifying the sig-
nal transduction pathways activated by low concen-
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tration of chemical DNA damaging agent and its
relationship with nontargeted mutagenesis .

1 MATERIALS AND METHODS

1.1 Agents and cells
Africa green monkey kidney vero cells were

provided by our laboratory . Dulbecco' s modified
eagle medium£¨DMEM£©and calf seras were pur-
chased from Gibco Chemical Co£¬MNNG and cy-
cloheximide from Sigma. MNNG was dissolved in
dimethyl-sulfoxide£¨DMSO£©and cycloheximide in
Hanks balanced salt solution£¨HBSS£©. The final
concentrations in serum free DMEM were regulated
to 0 . 2µmol¡¤L

- 1£¬0. 2% £¨ V / V£© and 1 mg¡¤
L- 1 for MNNG£¬DMSO and cycloheximide£¬re-
spectively. Acrylamide and N£¬N'-mehtylenebis-
acrylamide was obtained from Promega and the con-
centration of separating gel was 10%£¨W / V£©. The
devices of electrophoresis and membrane transfer
were the mini-protein series products from Bio-
Rad. The Western blotting reagent kits for phos-
pho-p38MAPK£¬phospho-MKK3 / MKK6£¬phospho-
SEK1 /MKK4 and for p38MAPK£¬MKK3 / MKK6
were purchased from New England Biolabs Co and
anti-SEK1 / MKK4 antibody from Santa Cruz.
1.2 Cultivation and treatment of cells

Vero cells were grown at 37℃ and 5% -
7% CO2 in DMEM supplemented with 10% calf
serum£¬100 kU¡¤L- 1 penicillin£¬100 mg¡¤L- 1

streptomycin£¬200 mg¡¤L- 1 kanamycin and were
divided to six groups at 70% - 80% confluence£¬
four of them treated with MNNG£¨0.2µmol¡¤L

- 1£©

only for 0 . 5 h£¨M0. 5£©£¬1 h£¨M1£©£¬2. 5 h
£¨M2. 5£©and 2. 5 h followed by a 3 h interval
¡²M2. 5£¨3£©¡³£¬ respectively£»one with MNNG for
2 .5 h followed by a 3 h cycloheximide treatment
£¨M2. 5 C3£©£»and one with cycloheximide for 3 h
only£¨C3£©. DMSO and HBSS were served as sol-
vent control to MNNG and cycloheximide£¬re-
spectively .
1. 3 Sample preparation and SDS-polyacryl-
amide gel electrophoresis£¨PAGE£©

After treatment£¬preparing cell lysates below
0 - 4℃£ºcells were washed with PBS£¬detached

from culture dishes with versene£¬and harvested by
centrifugation at 3000 × g£¬then incubated with
cell lysis buffer¡²containing 25 mmol¡¤L- 1

HEPES£¬0. 3 mol¡¤L- 1 NaCl£¬1. 5 mmol¡¤L- 1

MgCl2£¬0. 2 mmol¡¤L- 1 EDTA£¬0. 1 mmol¡¤L- 1

Na3VO4£¬20 mmol¡¤L- 1
β-glycerophosphate£¬ 1%

Triton X-100£¨V / V£©£¬0.5 mmol¡¤L- 1 dithiothre-
itol£¨DTT£©£¬2 mg¡¤L- 1 leupeptin and 100 mg¡¤L- 1

phenylmethylsulfonyl fluoride£¨PMSF£©¡³for 45 min
followed by centrifugation at 15 600 × g for 30
min. Supernatants were loaded on 10% acry-
lamide gels with 40µg protein per well and per
group. Two parallel gels were electrophoresed si-
multaneously for 90 min under 150 voltages.
1.4 Western blotting and data analysis

Protein bands in two parallel gels were trans-
ferred to two nitrocellulose£¨NC£©membranes si-
multaneously for 90 min under 100 voltages. After
then£¬all performances about the membranes in-
cluding washing£¬primary antibody and horseradish
peroxidase£¨HRP£© conjugated antibody interac-
tions£¬enhanced chemiluminescence£¨ECL£©and
exposing to films were carried out according the
instruction manual provided by the manufacturer .
Of two parallel membranes£¬one was reacted with
anti-kinase and the other with anti-phosphokinase
primary antibody. Bands emerged on films were
scanned with Scanning Densitometer£¨Pharmacia£©
and were quantized with Kodak 1 D Analysis 2 . 0
software . As these enzymes are activated only
when their several special amino acid residues are
phosphorylated£¬we employed the P / N ratio as the
parameter presenting activation degree of these en-
zymes£¬with the¡°P¡±served as absorbance values
of phosphokinases and the¡°N¡±as absorbance val-
ues of nonphosphokinases. Both P and N are rela-
tive absorbances of treatment groups to controls .
Assuming the absorbance of band of control as 1£¬
the P / N ratio of the treatment groups between
phospho-band and nonphospho-band of the same
kinase on the two parallel films was calculated by
comparing the relative absorbances of these two
bands.
1.5 Statistical analysis

The P / N ratios in different groups of each ki-
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nase were expressed as-x ± s£¬and compared by
Student's t test with two tails .

2 RESULTS

2. 1 Enhancement effect of N-methyl-N'-ni-
tro-N-nitroguanidine£¨MNNG£©on P / N ratios
in both p38MAPK and MKK3 /MKK6

Fig 1 displays the Western blots of phospho-
and nonphospho-p38MAPK and MKK3 / MKK6

Fig 1 . Western blots of phospho- and nonphospho-
p38MAPK and MKK3 /MKK6 after treatment of
vero cells with N-methyl-N'-nitro-N-nitroguanidine

£¨MNNG£©. + £ºblots of the kinases from vero cells treated with
0.2µmol¡¤L

- 1 MNNG£» - £ºblots of the kinases from vero cells
treated with 0.2%£¨V / V£©DMSO£»M0.5£¬M1 and M2.5£ºextracts
of vero cells prepared immediately after 0 . 5£¬1. 0 and 2. 5 h of
MNNG or DMSO treatment£»M2.5£¨3£©£ºextracts of vero cells pre-
pared at 3 h after 2 . 5 h MNNG or DMSO treatment . The images
shown here were typical of three independent experiments.

after treating vero cells with low concentration
MNNG at different time point£¬and Tab 1 displays
the P / N ratio values of phospho- to nonphospho-
p38MAPK and that of phospho- to nonphospho-
MKK3 / MKK6. In cells treated with MNNG only£¬
the P / N ratios in p38MAPK and MKK3 / MKK6 at
group M0. 5£¬M1 and M2. 5 were close to 1£¬a-
mong them there were no significant differences.
While at group M2. 5£¨3£© the ratios went up
markedly. There were significant differences be-
tween group M2.5£¨3£©and other three groups. The
results illustrated that both p38MAPK and its up
stream kinase MKK3 / MKK6 could be activated at
3 h after 2 . 5 h MNNG treatment . The activities
were as high as 2 .056 and 1.699 times than con-
trols£¬respectively .
2. 2 Increase of P / N ratio in SEK1 /MKK4 in
the group treated with MNNG

In cells treated with low concentration MNNG
only£¬the P / N ratios in SEK1 / MKK4£¨ the up-
stream kinase of JNK / SAPK£©at group M0.5£¬M1
and M2.5 were close to 1£¬while in M2.5£¨3£©£¬it
went up to 1 .373£¨Tab 1£©. There were no differ-
ences among group M0. 5£¬M1 and M2. 5£¬while
the P / N ratios in these three groups were different
from that in group M2.5£¨3£©. The results suggest-
ed that low concentration MNNG not only increase
activity of JNK / SAPK as reported previously£¬but
also activate its upstream kinase SEK1 / MKK4.

Tab 1. P / N ratios of phospho-p38MAPK£¬MKK3 /MKK6£¬SEK1 /MKK4 to nonphospho-p38MAPK£¬MKK3 /
MKK6£¬SEK1 /MKK4

Group
P / N Ratio

p38MAPK MKK3 / MKK6 SEK1 / MKK4

M0.5 0.89 ± 0.13** # 0 .99 ± 0.16** 0.99 ± 0.14* #

M1 1.05 ± 0.16** # 1 .00 ± 0.16** 1.08 ± 0.09*

M2.5 0.98 ± 0.16** # 1 .08 ± 0.13** 0.99 ± 0.16*

M2.5£¨3£© 2.06 ± 0.25 1.70 ± 0.18 1.37 ± 0.15

M2.5 C3 1.53 ± 0.21 0.89 ± 0.21** 1.43 ± 0.20

C3 0.98 ± 0.16** # 1 .12 ± 0.16* 1.20 ± 0.11

The means of group M0.5£¬M1.0£¬M2.5 and M2.5£¨3£©were as the same as Fig 1£»M2.5 C3£ºextracts of vero cells prepared after 2 .5 h MN-
NG treatment followed by 3 h 1.0 mg¡¤L- 1 cycloheximide treatment£¬DMSO and HBSS as solvent control£¬respectively£»C3£ºextracts of vero
cells prepared immediately after 3 h cycloheximide treatment£¬HBSS as solvent control .-x ± s£¬n = 3 . * P < 0 .05£¬** P < 0.01£¬compared
with M2.5£¨3£©group£»# P < 0.05£¬compared with M2.5 C3 group.
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2. 3 P / N ratios of MAPKs in cells treated
with both MNNG and cycloheximide

In cells treated with MNNG for 2 . 5 h fol-
lowed by cycloheximide for 3 h£¬the P / N ratios in
p38MAPK and SEK1 / MKK4 were 1. 533 and
1. 427£¬ respectively£¬ closing to that in group
M2. 5£¨3£©which was treated with MNNG only .
The P / N ratio in MKK3 / MKK6 had not risen

£¨Tab 1£¬M2.5C3£©. In cells treated only with cy-
cloheximide£¬the P / N ratios in all three kinases
were close to 1£¬suggesting that cycloheximide
alone had neither effects on increasing nontargeted
mutation frequency as previous report£¬nor ability
to activate MAPKs.

3 DISCUSSION

The MAPK cascades are one of the most in-
tensely studied groups of signal transduction path-
ways. These signaling pathways are present in all
eukaryotes and have been implicated in many
physiological and pathophysiological processes£¬
including cell growth£¬differentiation£¬oncogenic
transformation£¬immune responses£¬and apopto-
sis . Of MAPKs£¬JNK / SAPK and p38MAPK are
regarded as the principal pathways mediating cel-
lular stress signal transduction and share similar
upstream activator£¨MAPK / MKK£©with somewhat
differences. MKK3 / MKK6 is a well-known up-
stream kinase of p38MAPK while SEK1 / MKK4 is
a major activator of JNK / SAPK but minor of
p38MAPK£Û13£Ý.

MNNG£¬a chemical stressor to mammalian
cells£¬can activate JNK / SAPK in human 293 cells
with concentration as high as 70µmol¡¤L

- 1£Û4£Ý. In
vero cells MNNG with concentration of 20µmol¡¤
L- 1 was enough to kill over 80% of cells while
with concentration low as 0.2µmol¡¤L

- 1 would in-
duce highest nontargeted mutation frequency with-
out remarkable mortality£Û5£Ý. There may be differ-
ences in changes of cellular signaling pathways in-
duced by stressors with different degree . It is the
fact that cellular response induced by chemical
DNA damaging agent with low concentration is
more similar to that by environmental chemicals£¬

and is therefore more practically significant . It
had been reported from our laboratory previously
that the cellular stress model established in this
laboratory could increase phosphorylation degree
of JNK / SAPK and its kinase activity£Û12£Ý. With
same conditions£¬the phosphorylation ratio of its
upstream activator SEK1 / MKK4 also rose in pre-
sent study£¬confirming further that there is activa-
tion of JNK / SAPK pathways during cellular stress
response induced by low concentration MNNG with
cooperation of cycloheximide .

Ultraviolet£¬osmotic shock£¬cytokines£¬bac-
teria and their products can activate both MKK3 /
MKK6 and p38MAPK. The later sequentially ac-
tivates its substrates as MAPKAPK-2£¨MAPK ac-
tivated protein kinase-2£© which phosphorylates
and activates transcription factor such as cAMP
response element binding protein£¨CREB£©follow-
ing expression of related genes mediating desired
response to extracellular stimulation£Û13£Ý. Accord-
ing to reports recently£¬in neuroblastoma cells£¬
the opioid receptors and opioid receptor-like re-
ceptor-1£¨ORL1£©mediate activation of p38MAPK
cascade through cAMP dependent protein kinase

£¨PKA£©pathways£Û14£Ý£¬and in osteoblasts£¬basic fi-
broblast growth factor£¨bFGF£©stimulates synthesis
of interleukin-6 £¨ IL-6 £© by PKC activating
p38MAPK cascades£Û15£Ý£¬there are other activators
of p38MAPK in addition to MKK3 / MKK6. In
present study£¬treatment of cells with low concen-
tration MNNG£¨0. 2µmol¡¤L

- 1£©can increase the
phosphorylation of p38MAPK and its upstream ki-
nase MKK3 / MKK6£¬suggesting that MNNG acti-
vate p38 MAPK stress signaling pathways. In cells
treated with MNNG plus cycloheximide£¬the phos-
phorylation degree of p38MAPK and SEK1 / MKK4
rises while MKK3 / MKK6 exhibits no alteration£¬
suggesting that in this case p38MAPK activation
be upon pathways other than MKK3 / MKK6£¬for
example£¬SEK1 / MKK4. Other experiments from
our laboratory proved that under same stress£¬
there were increases in cAMP concentration£¬PKA
activity and CREB phosphorylation£¨unpublished
data from WANG et al £©. All of the results
demonstrated that low concentration MNNG may
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activate p38MAPK by several signaling pathways
including MKK3 / MKK6£¬ SEK1 / MKK4 and
PKA£¬and thereby mediate cellular stress re-
sponse . There may be cross talks among different
pathways.

Recently£¬GADD45 was suggested to be in-
volved in p38MAPK and JNK / SAPK activation by
interacting with their upstream kinase MTK1

£¨MEKK4£©£Û16£Ý. However£¬this suggestion was re-
lied on in vitro experiments and ectopic overex-
pression of GADD45 protein. In fact£¬in cells ex-
posed to stress and DNA damaging agents£¬the ac-
tivation of p38MAPK and JNK / SAPK preceded
the expression of GADD45£Û17£Ý£¬and in GADD45
knockout mouse fibroblasts£¬p38MAPK and JNK /
SAPK can also be activated by stress£Û18£Ý. These
come to a conclusion that GADD45 would not in-
volve in p38MAPK and JNK / SAPK activation£¬
and the pathways by which DNA damage inducing
activation of both two kinases have not been iden-
tified even expression of GADD45 was certainly
induced by DNA damage£Û19£Ý. While as a well-
known DNA damaging agent£¬ultraviolet light has
been proved independent on nuclear signals when
inducing cellular stress response through
p38MAPK and / or JNK / SAPK pathways£Û3£Ý. It is
suggested that the activation of these two groups of
MAPKs in MNNG exposed cells also be triggered
by its interaction with cellular macromolecules
other than its DNA damaging activity .
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