Exponent Group Signature Schemes and
Efficient Identity Based Signature Schemes
Based on Pairings

F. Hess

Dept. Computer Science,
University of Bristol,
Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB

florian@cs.bris.ac.uk

Abstract. We describe general exponent group signature schemes and
show how these naturally give rise to identity based signature schemes
if pairings are used. We prove these schemes to be secure in the ran-
dom oracle model. Furthermore we describe a particular identity based
signature scheme which is quite efficient in terms of bandwidth and com-
puting time, and we develop a further scheme which is not derived from
an exponent group signature scheme. The realization of these schemes
uses supersingular elliptic curves and the Tate pairing, which is more
efficient than the Weil pairing. Finally we show that these schemes have
a more natural solution, than Shamir’s original scheme, to the “escrow”
property that all identity based signature schemes suffer from.

Keywords: Exponent group signatures, identity based signatures, Weil
pairing, Tate pairing, key escrow.

1 Introduction

Digital signatures are one of the most important security services offered by
cryptography. In traditional public key signature algorithms the public key of
the signer is essentially a random bit string picked from a given set. This leads
to a problem of how the public key is associated with the physical entity which
is meant to be performing the signing. In these traditional systems the binding
between the public key and the identity of the signer is obtained via a digital
certificate. As noticed by Shamir [14] it would be more efficient if there was no
need for such a binding, in that the users identity would be their public key,
more accurately given the users identity the public key could be easily derived
using some public deterministic algorithm.

An identity based signature scheme based on the difficulty of factoring in-
tegers is given in [14], and it remained an open problem to develop an identity
based encryption scheme. In 2001 two such schemes were given, the first by Cocks

[6] was based on the quadratic residuosity problem, whilst the second given by
Boneh and Franklin [3] was based on the Weil pairing.

Originally the existence of the Weil pairing was thought to be a bad thing
in cryptography. For example in [9] it was shown that the discrete logarithm
problem in supersingular curves was reducible to that in a finite field using the
Weil pairing. This led supersingular elliptic curves to be dropped from crypto-
graphic use. The situation changed with the work of Joux [8], who gave a simple
tripartite Diffie-Hellman protocol based on the Weil pairing on supersingular
curves. Since Joux’s paper a number of other applications have arisen, including
an identity based encryption scheme [3], a general signature algorithm [4]. The
extension to higher genus curves has also recently been fully explored in [7]. This
new work has resulted in a rekindling of cryptographic interest in supersingular
elliptic curves. Although most of the literature discusses these schemes in terms
of the Weil pairing, in turns out that it is far more efficient to use the Tate
pairing as we shall explain. In [13] an identity based public key signature algo-
rithm is given which uses the Weil pairing. This algorithm is less efficient than
ours both in terms of bandwidth and computational cost, in addition no proof of
security is given for the scheme in [13]. Very recently and independently of this
work another identity based signature scheme [11] has been proposed, however
also without a formal proof of security. In this paper we present identity based
signature schemes based on the Weil or Tate pairing different from [11,13] with
proof of security. We describe two schemes in detail which have slightly better
communications overhead, but are around fifty percent more efficient in terms
of computing resources than the system of [13].

The paper is organized as follows. We first describe general exponent group
signature schemes and prove them to be secure in the random oracle model.
Using pairings with certain properties we then show that these exponent group
signature schemes can naturally be transformed into identity based signature
schemes, thereby obtaining a new class of such signature schemes. Among these
we describe a particularly efficient scheme in more detail. We also develop a
further scheme which does not belong to this class. We then discuss how these
schemes can be realized using elliptic curves and the Weil or Tate pairings.
We mention ways of computing these pairings. It turns out that we can use
supersingular elliptic curves for our purpose. Finally, we address issues regarding
key escrow and the distribution of keys to multiple trust authorities.

2 Signature Schemes for General Exponent Groups

In this section we describe a generalization of public key discrete logarithm based
signature schemes like the modified ElGamal or Schnorr schemes to general
exponent groups.

Let (G,+) and (V,-) denote groups of prime order ! and let

exp: G-V

be an isomorphism. The group G is referred to as exponent group. The main
example is G = F}, V the subgroup of F generated by ¢ = ¢4=V/! for ¢ a

generator of F and I|g — 1, and exp : + (7. Thus exp can be viewed as
an exponentiation and the discrete logarithm problem is replaced by computing
preimages under exp, or in other words, inverting exp. Clearly we have in mind
that images under exp be easily computed while preimages should be infeasible
to compute.

Let a € G\{0} and k € F). We define a hash function

h:{0,1}* xV = F* x F.

There will be various choices for h as described later.

An exponent group signature scheme, based on an exponentiation and public
keys, consists of the following three algorithms, Setup, Sign and Verify. There
are two parties in such a system, the signer and verifier.

Setup : The signer creates a private-public key pair (a,y) € G\{0} x V\{1} by
choosing a random a € G\{0}. The he computes

y = exp(a)
and publishes y.
Scheme 1.

Sign : To sign a message m the signer picks a random k¥ € G\{0} and then
computes:

1. r = exp(k)
2. (v,) h(m,r)
3. u=av+kw

The signature is the pair (u,7) € G x V\{1}.
Verify : On receiving a message m and signature (u,r) the verifier computes:

1. (v,w) = h(m,r)
2. Accept the signature if and only if exp(u) = y?r?.

That this verification equation holds for a valid signature follows from the fol-
lowing algebra:

exp(av + kw)

exp(a)® exp(k)”
— yvrw

exp(u)

There is a number of variations of this basic scheme. First of all, the signer
and verifier could compute (w,v) = h(m,r) instead of (v,w) = h(m,r). If
G = T they could additionally assign h(m,r) to any of the six combina-
tions (u,v), (u,w),... and the signer would solve for the remaining variable

in 4 = av 4+ kw. The signature consists then of the value of this remaining
variable together with r. These variations are equally secure (in the random
oracle model) since the respective tuples (u,v,w) are computationally indistin-
guishable, because of a, k # 0. The variations correspond to the well known six
variations of the modified ElGamal scheme.

There is a number of possibilities for the definition of h. If hy : {0,1}* —
F*, hy : V. — F and hg : {0,1}* x V. — F are hash functions we can
for example consider h(m,r) := (hi(m), ha(r)) or h(m,r) := (hz(m,r),1). The
choice h(m,r) := (h(m),r) would for example not be admissible. The case

h(m,r) := (hz(m,r),1)

is of particular interest. Namely, in scheme 1 we then have w = 1 and the
verification equation is exp(u) = y”r. This means we can solve r = exp(u)y .
It is hence equivalent giving (u,v) as a signature instead of (u,r), which might
take less memory. We obtain the following modified signing and verification
steps, yielding a generalized Schnorr signature scheme.

Scheme 2.

Sign : To sign a message m the signer picks a random k € G\{0} and then
computes:

1. r = exp(k)
2. v = hz(m,r)
.u=av+k

The signature is the pair (u,v) € G x F*.

Verify : On receiving a message m and signature (u,v) the verifier computes:

v

1. r =exp(u)y~
2. Accept the signature if and only if v = hz(m,r).

If we are given exp : G — V we can derive other exponentiations in the
following way. Let g € G\{0}. We define exp, : F; — V by exp,(z) := exp(zg).
If we can compute preimages under exp, we can compute preimages under exp.
This implies that exp, is at least as “secure” as exp. The security of the corre-
sponding signature schemes is discussed later.

3 Identity based Signature Schemes from Pairings

In this section we describe how non-degenerate pairings can be used to obtain
identity based signature schemes. There are two constructions. The first is to
transform any exponent group signature scheme, based on public keys, into an
identity based scheme. The second appears to be “conceptually new”.

Let e : G x G — V be a pairing which satisfies the following conditions

1. Bilinear: e(z1 + x2,y) = e(z1, y)e(z2,y) and e(z,y1 + y2) = e(z,y1)e(x, y2)-
2. Non-degenerate: There exists € G and y € G such that e(x,y) # 1.

We also assume that e(x,y) can be easily computed while, for any given
random b € G and ¢ € V, it should be infeasible to compute z € G such that
e(z,b) = ¢. We remark that the pairing e is not required to be symmetric or
antisymmetric.

We define a hash function

H:{0,1}* - G\{0}.

An identity based signature scheme consists of the following four algorithms,
Setup, Extract, Sign and Verify. There are three parties in such a system,
the trust authority (or TA), the signer and the verifier.

Setup : The TA picks a random element P € G\{0} and a secret integer ¢t € F/*.
The TA then computes
Qra=1tP
and publishes (P, Qra4). The value t is stored by the TA.
Extract : This algorithm is performed by the TA when a user requests the secret

key corresponding to their identity. Suppose the user’s identity is given by the
string ID. The public key of the user is then given by

Qip = H(ID),
whilst the private key is computed by the TA as
Sip =tQ1p,

and this value is given to the user.

3.1 Transforming Exponent Group Signature Schemes

Given a pairing as above we obtain an isomorphism exp : G — V by letting
exp(z) := e(x,P). The idea is to use this exponentiation in the schemes of
section 2. We can indeed proceed as in the algorithms Sign and Verify given
there, using this exponentiation exp and @ = Srp. The verifier has to check
e(u, P) = y*r", where y is the personal public key y = exp(a) of the signer ID.
The key point is that

y =e(a, P)
e(tQip, P)
=e(Qrp,tP)
=e(Qrp,QTa).
The verifier thus only needs the identity of the signer and the public key of the

TA in order to verify the signature. There is no need at all for a personal public
key. Thus

Theorem 1. The exponent group signature schemes can be transformed into
identity based signature schemes by using a suitable pairing.

To be more precise we formulate the algorithms Sign and Verify of scheme 2
in the identity based setting.

Scheme 3.

Sign : To sign a message m the signer chooses an arbitrary P; € G\{0}, picks
a random integer k € F) and computes:

1. r = e(Py, P)*.
2. v = hg(m,r).
3. u=vSrp + kP;.

The signature is then the pair (u,v) € (G, F).

Verify : On receiving a message m and signature (u,v) the verifier computes:

1. r=e(u,P)-e(Qrp,—Qra)”
2. Accept the signature if and only if v = hz(m,r).

We discuss some general performance enhancements for the scheme 3, similar
remarks apply to scheme 1 in the identity based setting as well.

The signing operation can be optimized by the signer precomputing e(Py, P)
for the P, of his choice, for example P, = P, and storing this value with the
signing key. This means that the signing operation involves one exponentiation in
the group V, one hash function evaluation and one simultaneous multiplication
in the group G.

The verification operation requires one exponentiation in V', one hash func-
tion evaluation and two evaluations of the pairing. One of the pairing evaluations
can be eliminated, if a large number of verifications are to be performed for the
same identity, by precomputing e(Qrp, —Q7a4)-

The signature scheme 3 is also very efficient in terms of communication re-
quirements. One needs to transmit one element of the group G and one element
of Fl .

3.2 Another Identity based Signature Scheme

The previous schemes used the bilinearity to express the personal public key via
the identity and the trust authority’s public key. Except for this the bilinearity
had not been applied further. The following scheme now makes full use of the
bilinearity of the pairing. Let

h':{0,1}* x G — F)

be a hash function.

Scheme 4.

Sign : To sign a message m the signer picks a random integer k € F) and then
computes:

1. r =kP.
2. v=~h'(m,r).
3. u= (U/k)SID.

The signature is then the pair (u,r) € (G\{0}, G\{0}).
Verify : On receiving a message m and signature (u,r) the verifier computes:

1. v=h'(m,r)
2. Accept the signature if and only if e(u,r) = e(Qrp, QTa)".

That this verification equation holds for a valid signature follows from the fol-
lowing algebra:

e(u,r) = e((v/k)SIp, kP)
=e(Srp, P)”
=e(Q1p,Q14a)".

Depending on G and V this scheme appears to be slightly more efficient than
scheme 3.

4 Proofs of Security

4.1 Exponent Group Signature Schemes

Security for the exponent group signature schemes will be defined by adapting
the standard definition of security against existential forgery under an adaptively
chosen message attack, see for example [12]. The adversary A is assumed to be
a polynomial time probabilistic Turing machine which takes as input the public
key y of a user. The adversary’s goal is to produce an existential forgery of a
signature by the given user. To aid the adversary we allow her to query an oracle:

Signature Oracle : For any given message m and public key y this oracle will
produce a signature from the user with public key y on the message m.

Of course the output of the adversary A should not be a signature which
has been asked of its signature oracle. We shall call such an adversary against
our signature scheme an adaptive adversary. One could extend the attack model
by assuming that the adversary can at some point in the attack choose the
identity on which they aim to obtain a forged signature. Extending the proof of
the following theorem to this attack model is trivial, but results in a significant
reduction in the tightness of the resulting security.

Theorem 2. In the random oracle model, suppose that an adaptive adversary
A exists against an exponent group signature scheme which makes qs queries of
its signature oracle, qn queries of its random oracle h and which succeeds within
time T of making an existential forgery with probability

10(gs +1)(gs + qn)

€ > .

l

Then there is another probabilistic algorithm which solves

exp(a) =y
in a which succeeds in expected time

1206864, T
< =

TI

Proof. Let A be our adversary, we shall use A to construct another algorithm
B4 which inverts exp. We shall model the hash function h as random oracle,
and so we will need to keep lists of the oracle queries made.

Let the input to algorithm By be the public key y. Algorithm B4 chooses a
random message m and, applying the Forking Lemma of Pointcheval and Stern
[12], runs algorithm A with the same random tape, but with different outputs
of the hash function h, until two forgeries of the same message are obtained:

(r, (v,w) = h(m,r),u),
(7'5 (’UI, w') = hl(mar)aul) .
Algorithm B4 will succeed in producing such a pair of forgeries in expected time
T’ as follows from Theorem 13 of [12].
Since the value of r is the same in both forgeries we have the equation
exp(u — (w/w')u') = y*~ /2",

Furthermore, as the hash values are random we expect the vectors (v, w) and
(v',w") to be Fj-linearly independent, and thus v — (w/w')v" # 0. Hence, algo-
rithm B, can compute

y = exp((v — (w/w')o) ™ (u — (w/w')u'))

thereby solving exp(a) = y in a in expected time T".

All that remains is to explain how algorithm B, will answer the signature
oracle queries of algorithm A. Recall that such queries need to be simulated since
the secrets needed to perform the queries in a real attack are not available to
algorithm By.

Signature Oracle Queries : On input of a message m to sign we generate
random u,u’ € G\{0} and random linearly independent vectors (v, w), (v',w")

in F x). We then compute A = (w — 1)/w’ and r = exp(u — ')y
We remark that r is a random element in V. If = 1 a new vector (v',w') is
chosen until r € V\{1}. We define the hash value h(m,r) := (v,w) and return
the signature (u,r).

Let exp, be the exponentiation derived from exp and g € G\{0}. Inverting
exp, is at least as hard as inverting exp. By Theorem 2 we can conclude that the
signature schemes for exp, are at least as secure as the corresponding signature
schemes for exp.

4.2 Identity based Signature Schemes

The security of the identity based signature schemes obtained from the expo-
nent group signature schemes is derived from their security. For the security of
scheme 4 we obtain a weaker result which follows quite similarly.

The adversary A is assumed to be a polynomial time probabilistic Turing
machine which takes as input the data

(P,QT4,Q1D)

where P is the “base point”, Q7 4 is the trust authority’s public key and Q;p is
the public key of a user. The adversary’s goal is to produce an existential forgery
of a signature by the given user. To aid the adversary we allow her to query two
oracles:

Extraction Oracle : For any given identity ID’ # ID this oracle will produce
the corresponding secret key Srp.

Signature Oracle : For any given message m and identity ID this oracle will
produce a signature from the user with identity I.D on the message m.

Of course the output of the adversary A should again not be a signature
which has been asked of its signature oracle.

Theorem 3. In the random oracle model, suppose that an adaptive adversary
A exists against scheme 3 (or any other identity based scheme derived from an
exponent group signature scheme) which makes qs queries of its signature oracle,
qn queries of its random oracle h and which succeeds within time T of making
an ezistential forgery with probability

10(gs + 1)(gs + qn)
> !

Then there is another probabilistic algorithm which solves

e(a, P) = e(Qrp,QTA)
in a which succeeds in expected time

120686¢,T
< =

TI

Proof. The signature scheme is nothing else as an exponent group signature
scheme with private key @ = Srp and public key y = e(Srp, P). The theorem
follows from Theorem 2 once we have explained how the oracles are simulated.

Extraction Oracle Queries : Given an identity ID' the extraction oracle
computes a random X € F, Q;pr = AP and Sipr = AQra. Then it defines
H(ID'") = Qrp and returns Srp. As usual these values are stored so that the
extraction oracle returns the same value when queried for the same ID’ again.

Signature Oracle Queries : The signature oracle can be simulated using the
signature oracle of the previous section queried for m and y = e(Qrp,QTA)
where Q;p = H(ID). We could in fact allow queries for any @ and y =

e(QaQTA)‘

For scheme 4 we do not give a formal proof of security. The extraction and
signature oracles can be simulated in the random oracle model as follows. For the
extraction oracle we can use the above simulation. The signature oracle computes
random A, € F), sets r = AQr4, u = pQrp and defines h'(m,r) = pA. Again
these values are stored appropriately. If Q;p is not known it is computed using
the extraction oracle. These considerations show that an active adversary does
not have better chances to forge a signature than a passive adversary.

By the Forking Lemma an algorithm B4 using the adversary A may obtain
two forgeries of the same message m

(r,v = h'(m,7),u),

(r,v" = h'(m,7),u),

by running it with the same random tape but different outputs of the hash
function h. Since the value of r is the same in both forgeries we then have the
equation ,

e(u—u',r) = e(Qrp,Qra)" "

Now r must have been computed by Ba or A before the oracle query h'(m,r)
was made. But these oracle queries returned random results. Thus B4 is able to
solve the following problem. After a finite computation data including an r € G
is determined. Then

e(a,r) =c

is solved in a for a random c € V.

One would naturally expect that solving e(a,r) = ¢ is uniformly as hard as
solving e(a, P) = ¢ for a prescribed P, since G is cyclic.

Given any r € G\{0} the difficulty of inverting the pairing e(-,7) can be
related to problems in G and V as follows. Assume we have an efficiently
computable isomorphism ¢ : V' — G which inverts the pairing e, that is x =
e(i(z), P). Let f be a generator of V. Then g := e(i(f),i(f)) is also a generator
of V. Furthermore, e(i(f*),i(f#)) = g**. That is, given f* and f* we have com-
puted g™ and have hence solved an instance of the weak Diffie-Hellman problem
in V. By [16] we can now conclude that inverting the pairing e(-,r) is at least as

hard as solving the Diffie-Hellman problem in both V' and G. We remark that
the reduction to solving an instance of the Diffie-Hellman problem in V' can also
be obtained by a direct reasoning in the proof of Theorem 2 and Theorem 3.

5 Realization of the Identity based Signature Schemes

In order use the identity based schemes described so far we need to find suitable
groups G, V and pairings e : G x G — V. These groups will be provided by
finite fields and elliptic curves over finite fields, and the pairings will be derived
from the Weil or Tate pairing.

More precisely G will be a point subgroup on an elliptic curve over a finite
field and V a subgroup of the cyclic group of a larger finite field. We remark
that elements in G can be represented in compressed form. Also, in scheme 3
the signature consists of v € [} instead of r € V, resulting in a more bandwidth
efficient scheme.

5.1 The Weil and Tate Pairings on Elliptic Curves

We shall summarize the properties we require of the Weil and Tate pairings,
much of the details can be found in [3], [9] and [15]. We present both pairings
since the Tate pairing is more efficient to compute than the Weil pairing.

Let E be an elliptic curve defined over F, and let G be a subgroup of E(F,)
of prime order [. For simplicity we will assume that 12 { #E(F,) so G = E(F,)[l].
We define a to be the smallest integer such that

(g™ —1).
The full I-torsion group E[l] is defined over a unique minimal extension field Fz ,
E[l] C E(Fyx).

In practical implementations we will require k¥ and « to be small. Let G be a
subgroup of E[l] such that E[l] = G & G.
The Weil pairing is a non-degenerate, bilinear and antisymmetric pairing

et E[l] x E[l] - Fp.

We cannot use it immediately for our purpose since e;(P, Q) = 1 for any P, €
G. One possibility is to consider an (injective) non F,-rational endomorphism
¢ : G — G. We define

e:GxG—=Fp, e(PQ):=e(P¢Q)).

This yields a pairing of the required properties since P and ¢(Q) are linearly
independent. Such non rational endomorphisms are known to exist for super-
singular elliptic curves. They do not exist for ordinary elliptic curves since the

Frobenius acts trivially on G. From the non degeneracy of the Weil pairing we
have k > a.
The Tate pairing is a non-degenerate, bilinear pairing

12 E(F,=)[l] x B(Fye) /IE(F,=) - F. /(F5).

For @ =1 we have E(F,)[l] = G and E(F,)/IE(F,) & G. Using this isomorphism
we can define

e:GxG—-Frn, ePQ):= (P, Q) /1,

For a > 1 we have E(Fy)[l] = E[l], E(Fgo)/IE(Fqo) = E[l] and k = o from
the non-degeneracy of ¢;. Here we again need a non rational endomorphism
¢ : G — G since t; is trivial on G. Using the isomorphism we define

e:GxG TS, e(PQ):=t(Pe¢Q)) " V"

Both cases yield pairings with the required properties.

If there are no non rational endomorphisms we could use any group homo-
morphism ¢ : G = G defined by P — P for an arbitrary P € G\{0}. The
computation of the pairing in the signature schemes only requires the evaluation
of ¢ at P and Qr4 which means that the two additional points P = ¢(P) and
Qra = #(Qra), to be computed by the trust authority, have to be publicly
known.

The Weil and Tate pairings are efficiently computable by an unpublished,
but much referenced, algorithm of Miller [10].

Suppose given P,Q € G we wish to compute e;(P, #(Q)) or t;(P, ¢(Q)). We
first compute, via Miller’s algorithm, the functions fp and f4g) whose divisors
are given by

(fr) = UI(P + X) = I(X)

and
(fo@) = Us(Q)) = 1(O),

where X € G is randomly chosen such that #{ 0, ¢(Q),X,P + X } = 4. Note,
that since P € G C E(F,) we have

fP c]Fq (:L') y)
whilst since $(Q) € G we have

f¢(Q) €]qu (:I’.J y)

where r = k or r = « respectively. This means that computing fp is easier than

computing fy(@)-
The Weil pairing is then given by

_ _Ip((4(@) - (0)
el(P,¢(Q)) = fo@(P+X) = (X))

The Tate pairing is computed via

t(P,¢(Q)) = fr((#(Q)) — (0)).

We see that not only is the Tate pairing easier to compute, since we do not
need to compute fy(q), but the single function we need to compute, namely fp,
is easier to compute than fyg). These facts together make computing the Tate
pairing around fifty percent more efficient than the Weil pairing. On the other
hand the value of the Tate pairing has to be raised to the power of (¢* —1)/I to
obtain the final result, and f,) can be computed as ¢(fg) using much more

operations over F, than over Fx.

5.2 Supersingular Elliptic Curves

As we have seen we can use supersingular elliptic curves in order to obtain the
required pairings for the identity based signature schemes. The following table
lists a number of examples, the parameter a and a non rational endomorphism ¢.

Field|Curve #E «a 1)

For |y° +y =2 +1 |2 (my)—=(@+Ly+z+i)
For | 4> +y=2"+2 |22+1+t(p)| 4| (z,9) = 2+ y+ECx+p)
For |4° +y=2"+2+122 +1~t2(p)| 4 | (z,9) = 2+ Cy+ECx+p)
Fsp |92 =234+ 2 3P +1 2 (z,y) = (—z,iy)

Fsp |92 =23 —2+1 3P +1+t3(p)| 6 z,y) = (—z + 11,1y)

Fsp |92 =23—2—-1 37 +1—t3(p)| 6 (z,y) = (—x +71_1,1iy)

F, |y>=2>+b p+1 2 z,y) = (§z,y)

F, |y>=2%+ax p+1 2 (z,y) = (—z,iy)

Here p denotes a prime > 5 and

bo(p) = 2p+1)/2 for p = 41,47 mod 24,
2WP) =\ o +)/2 for p = +5,+11 mod 24,

s (p) = 3(+1)/2 for p = +1 mod 12,
U =3(+1/2 for p = +5 mod 12.

Furthermore, ¢ is a non rational endomorphism with

E+6+1=0, C*+¢+E+1=0,
wWr4p++¢2=0, P —1,—-5=0,

and i +1 = 0. For £ ¢ F, we need p = 2mod 3 and for i ¢ F, we need

p =3 mod 4.

6 Key Escrow

One criticism against identity based signature schemes, as opposed to identity
based encryption schemes, is that the TA has access to the users private key and
hence can sign messages as if they came from the user. This escrow facility is
deemed a great draw back for signature schemes, whereas one could debate that
such an escrow facility for encryption may be desirable.

All previous identity based signature schemes have this in built escrow prop-
erty. However, we shall show in a moment that by using multiple TAs we can
reduce this threat from escrowing the private key. First we shall explain why
using multiple TAs in Shamir’s original scheme [14] is not very efficient.

Recall, in Shamir’s scheme the TA has a RSA modulus N for which they
know the corresponding factors, but no user is allowed to know the factors. The
TA publishes N and an associated public exponent e. In the key extraction phase
the TA computes

g=1ID? (mod N)

for the user, where
e-d=1 (mod ¢(N)).

The value g is the users private key. To produce a signature (¢, s) on a message
m, the user computes

t=r° (mod N),
s=g-r™Y (mod N),

where r is a random element of (Z/NZ)* and H a hash function. To verify a
message one checks whether the equation

s¢ =ID -7 (™Y (mod N)

holds. Clearly with this scheme, to split the TA’s key amongst a set of TAs
we need to produce an RSA modulus N and a public exponent e such that no
individual TA knows the factors of N and each TA has a share d; of the private
exponent d. Protocols exist for this problem, see for example [1], [2] and [5], but
they are usually relatively inefficient.

For the identity based signature schemes described in this paper the situation
is different as there is a natural, simple and elegant way to split the TAs master
key into a set of shares. This is because our security is based on discrete loga-
rithms rather than some factoring assumption. Suppose we have n TAs, denoted
TA;. We can now trivially distribute the master secret t among the n trusted
authorities. Each TA now generates their own private key ¢; and publishes

Qra, = [t:]P.

A user then obtains a share of the its private key from each TA via

S% = [t:]Q1p-

The user’s secret key is then computed via

n

S0 =358

i=1

with the corresponding value of Q74 computed from
Qra = Z Qra;-
=1

For the trusted authorities to determine the users private key they would then
all need to collude, providing a so-called (n,n)-threshold secret sharing scheme.

There is the possibility of one TA cheating and not responding with the
correct value of S}% for a given users key extraction request. This would have
the effect of producing an invalid private key for the end user. The end user
would like to determine which of the TAs has supplied the incorrect value. This
can be done in one of two ways

1. The user tries to sign and verify a message using only the data provided by
each TA in turn. This method clearly requires O(n) signing operations.

2. The user could detect the incorrect value by forming and checking the various
subkeys using a binary search method. This is a technique which will require
O(logn) signing operations to determine the incorrect value of S}%.

7 Conclusion

We have described exponent group signature schemes and how these naturally
give rise to identity based signature schemes when pairings are used. These
schemes are provably secure in the random oracle model. Furthermore we have
described a particular identity based signature scheme which is quite efficient in
terms of bandwidth and computing time, and have developed a further scheme
which is not derived from an exponent group signature scheme. The realization
of this scheme uses supersingular elliptic curves and the Tate pairing, which is
more efficient than the Weil pairing. Finally we have discussed key escrow and
the distribution of keys to multiple trust authorities.

8 Acknowledgements

I would like to thank D. Kohel, J. Malone-Lee and especially N. P. Smart for
helpful discussions.
References

1. S. Blackburn, S. Blake-Wilson, M. Burmester and S. D. Galbraith. Shared Gen-
eration of Shared RSA Keys. Preprint, 1998.

10.
11.

12.

13.

14.

15.

16.

. D. Boneh and M. Franklin. Efficient Generation of Shared RSA Keys. In Advances
in Cryptology - CRYPTO ’97, Springer-Verlag LNCS 1294, 425-439, 1997.

D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
Advances in Cryptology - CRYPTO 2001, Springer-Verlag LNCS 2139, 213-229,
2001.

. D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing. In
Advances in Cryptology - ASTACRYPT 2001, Springer-Verlag LNCS 2248, 514—
532, 2001.

C. Cocks. Split knowledge generation of RSA parameters. In Cryptography and
Coding, Springer-Verlag LNCS 1355, 89-95, 1997.

C. Cocks. An identity based encryption scheme based on quadratic residues. In
Cryptography and Coding, Springer-Verlag LNCS 2260, 360-363. 2001.

S. D. Galbraith. Supersingular curves in cryptography. In Advances in Cryptology
- ASTACRYPT 2001, Springer-Verlag LNCS 2248, 495-513, 2001.

A. Joux. A one round protocol for tripartite Diffie-Hellman. In Algorithmic Number
Theory Symposium, ANTS-IV, Springer-Verlag LNCS 1838, 385-394, 2000.

A. J. Menezes, T. Okamoto and S. Vanstone. Reducing elliptic curve logarithms
to logarithms in a finite field. IEEE Trans. Info. Th., 39, 1639-1646, 1993.

V. Miller. Short programs for functions on curves. Unpublished manuscript, 1986.
K. G. Paterson. ID-based signatures from pairings on elliptic curves IACR preprint
server, 2002.

D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13, 361-396, 2000.

R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairing. In SCIS
2000, 2000.

A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology - CRYPTO ’84, Springer-Verlag LNCS 196, 47-53, 1984.

J. H. Silverman. The Arithmetic of Elliptic Curves. GTM 106, Springer-Verlag,
1986.

E. R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. In Advances in Cryptology - EUROCRYPT 2001, Springer-Verlag
LNCS 2045, 195-210, 2001.

