A Variant of the Cramer-Shoup Cryptosystem
for Groups of Unknown Order

Stefan Lucks

Theoretische Informatik, Universitdit Mannheim, 68131 Mannheim, Germany
lucks@th.informatik.uni-mannheim.de

Abstract. The Cramer-Shoup cryptosystem for groups of prime order is a
practical public-key cryptosystem, provably secure in the standard model un-
der standard assumptions. This paper extends the cryptosystem for groups of
unknown order, namely the group of quadratic residues modulo a composed N.
Two security results are: In the standard model, the scheme is provably secure
if both the Decisional Diffie-Hellman assumption for QR and the factorisation
assumption for N hold. In the random oracle model, the security of the scheme
is provable by a quite efficient reduction.

1 Introduction

Security against chosen ciphertext attacks is essential for many cryptosystems.
Naor and Yung [9] introduced this notion in the world of public-key cryptosys-
tems and first described a scheme secure against non-adaptive chosen cipher-
text (“lunchtime”) attacks. Today, most cryptographers agree that a “good”
public-key cryptosystem should be secure against adaptive chosen ciphertext
(ACC) attacks. This notion has been introduced by Rackoff and Simon [10].
Dolev, Dwork and Naor [7] described a scheme provably secure against ACC
attacks under standard assumptions. However, their scheme is too inefficient for
practical applications. The research for provably secure and practically efficient
cryptosystems has led to schemes provably secure in the random oracle model
[2], and to schemes provably secure under non-standard assumptions such as
the “oracle Diffie-Hellman” assumption [1].

The Cramer-Shoup cryptosystem [4] is the only cryptosystem known to be
both practical and provably secure under standard assumptions — mainly, the
decisional Diffie-Hellman assumption in groups of prime order. Recently, the
same authors proposed a generalisation of their cryptosystem [5]. Its security
can be based either on Paillier’s decision composite residiosity assumption or on
the (quite classical) quadratic residiosity (QR) assumption — or on the decisional
Diffie-Hellman assumption in groups of prime order, as before. As pointed out in
[5], the QR-based variant of the generalisation is not too efficient in practice.! In
this paper, we deal with another variation, based on the Diffie-Hellman problem
in specific groups of non-prime order.

Set N=PQ,P=2p+1,Q =29+1, p#q, and let P, @, p, and g be
odd primes. In the remainder of this paper, we assume N to be of that form.

! A sample instantiation of the security parameters with N =~ 2'°2* in [5] implies the following:
A public key needs 70 KB of storage space, and an encryption operation needs about 600
exponentiations modulo N. Note that this is for the QR-based variant only, the other
variants are much more efficient.

Consider the group QR of the Quadratic Residues mod N and the Cramer-
Shoup Cryptosystem in this group. ([4] originally proposed their cryptosystem
for groups of prime order only.) As it will turn out, the legal user will not
need to know the factorisation of N for either encryption, decryption or key
generation (with the possible exception of generating an appropriate N itself).
Since knowing the factorisation of N is equivalent to knowing the order of QR ,
the group QR may be of unknown order even for the legal user.

A security result in the standard model provides assurance against all at-
tacks, while a random oracle security result only provides assurance against so-
called “generic” attacks. On the other hand, it is desirable to base the security
of cryptosystems on weak assumptions, instead of strong ones. In this spirit,
Shoup [11] proposed a “hedged” variant of the Cramer-Shoup cryptosystem,
being both provably secure in the standard model under a strong assumption
and provably secure in the random oracle model under a weak assumption. In
Section 7, we follow the same approach. Our extension is different from Shoup’s
technique, and the proof for the security in the random oracle model given here
is more efficient than its counterpart in [11].

2 Properties of the Set QR

In this section, we recall some number-theoretic terminology and facts. Let G
be a finite multiplicative group of the order |G| > 2. The order ord(z) of z € G
is the smallest integer e > 0 such that z¢ = z°. G is cyclic, if a generator g for
G exists, i.e., an element g € G with ord(z) = |G|. Further, {1} and G itself
are the two trivial subgroups of G, all other subgroups are nontrivial.

Recall that N = PQ, where P =2p+ 1, Q = 29+ 1, p and ¢ are primes
(i.e., both p and ¢ are Sophie-Germain primes). Consider the set QRy = {z €
#t3a € Zya? = x (mod N)} of Quadratic Residues modulo N. In the se-

quel, we use the following lemmas, which we prove in Section A of the appendix.

Lemma 1. QRy has a nontrivial subgroup of order p and a nontrivial subgroup
of order q. Both subgroups are cyclic.

Lemma 2. QRy is cyclic. It consists of one element of the order 1, (p — 1)
elements of the order p, (¢ — 1) elements of the order q, and (p — 1)(q — 1)
elements of the order pq.

Lemma 3. For every x € QRy: ord(z) € {p,q} = ged(z —1,N) € {P,Q}.

Lemma 4. Let g be a generator for QRy. For every x € Zpyy: ord(g®) €
{p,q} < ged(z,pq) € {p,q}

Computations in QR are computations modulo N. If it is implied by context,
we omit writing explicitly “mod N” for multiplications or divisions mod N. If S
is a finite set, we write v €, S if the value v is chosen from the set S according
to the uniform probability distribution. We write z €, Z,, for choosing a
random value z in Z,, according a distribution statistically indistinguishable
from uniform. We can, e.g., choose = €, {0, ..., N?} and treat z like an element
of Zy,g.

3 Key Encapsulation Mechanisms

A key encapsulation mechanism (KEM) can be seen as the secret-key part of a
hybrid cryptosystem. Combining a KEM with an appropriate secret-key cryp-
tosystem provides the functionality of a public-key cryptosystem. If the secret-
key cryptosystem satisfies some fairly standard security assumptions and the
KEM is secure against ACC attacks, the public-key cryptosystem is secure
against ACC attacks as well.? A KEM is a triple (Gen, KE, KD) of algorithms:

1. A key pair generation algorithm Gen, which, given a security parameter,
randomly chooses a public-key/secret-key pair (PK,SK).

2. A randomised key encapsulation algorithm KE to choose (C, K)=KE(PK),
i.e. a ciphertext C' and an encapsulated key K.

3. A deterministic key decapsulation algorithm KD to compute K'=KD(SK,C),
and to reject invalid ciphertexts.

A KEM is sound, if K = K’ for any (PK,SK)=Gen(-), (C, K)=KE(PK),
and K'=KD(SK,C). The KEM presented below and its extension in Section 7
are both sound. Proving this is easy, but omitted here for the sake of space.

An ACC attack against a KEM (Gen, KE, KD) can be described by the
following game:

1. A key generation oracle computes (PK,SK)=Gen(-) and publishes PK.

2. A key encapsulation oracle chooses (C, K)=KE(PK) and 0 €, {0,1}. If o =
0, the oracle sends (C, K) to the adversary, else (C, K') with K’ €, {0,1}/X1.

3. The adversary makes some queries C1, ..., Cy to a key decapsulation oracle,
with C; # C. For each query Cj, the oracle responds the value KD(SK,C}),
which may be either a bit string, or a special code to indicate rejection. For
i € {1,...,q— 1}, the adversary learns the response KD(SK,C;), before she
has to choose the next query Cj1.

4. The adversary outputs a value o’ € {0,1}.

The adversary’s advantage in guessing o is the difference
lpr[o’ = 1|0 = 1] — pr[o’ = 1|0 = 0]

of conditional probabilities. A KEM is secure against ACC attacks, or ACC-
secure if, for all efficient adversaries, the advantage is negligible.

In Section B of the appendix, we compare ACC-secure KEMs with ACC-
secure public-key cryptosystems and introduce lunchtime-security.

4 The Cryptosystem and some Assumptions

Here, we deal with the Cramer-Shoup cryptosystem and what assumptions
we make to prove its security. Cramer and Shoup [4] considered groups G of
(known) prime order ¢*, while we consider the group QR of composed order
pq. There is no need to actually know pgq, not even for the owner of the secret
key.3 For the sake of simplicity, we restrict ourselves to describing the system as
a key encapsulation mechanism, instead of a full scale public-key cryptosystem.

2 This is called a “folk theorem” in [11]. See also [4, revised and extended version).
3 Note that an adversary knowing pq can efficiently factorise V.

Cramer-Shoup cryptosystem in the group QR y:

— Key Generation Gen(/):
e Generate N, P, Q, p, q as above with 21 < N < 2!,
Choose a generator g for QR .
o Let H : {0,1}* — Z,, (with m < pq) be a secure hash function, as
described below.
e Randomly choose w €, Zyq, and compute go = g*. Choose z1, =2, Y1,
Yo, 2 € Zypy. Compute ¢ = g*1g5%, d = g¥'g5*, and e = ¢~
e The public key is PK=(N, g, H, g2, ¢, d, e).
The secret key is SK=(z1, x2,¥1,Y2,2) in qu.
— Key Encapsulation KE(PK):
e Choose r €, Zypq, compute u; = g", ug = g5, k =€", oo = H(uy,uz) and
t=c"de.
e The ciphertext is (u1,u2,t), the encapsulated key is k.
— Key Decapsulation* KD (SK,(Uy,Us, T)) for (U1, Us, T) € QR%, x Z:
o Compute K’ = U7, A' = H(U1,Up), T' = U P4 pgtet,
e If T'="T' then output K’, else reject.

Both in a group G of prime order and in composed order groups (such as QR y

and 22, expressions such as g**g® and (g%)° are equivalent to g**° and g%. For
prime order groups “a + b” and “ab” are addition and multiplication in a field,
but for general groups G these operations are defined in the ring Z,g|. Thus,
the proof of security from [4] is not directly applicable to the cryptosystem
proposed in the current paper, though our proof is along the same lines.

Assumption: (Target collision resistance of H)
Let Fy be a family of hash functions {0,1}* — Z,,, for m < pq. Consider the
following experiment:

— Fiz an input T for H (the “target”).
— Randomly choose H from the family Fy.

It is infeasible to find a “collision” for the target T, i.e., an input T' #+ T such
that H(T) = H(T").

As a minor abuse of notation, we write “H is target collision resistant” (“TC-
resistant”) to indicate that H has has been chosen from such a family Fg.

Assumption: (decisional Diffie-Hellman (DDH) assumption for QR y)

Recall that the generator g for QR is a public system parameter. Consider
two distributions, the distribution R of triples (go,u1,u2) € QR3; and the
distribution D of triples (g2, u1,u2) with g2 €; QRy, T € Zpg, w1 = g", and
ug = g5. It is infeasible to distinguish between R and D.

4 We don’t care if T ¢ QR because T' € QRy, and the test “T' = T'” is supposed to fail
if T ¢ QR . Section 8 describes how to enforce Ui, Us € QR .

4

Assumption: (computational Diffie-Hellman (CDH) assumption for QR)
Given two values ga €, QRy and uy €, QRy with log,(u1) =r, it is infeasible
to find the value us = gj.

Since g € QRy is a generator, log,(z) is uniquely defined for z € QRy.

Assumption: (factoring assumption for N)
Given N, it its infeasible to find P or Q.

Theorem 1 (Factoring = CDH).
If the factoring N is infeasible, the CDH assumption for QRy holds.

The proof is in Section C of the appendix.

5 Some Technicalities

Lemma 5. Let g be a generator of QRy and w €, Zpy. The value go = g% is
a uniformly distributed random value in QRp. With overwhelming probability,
g2 is a generator for QR .

Proof. Clearly, go is uniformly distributed. By Lemma 4, g9 is a generator for
QRy & w € Z,,. Hence, prgs is a generator for QRy] = (p—1)(¢—1)/pg. O

Lemma 6. If it is feasible to find any pair (o, B) € Zpq with (o — B) € Zpg —
Z,, — {0}, it is feasible to factorise N.

Proof. Let g be a generator for QRy. If (o —) € Zpy — Zp, — {0}, then
ord(g®~?) € {p,q} and thus, we can compute gcd(g®>? —1,N) € {P,Q}. O

Lemma 7. Let g be a generator for QRy and go €, QRy. If it is feasible to
choose uy,ug such that uy = g™, ug = g5°, and (ro — 1) € Zpg — Zy, — {0}, it
1s feasible to factorise N.

Proof. Choose g, as suggested in Lemma 5: w €, Zypg; g2 = g*. Since (ro—71) €
2y, — 7, — {0}, ord(g"™ ") € {p, q}. Similarly, ord(gs>~"") € {p, ¢}, and thus
ged(g5? ™™, N) € {P,Q}. Due to g2~ " = g5?/g5' = ug/u}’, and since we know
w, we actually can compute gi>~"" and thus factorise N. |
Now we describe a simulator for the Cramer-Shoup cryptosystem. Its purpose is
not to be actually used for key encapsulation and decapsulation, but as a tech-
nical tool for the proof of security. If an adversary mounts an attack against the
Cramer-Shoup cryptosystem, the simulator may provide the responses, instead
of an “honest” Cramer-Shoup oracle. Note that the adversary can make many
key decapsulation queries, but only one single key encapsulation query.

A Simulator for the Cramer-Shoup Cryptosystem in QR ;:

— Generate the public key:
e Let the values g, N and H and a triple (go,u1,u2) € QR be given.

e Choose z1, %2, Y1, Y2, 21, 22 €¢ Zpq. Compute ¢ = g"1g5*, d = g¥'g

e = g*1g32. 5 The public key is PK=(N, g, H, g, ¢, d, €).
— Key Encapsulation KE(PK):
e Compute k = u?u2, o = H(uy,up), t = ul* TV %52 102,
e The ciphertext is (ug,us,t), the encapsulated key is k.
— Key Decapsulation KD(SK, (U1, Uz, T)):
e Compute K' =UU;?, A' = H(Uy,Up), T' = Ulz1+y1A’ U;2+y2‘4’,
e If T'="T' then output K’, else reject.

Y2, and

6 A Proof of Security in the Standard Model

In this section, we prove the security of the Cramer-Shoup Cryptosystem in
QR in the standard model. The proof is based on three lemmas.

Theorem 2 (Security in the standard model).
If H is TC-resistant and both the DDH assumption for QRy and the factoring
assumption for N hold, the Cramer-Shoup cryptosystem in QR is ACC-secure.

Lemma 8. If the triple (g2,u1,us2) given to the simulator is distributed accord-
ing to distribution D, an adversary cannot statistically distinguish between the
behaviour of the simulator and the Cramer-Shoup cryptosystem itself.

Proof. If (g2,u1,u2) is distributed according to D, a value r exists such that
u; = g" and uy = g5. We show that the simulator’s responses are statistically
indistinguishable from the real cryptosystem’s responses.

Consider the key encapsulation query. The simulator computes

_ ,,R1,,R%2 . TZ1 ,T22 __ 21 4R2\T _ T
k=ui'uy® =g g5” = (9"95°)" = ¢,

a = H(uj,u2) and
1ty T2ty20 rei+ryia, TT2+rys0 rry T2 TYLQ TY2(

rdra

The distribution of the response ((g2,u1,u2), k) is identical to the distribution
of the cryptosystem’s response.

Now consider the key decapsulation queries. If a query (U1, Us,T) is valid,
i.e., if a value R € Zy, exists with Uy = g® and Uy = g¥, the simulator’s
response is the same as the response the cryptosystem provides. Both the simu-
lator and the cryptosystem reject (Uy, Us, T) if T £ T' = Ulw“LylAl U2w2+y2A’, and
else output K' = uftull = (gR)%1(gft)2 = (¢g°1¢5*)® = eR. It remains to show
that both the cryptosystem and the simulator (given (go,u1,us) distributed
according to D) reject all invalid key decapsulation queries with overwhelming
probability — and thus essentially behave identically.

The decision to reject an invalid ciphertext (Uy,Us,T) depends on four
random values z1,Z2,y1,y2 € QRy. A part of the public key are the values ¢
and d with ¢ = g*1¢3? = g*1¢%%? and d = g¥' ¢g3*> = g¥' g¥¥2, i.e.,

le :=logy(c) = 21 + wzy <= 1 =l —wzy and (1)
lg :=log,(d) = y1 + wys. <= y1 = lg — wy2 (2)

5 In contrast to the simulator, the cryptosystem itself implicitly defines z» = 0.

These equations® provide public information about the quadruple (z1, 2, y1, y2)
of secret values. The response to the encapsulation query provides another equa-
tion log,(t) = rz1 + ry1a + rwzs + rwysa, however log,(t) = ri. + rlga, ie.,
this new equation linearly depends on Equations 1 and 2, and thus provides no
new information about (z1, 2,1, y2). This still leaves (pq)? possibilities for the
quadruple (1, Z2, Y1, y2)-

Assume g9 to be a generator for QR . (By Lemma 5, this is overwhelmingly
probable.) Let the ciphertext (Uy,Us,T') be invalid. Thus, R; # Ry exist with
U = g™ and Uy = g2, To answer the query, the values K’ = U2UZ2 (or K’ =
Ulz)’ Al = H(Ul, UQ), and T' = U1$1+y1A'U2$2+y2A' — gR1w1+R1y1A’g§2$2+R2y2A'
are computed, which provides the equation

ZTI = logg(T') = Rl.’El + RlylA' + ’wRQ.’BQ + wRngA'. (3)
Equations 1 and 2 can be used to eliminate the variables z1 and y1:

Il = Ril, — Rjwxs + RlldAl — leygA, + wRoxo + 'LURQyQAI
= Rllc + RlldAl + ’wiL'Q(RQ - Rl) + waAI(RQ — Rl)

By Lemma 5 and Lemma 7 we know that with overwhelming probability and
under the factoring assumption both w and (R, — R;) are invertible mod pgq.
If these two values are invertible, we may fix the value y» arbitrarily and there
always exists a uniquely defined value

o — lTI — Rllc — RlAlld — ’LUyQAI(RQ — Rl)
2= ’LU(RQ — Rl)

to prevent the rejection of the invalid ciphertext (Up,Us,T). Each time an
invalid ciphertext is rejected, this eliminates at most pg of the (pg)? possible
quadruples (z1, Z2, Y1, Y2)- O

Lemma 9. If the triple (go,u1,us) € QRS given to the simulator is distributed
according to distribution R, the simulator rejects all invalid ciphertexts with
overwhelming probability.

Proof. Recall that the rejection of an invalid ciphertext (Ui, Us,T) depends
on the quadruple (z1,z2,y1,y2) € QRy of secret values, and that the public
key provides the two linear Equations 1 and 2 to narrow down the number of
possibilities for (z1, z2,y1, y2) to (pg)?. The response to the encapsulation query

provides the value t = u{* "Y1 %452 *¥2* and thus a linear equation
Iy = logg(t) =riT] + ryia + wreTs + wreyso. (4)

By using Equations 1 and 2, we can eliminate the variables 1 and y;:

Iy =rl. — mwzy + rlga — rmwrea + wrozs + wroysa
=r1le + rilga + wxa(re — 1) + wysa(re — 1)
lt — Tllc — Tlld — ’LU:IIQ(’I‘Q — 7‘1)

= =
Y2 w(ry — ri1)a

6 It is vital that I, and lq are uniquely defined. We need not actually compute I, or I .

An invalid ciphertext (Uy,Us,T) is rejected, except when Equation 3 holds,
which means 7" = T. Recall a« = H(uj,u2) and A" = H(Uy,Us) and consider
three cases:

— Case 1, (U1,Uz) = (u1, u2): By the definition of an ACC attack, we require
t # T, and thus the key decapsulation query (U1, Us, T') will be rejected.

— Case 2, (Uy,U3) # (u1,uz) and a = A’: This is a collision for H for the tar-
get (uy,uz), which contradicts the assumption for H to be TC-resistant.

— Case 3: (Uy,Us) # (u1,u2) and a # A’: We have four unknowns 1, T2, y1, Y2
€ QRy, and four Equations 1, 2, 3, and 4 describe their relationship. By
solving this system of linear equations we get

Ipr — il — t=r2le—nilaa(p) _ R1) — A'Ryly

_ Ta—T1

V2= (Rs — R)w(A' — a) ’
which uniquely determines yo if all the four values (ro — r1), (R2 — R1),
w, and (A’ — a) are invertible in Z,,.” The invertibility of (ro — 1) and
(Ry — Ry) follows from Lemma 7, the invertibility of w follows from Lemma
5, and the invertibility of (A’ — «) follows from Lemma 6. O

Lemma 10. Let k be the encapsulated key in the response for the encapsulation
query. If the triple (go,u1,us) € QR?’V given to the simulator is distributed ac-
cording to distribution R, it is infeasible for the adversary to distinguish between
k and a uniformly distributed random value.

Proof. We set 71 = logg(ul) and 79 = loggz(uQ). Assume that go = g% is a
generator for QR and that r; # ro. Both assumptions hold with overwhelm-
ing probability. Now we prove: If all invalid decapsulation queries are rejected
during the simulation, then under the factoring assumption it is infeasible for
the adversary to distinguish between k and a random value.

Observe that k only depends on the two random values 21, 2z2 € QR . Since

e = g*1g5?, the public key provides one linear equation

le := logg(e) =21 +wze < 21 =l — wzs. (5)

The rejection of an invalid key decapsulation query does not depend on z; and
z9. If the decapsulation query (Uy,Us;,T) is valid and not rejected, we have a
value R such that U; = g® and U = g¥. By logg(k) = Rz + Rwzy = Rlogg(e)
this provides another equation, linearly depending on Equation 5. The response
for the key encapsulation query consists of a ciphertext (u1,us2,t) and a key

k = uitui? = g"#1¢g*"*2 which provides a linear equation

I := logy (k) = ri21 +wrozy = rile — riwzg + rowzg = r1le +wae(ry —11), (6)
which finally gives

l k — 7‘1le
w(rg —ry)’
As before, we argue that with overwhelming probability and under the factoring

assumption both w and (ro — 71) are invertible in Z,,. If w and (ry — r1) are
invertible, then a unique value zy exists for every key k € QR . O

z9 =

" This implies that the four linear equations 1, 2, 3, and 4 are linearly independent.

Proof (Theorem 2). If the adversary can break the cryptosystem by distinguish-
ing a real encapsulated key from a random one, she can do so as well in the
simulation, if the simulator input is chosen according to distribution D (Lemma
8). Since she cannot distinguish a real key from a random key in the simulation
if the simulator input is distributed according to R (Lemmas 9 and 10), being
able to break the cryptosystem means being able to distinguish distribution D
from distribution R, contradicting the DDH assumption for QR . O

7 An Extension and its Security

We describe how to extend the Cramer-Shoup cryptosystem, dealing with a
hash function h, which may be used like a random oracle (— Figure 1):

Cramer-Shoup cryptosystem in QR with h-extension:

— The key pair (PK, SK) is the same as for the non-extended Cramer-Shoup
cryptosystem. Let h be a function h : {1,2,3} x QR% — QRy.

— Extend key encapsulation by computing
te =t h(1,k,u1,us) (— solid arrows in Figure 1) and
T =1t*h(2,k,u1,u2) and k. = k x h(3, 7, u1,u2) (— dashed arrows).
The ciphertext is (uq,ug, t«), the encapsulated key is k..

— Decapsulate the ciphertext (Up,Us,Ty) € QR% x Z% by computing K’
T’ as before, and reject if T' * h(1,K',Uy,Us) # Ti. Else compute 7/ =
T' x h(2,K',Uy,Us) and output K, = K’ * h(3,7', Uy, Us).

Fig. 1. The h-extension: converting ¢t and h into ¢. and h..

Theorem 3 (Security of h-extended scheme in standard model).

Let h be any efficient function h : {1,2,3} x QR% — QRy. If H is TC-resistant
and both the DDH assumption for QRy and the factoring assumption for N
hold, the Cramer-Shoup cryptosystem in QR is ACC-secure.

Proof. Observe that the simulator described in Section 5 computes the values
k and t when dealing with an encapsulation query. Also, being asked to decap-
sulate the ciphertext (U, Us,T'), the same simulator computes the values K’
and T’ from U; and Us. Thus, it is straightforward to apply the h-extension to
the simulator. Since h is efficient, the extended simulator is efficient, too.
Using the extended simulator instead of the original one, the proof for The-
orem 2 is applicable to Theorem 3. O

Theorem 4 (Security of h-extended scheme in random oracle model).
If the function h is modelled as a random oracle, the h-extended scheme is ACC-
secure under the factoring assumption.

Proof. Let N and H be given. Consider an adversary with a non-negligible
advantage to win the attack game. In the following experiment, we modify the
key generation and we describe how to respond to the adversary’s oracle queries,
including queries to the random oracle. We start with the key generation:

— Choose 8 €, {1,...,N?}, a €, Z} and compute e := o?.

— Choose u; €; QRy and compute g := u?ﬂ.
(We will be searching for k = €'985(u1) i e for the value k with k2% = e.
If we find k, we have a 50% chance that ged(k®? — a, N) € {P,Q} holds,
providing us with the factorisation of N.)

— Choose w €, Zy, and compute g2 = g% and ug = u¥.

— Choose 1,22, y1,y2 € Zpg and compute ¢ = g"1g5* and d = g¥'g

— Use (N,g,H, g2,c,d, e) as the public key.

Y2
2 -

The response to the key encapsulation query is the ciphertext (ui,us,t,) and
the encapsulated key k., with ., k. € QRy.

Let (U1, Us,Ty) be a key decapsulation query. We respond as follows:

7 7
— Compute T' = P A getvd,

— Consider values K’ with queries for §; = h(1,K',U1,Us3) to the random
oracle. Verify, if for one such value K’ the equation

(K" =1y (7)

holds. If not, or if T, # T" * 61, then reject.
— Else ask the random oracle for d, = h(2, K',Uy,Us), compute 7 = T" * da,
ask for d3 = h(3,7,U1,Us), and respond K. = K’ * §3 to the adversary.

A random oracle query to compute h(I,X,U;,Us) (with I € {1,2,3} and X,
Ui, Uy € QRy) may be asked either by the adversary, or by ourselves when
answering a key decapsulation query. The answer is computed as follows:

1. If we have been asked for h(I, X, Uy, Us) before, provide her with the same
answer again.

2. Else, if I € {1,2}, uy = Uy, ug = Us, and X?% = ¢, print X and abort.

3. Else choose Y €, QR and respond Y.

Observe that if we never abort (— Step 2), the adversary cannot distinguish h
from a random function over the same domain. On the other hand, assume that
we abort the experiment, having found a value X with X?# = e, i.e., a square
root (mod N) of e. Initially, we know two square roots of e, namely +«. Since the
adversary has no information about «, except for e = a?, X? # +a holds with
probability 1/2. In this case, we can factorise N by computing ged(X? —a, N) €
{P,Q}. This shows: If w is the probability to abort the experiment, we can
factorise N with the probability w/2 after running the ezperiment once.
Now, we deal with three different games:

10

1. The attack game with the “real” encapsulated key k.,
2. the attack game where k. is replaced by a random value, and
3. the experiment we defined for the current proof.

As it turns out, the adversary cannot distinguish the experiment from either
of the attack games, except when we abort the experiment:

— The public key values g, g2, ¢, d, and e are independent uniformly distributed
random values in QR — in the attack games, as in the experiment.

— In the attack games, the values u; and us from the encapsulation query

satisfy the equation uo = gIQOgg (ul), with u; €; QRy. For one of the attack
games, the values ¢, and k. depend on ¢ and k (and k), while for the other
one, t, depends on ¢ and k, while &, is chosen at random.
In the experiment, u; €, QRy and ugy = géogg(ul) as well. The value t,
cannot be distinguished from a uniformly distributed random value without
asking for h(1,k,u1,u2) (and then aborting). The value k, cannot be dis-
tinguished without asking for A(3,7,u1,u2). Asking this query is infeasible
without having asked for d, = h(2, k,u1,us) (followed by an abortion), since
7 depends on ds.

— Consider a decapsulation query (Ui, Us,T). Let K’ be defined by Equa-
tion 7. If h is a well-defined function, there is a unique well defined value
T! such that a ciphertext (Uy,Us,T%) has to be accepted, and every ci-
phertext (Uy,Us,T.) with T, # T. has to be rejected. Without asking
for h(1,K',Uy,U,), the adversary cannot predict T., and any ciphertext
(U1,Us,Ty) chosen by the adversary is rejected with overwhelming proba-
bility in the attack games and with probability 1 in the experiment.

If the adversary had asked for h(1, K’,Uy,Us), the computation of T/ and

K is exactly the same in the experiment as in the attack games. O

Efficiency of reduction: The proof of Theorem 4 provides an efficient reduc-
tion: It turns any generic adversary for the cryptosystem with the advantage a
into a factorising algorithm with the probability of success a /2.

Comparison to Shoup’s random oracle result [11]: When proving the
security in the random oracle model, both [11] and the current paper describe a
game to respond to the adversary’s oracle queries, and both require to recognise
oracle queries which correspond to a correct solution for a CDH problem in
the given group. But [11] requires this recognition step to actually solve some
instances of the DDH problem. This makes sense, since if the DDH problem is
infeasible, the standard model security result applies. However, even if the DDH
assumption turns out to be false, solving many instances of the DDH problem
may be painfully slow in practice.® On the other hand, the recognition step for
the current approach is quite efficient: Given X, compute X2?# and compare the
result with e. (See also Equation 7.) Thus, our reduction can be seen as more
efficient and thus more meaningful than the one in [11].

8 This is stressed in [4, revised and extended version].

11

Also note that we do not assume the hash function H to be TC-resistant,
for Theorem 4, in contrast to [11, Theorem 3].

An advantage of the approach in [11] may be that it is based on the CDH
assumption. If we generalise the technique from [11] for the group QR , we can
replace the factoring assumption by the CDH assumption for QR ;, which is at
least as strong as the factoring assumption for N, see Theorem 1.

Another difference to our approach is that [11] introduces the technical
notion of a pair-wise independent hash function (PIH) and combines a PTH with
a random oracle. The PIH is required for the security result in the standard
model (i.e., for the counterpart of Theorem 3 in the current paper).

8 Final Remarks

The input for KD: Note that the input (Uy, Uy, T*) € QR% x Z% is under
control of the adversary. If z is a number, it is easy to verify whether x € Z},
but it may be difficult to verify z € QR . We can deal with this problem by
using KE’ and KD’ instead of KE and KD:

— KE’: Compute KE and replace k by k% and ¢ by #.
— KD’(SK,(Uy,Us, T)) for (U, Us, T) € (Z3y)3: Compute KD(SK,(UZ,U2,T)).

Note that (Gen,KE’,KD’) is as sound as (Gen,KE,KD). But for (U1,U,T) €

(%P, the input for K D is now in QR%; 785 it should. A similar technique
can be used for the h-extension.

The hash function H: Theoretically we don’t need an additional assumption
for the TC-resistance of H. Based on the factoring assumption, provably secure
TC-resistant (and even stronger) hash functions are known. In practice, we may
prefer to use a dedicated hash function such as SHA-1 or RIPE-MD 160.

Hiding the order of QRj;: In this paper, we deal with a cryptosystem
which’s computations are in QRp, but nobody knows (or needs to know) the
order of QR . Our main reason for doing so is a technical one — we can proof
the security of the cryptosystem using something like the factoring assumption.
(Note that anyone knowing the order of QR can efficiently factorise N.) But
there may actually be practical advantages of this approach, too. E.g., we may
have different insulated key pairs (PK,SK) using the same modulus N. Infor-
mation about the factorisation of N may serve as the secret master key. See [6]
for introducing the notion of “key insulation”.

Open problem: Kiltz [8] conjectured that Theorem 2 can be strengthened by
avoiding the factoring assumption. Proving this is still an open problem.

Acknowledgement

The author is grateful to Eike Kiltz for useful discussions.

12

References

1. M. Abdalla, M. Bellare, P. Rogaway: “DHAES: an encryption scheme based on the Diffie-
Hellman problem”, preprint, http://eprint.iacr.org.

2. M. Bellare, P. Rogaway: “Random oracles are practical: a paradigm for designing efficient
protocols”; ACM Computer and Communication Security '93, ACM Press.

3. M. Bellare, A. Desai, D. Pointcheval, P. Rogaway: “Relations among notions of security
for public-key encryption scheme”, Crypto 98, Springer LNCS 1462.

4. R. Cramer V. Shoup: “A practical cryptosystem, provably secure against chosen ci-
phertext attacks”, Crypto ’98, Springer LNCS 1462. (Revised and extended version at
http://eprint.iacr.org.)

5. R. Cramer V. Shoup: “Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption”, preprint, 2nd version, December 12, 2001,
http://eprint.iacr.org. (Extended abstract at Eurocrypt 2002.)

6. Y. Dodis, J. Katz, S. Xu, M. Yung: “Key-Insulated Public Key Cryptosystems”, Eurocrypt
2002.

7. D. Dolev, C. Dwork, M. Naor: “Non-malleable cryptography”, SIAM Journal of Comput-
ing, 2000. (Extended abstract at STOC ’91, ACM Press.)

8. E. Kiltz, personal communication.

9. M. Naor, M, Yung: “Public-key cryptosystems provably secure against chosen ciphertext
attacks”, STOC 90, ACM Press.

10. C. Rackoff, D. Simon: “Non-interactive zero knowledge proof of knowledge and chosen
ciphertext attacks”, Crypto ’91, Springer LNCS.

11. V. Shoup: “Using hash functions as a hedge against chosen ciphertext attack”, Eurocrypt
’00, Springer LNCS.

Appendix

A Properties of the Set QR — Proofs

In this section, we prove the Lemmas stated in Section 2. Consider the sets

QRp={z € Z})|3a € Z} : a®> = z (mod P)},
QRg ={z €Zg|3a € Zzgza2 =z (mod @)}, and
QRy = {z € Z} | Ja € ZY; : a®> = z (mod N)}

of Quadratic Residues modulo P, @ and N. Recall the following facts (which
we don’t prove in the current paper):

Fact 1 The sets QRy, QRp, and QR are multiplicative groups.

Fact 2 |QRy| = pq, |QRp| = p, and |QRQ| =4

Fact 3 Groups of prime order are cyclic.

Lemma 1. QRy has a nontrivial subgroup of order p and a nontrivial subgroup
of order q. Both subgroups are cyclic.

Proof. Note that = € Zy is in QRy, if and only if z is both a Quadratic
Residue mod P and a Quadratic Residue mod Q.

13

If a = 1(mod P) and b = 1(mod @), then ab = 1(mod P), and if both a
and b are Quadratic Residues mod @, then ab is a Quadratic Residue mod @)
as well. Thus, the set

{r€Zy | Ja € QRg:z=amod Q and z =1 mod P}

is a subgroup of QR of the order |[QRg| = ¢. Similarly, a subgroup of QR of
the order p exists. Groups of prime order are cyclic. O

Lemma 2. QRy is cyclic. It consists of one element of the order 1, (p — 1)
elements of the order p, (¢ — 1) elements of the order q, and (p — 1)(q — 1)
elements of the order pq.

Proof. Consider a,b € QRy with ord(a) = p, ord(b) = ¢. Due to Lemma 1,
such elements a and b exist; ord(ab) = lem(p,q) = pq, thus g = ab generates
QRy -

Due to ord(g) = pg we have ord(g°) = ord(¢®) = ord(1) = 1, ord(g’) =
pq < (i > 1 and ged(i,pq) = 1), ord(g*?) = q for k € {1,...,q — 1}, and
ord(g’?) =qforl € {1,...,p —1}. O

Lemma 3. For every z € QRy: ord(z) € {p,q} = ged(z —1,N) € {P,Q}.

Proof. From Lemma 2 and the proof of Lemma 1: ord(z) = ¢ & X = 1 (mod
P) = ged(z — 1, N) = P. Similarly: ord(z) = p = ged(z — 1,N) = Q. 0

Lemma 3 implies that an adversary who is able to find any =z € QR with
ord(z) ¢ {1,pq}, can factorise N. Further, if ord(z) = pq, then ged(z —1,N) =
1. An implication of Lemma 2 is that it is easy to find a random generator for
QR y. Choose z €, ZZ} and compute g = 22 mod N.If p and q are large, g is a
generator for QR with overwhelming probability. In any case, g is a generator
if and only if ord(g) & {1,p,q}; ord(g) =1 < g = 1, and Lemma 3 provides a
way to check for ord(g) & {p, q}-

Lemma 4. Let g be a generator for QRy. For every x € Zpy: ord(g”) €

{p,q} & gcd(z,pq) € {p,q}-

Proof. If x = p(mod pq), then ¢g?* = 1 and thus ord(¢*) = ¢. If ord(¢*) = ¢,
then (¢*)? =1 = zp = 0 mod pq = = = p(mod pq). Thus, z = p (mod pq) &
ord(¢g®) = g. Similarly, we get z = ¢ (mod pq) < ord(g®) = p. 0

B ACC-Secure Public-Key Cryptosystems and
Lunchtime-Security

It may be interesting to point out the relationship to ACC-secure and lunchtime-
secure public-key (PK) cryptosystems. Key decapsulation queries correspond to
chosen ciphertext decryption queries in the PK world. The key encapsulation
query corresponds to PK encryption query. Here, a plaintext is chosen by the
adversary, the oracle either really encrypts that plaintext or it encrypts a ran-
dom plaintext, and the adversary has to distinguish between real and random.
Lunchtime (i.e. non-adaptive) security deals with all decryption queries before

14

the encryption query. ACC attacks against PK cryptosystems deal with two
phases of chosen ciphertext queries, the first before the encryption query, the
second after the encryption query. In the second phase, one may not ask for
the decryption of the result of the encryption query.

A definition for a lunchtime-secure KEM would require a minor modification
of our definition for an ACC-secure KEM by asking the decapsulation queries
before the encapsulation query. And a two-phase attack against a KEM with
some decapsulation queries before and some after the encapsulation query —
similar to the ACC attack against PK cryptosystems — can easily be simulated
by our (one-phase) ACC attack.

C The Proof for Factoring = CDH

Proof (Theorem 1). Assume the adversary with access to a CDH oracle for

QRy, i.e., given the modulus N and g,g2,us €; QRy, the oracle computes
logg(m)
2

Ug = g with probability 7. Let N be given. We describe an algorithm to
efficiently factorise N with probability ~ 7/2, invocing the oracle once.

— Choose g €, {1,... ,N?}, « €g Zy and compute gz = a? .
— Choose u; €; QRy and compute g = ufﬂ.
— Use the CDH oracle to compute us.
— If the ocacle succeeds, ug’B = go (mod N).
- If ug # +a (mod N), print gcd(ug —a,N).

Since (3 is chosen from a set much larger than QRj, the distribution of the
values g, g2, u2 € QR is statistically indistinguishable from uniform. Thus, the
oracle finds ug with a probability of ~ 7. Four square roots exist for go € QRy.
Two such square roots are :I:ug. The value o is a random square root of go. If

a # +g7 (mod N), then ged(u’ — o, N) € {P,Q} factorises N. 0

® Due to the number of phases, some authors denote lunchtime security by “IND-CCA1” and
ACC security by “IND-CCA2” (“IND-” = “indistinguishable”) [3]

15

