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Abstract

The public key cryptosystem MST1 has been introduced in [9]. Its
security relies on the hardness of factoring with respect to wild loga-
rithmic signatures. To identify ‘wild-like’ logarithmic signatures, the
criterion of being totally-non-transversal has been proposed.

We give tame totally-non-transversal logarithmic signatures for the
alternating and symmetric groups of degree ≥ 5. Hence, basing a key
generation procedure on the assumption that totally-non-transversal
logarithmic signatures are ‘wild like’ seems critical. We also discuss the
problem of recognizing ‘weak’ totally-non-transversal logarithmic sig-
natures, and demonstrate that another proposed key generation pro-
cedure based on permutably transversal logarithmic signatures may
produce weak keys.
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1 Introduction

Nowadays, most practically used public key systems are based on the hard-
ness of factoring large integers or computing discrete logarithms in a suitable
cyclic group. It is indeed of interest to identify other mathematical primitives
for public key schemes, specially due to the existence of efficient quantum
algorithms for the above mentioned problems (see [12]).

The public key scheme MST2 from [9] is an interesting step in this di-
rection: it can be seen as a generalization of the ElGamal scheme to not
necessarily abelian finite groups. However, despite its theoretical attractive-
ness, it still has not been possible to give any example of a concrete realization
besides the original ElGamal scheme. In [4] it is shown that a generaliza-
tion of the original MST2 framework allows a uniform description of several
public key systems, like the braid group based system from [6] or the MOR
schemes [10, 11].

In this contribution we focus on the other public key scheme proposed in
[9]: MST1. The security of this system relies on the difficulty of computing
factorizations with respect to certain logarithmic signatures for finite groups.
Logarithmic signatures have already been used in cryptography before, e. g.,
in the symmetric scheme PGM [8]. Unfortunately, it is still unclear how to
derive concrete instances of MST1. Some potential problems are addressed
in [5]; namely, there it is proven that a totally-non-transversal logarithmic
signature may provide a factorization that is easy to compute. However,
precisely this type of logarithmic signatures is supplied by the key generation
procedure for MST1 considered in [9].

Here we demonstrate that totally-non-transversal logarithmic signatures
can in fact be tame. In other words, knowing that a logarithmic signature
is totally-non-transversal does by no means guarantee that it is suitable for
being used as a key in MST1. In Section 3 we explicitly construct such
‘weak’ logarithmic signatures for the alternating and symmetric groups of
degree ≥ 5. To support our conviction that these logarithmic signatures are
far from being scarce, we also give examples of minimal length.

In Section 4 we discuss the problem of recognizing certain tame totally-
non-transversal logarithmic signatures (and hence certain weak keys). Even-
tually, in the last section it is demonstrated that another key generation
procedure for MST1, based on so-called permutably transversal logarithmic
signatures (cf. [2]), may produce weak keys.
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2 The public key cryptosystem MST1

We start by refreshing some basic terminology about logarithmic signatures
which essentially follows from [8, 9, 5].

Recall that every finite group can be seen as a subgroup of some sym-
metric group Sn, and thus regarded as a permutation group of degree n. A
logarithmic signature describes a kind of unique factorization of the elements
in a finite permutation group G.

Definition 2.1 Let G be a finite permutation group. Next, denote by α =
[α1, . . . , αs] a sequence of length s ∈ N0 such that each αi (1 ≤ i ≤ s) is itself
a sequence αi = [αi0, . . . , αiri−1] with αij ∈ G (0 ≤ j < ri) and ri ∈ N0. Then
we call α a logarithmic signature for G if each g ∈ G is represented uniquely
as a product

g = α1j1 · · ·αsjs (1)

with αiji
∈ αi (1 ≤ i ≤ s).

We refer to the sequences αi, i = 1, . . . , s, as blocks of α and to the vector
r = (r1, . . . , rs) as type of α. Also, we call the integer `(α) =

∑s
i=1 ri length

of α. Finally, we denote the set of all logarithmic signatures for G by Λ(G).

A typical method for constructing a logarithmic signature for a finite permu-
tation group G is the following: denote by id the identity element in G, and
consider some subgroup chain

G = G0 > G1 > · · · > Gs = {id}.
Now take α = [α1, . . . , αs] such that each αi is a complete system of left
coset representatives of Gi−1 modulo Gi. Under suitable assumptions on the
representation of the elements in α, the factorizations (1) with respect to
such a logarithmic signature can be computed easily (cf. [8]) for arbitrary
g ∈ G. The public key system MST1 is based on the idea that there are
also logarithmic signatures such that computing the factorizations (1) for
any given g ∈ G is a very difficult algorithmic task.

To give a more detailed description of MST1 we first introduce some
more notation: let G be a finite permutation group and α = [α1, . . . , αs] a
logarithmic signature for G. Say, αi = [αi0, . . . , αiri−1] (1 ≤ i ≤ s), i. e., α is
of type r = (r1, . . . , rs). For any natural number n, denote by Zn the set of
integers {0, 1, . . . , n− 1}. Then we can construct the mappings

λ : Zr1 × · · · × Zrs −→ Z|G|

(n1, . . . , ns) 7−→
∑s

i=1

(
ni ·

∏i−1
j=1 rj

)
(“mixed radix repres.”)
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and
Θα : Zr1 × · · · × Zrs −→ G

(n1, . . . , ns) 7−→ α1n1 · · ·αsns

,

which are easily verified to be bijective. Thus, the functional composition of
Θα and λ−1 yields a bijection

ᾰ : Z|G| −→ G
n 7−→ (Θαλ−1)(n) = Θα (λ−1(n)) ,

which plays an essential role in our setting. In fact, the security of the cryp-
tosystem MST1 relies on the assumption that inverting a certain mapping
of this form is not feasible for the adversary. This motivates the following
definitions (cf. [8]):

Definition 2.2 Let G be a finite permutation group of degree n. Then we
call two logarithmic signatures α, β for G equivalent if ᾰ = β̆.

Further on, we call a logarithmic signature α for G

• tame, if ᾰ−1 can be computed in polynomial time (of n);

• supertame, if ᾰ−1 can be computed in time O(n2);

• wild, if α is not tame.

In a strict sense the (asymptotic) notions of wild and tame do only make
sense when speaking about a family of groups. This imprecision will not
cause problems in the sequel, as we will mainly consider families of groups
(namely alternating and symmetric groups). Thus, we stick to the established
terminology.

In the sequel, when writing down permutations in a symmetric group,
we adopt the convention that the right-most permutation is applied first,
i. e., for π1, π2 ∈ Sn the product π1π2 is the permutation which maps each
1 ≤ i ≤ n to (π1 ◦ π2)(i) = π1(π2(i)).

A logarithmic signature derived from a subgroup chain as described above
is called exact l-transversal. The sequences constructed analogously by means
of right coset representatives are called exact r-transversals. Similarly, one
can construct exact mixed transversals , for which each block is either a com-
plete sequence of left or right coset representatives of a quotient in the chain.
The set of all exact l-, r-, or mixed transversal logarithmic signatures is re-
ferred to as the set of exact transversal logarithmic signatures for G and
denoted by E(G). In the context of MST1 also several other kinds of loga-
rithmic signatures are of interest:
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Definition 2.3 A logarithmic signature α for a finite permutation group G
is called

• transversal, if α is equivalent to a logarithmic signature of the same
type in E(G);

• non-transversal, if it is not transversal;

• permutably transversal, if a transversal logarithmic signature can be
obtained by permuting its blocks;

• totally-non-transversal, if none of its blocks is a coset of a non-trivial
subgroup of G.

The sets of all transversal, non-transversal, permutably transversal, and
totally-non-transversal logarithmic signatures for a finite permutation group
G are denoted by T (G), NT (G), PT (G), and T NT (G), respectively.
The following is a (toy) example of a logarithmic signature in T NT (S4):

Example 2.4 Let θ := [θ1, θ2, θ3], where the θi are sequences over S4 defined
as follows:

θ1 := [id, (1, 3, 4, 2)],

θ2 := [id, (1, 2), (1, 2, 4), (1, 4)],

θ3 := [id, (1, 3), (2, 3)].

Using a computer algebra system like GAP [3] or Magma [1], the sequence θ
is easily verified to be a totally-non-transversal logarithmic signature for S4.

It is convenient to introduce a canonical form for logarithmic signatures. For
this we remind of the notion of a sandwich of a logarithmic signature:

Definition 2.5 Denote by G some permutation group of degree n and let
α = [α1, . . . , αs] ∈ Λ(G). Moreover, let t0 = ts = id, t1, . . . , ts−1 ∈ G and set
β := [β1, . . . , βs] with βi := t−1

i−1αiti (1 ≤ i ≤ s). Then β is also a logarithmic
signature for G, and we call β a sandwich of α.

According to [8, Theorem 5.1], equivalent logarithmic signatures can now be
characterized as follows:

5



Proposition 2.6 Two logarithmic signatures of the same type are equivalent
if and only if one is a sandwich of the other.

Now, if we are given some logarithmic signature α = [α1, . . . , αs] with

αi = [αi0, . . . , αi ri−1],

we can apply a sandwich with

(t0, . . . , ts) = (id, α−1
10 , (α10α20)

−1, . . . , (α10 · · ·αs−1 0)
−1, id)

to α. This results in an equivalent logarithmic signature where only in the
right-most block, i. e. in βs := t−1

s−1αsts, the first element can differ from
id ∈ G. Such a logarithmic signature is said to be l-canonical. Analogously,
one can construct an r-canonical equivalent to α. The justification for the
name ‘canonical’ is given by the next proposition (see [2, Theorem 3.2 &
Corollary 3.5]):

Proposition 2.7 Let α be a logarithmic signature of type t. Then α has a
unique l-canonical equivalent αl of type t and a unique r-canonical equivalent
αr of type t. Moreover, if α is transversal, then αl or αr is exact transversal.

To describe the setup of the MST1 cryptosystem, let G be a finite permuta-
tion group, and assume that some supertame logarithmic signature η for G
has been fixed. Both G and η are publicly known. By means of η to each
α ∈ Λ(G) a permutation α̂ := η̆−1ᾰ ∈ S|G| can be associated. Finally, the
public and private key data are as follows:

Public key: Alice publishes a pair (α, β) ∈ Λ(G)×Λ(G) such that α is wild
and β is tame.
Secret key: Alice knows a (short) sequence [θ1, . . . , θk] ∈ T (G)k such that

β̂−1α̂ = θ̂1 · · · θ̂k.

Encryption: to send the plaintext m ∈ Z|G| to Alice, Bob transmits the
ciphertext

c = β̂−1α̂(m) ∈ Zm.

Decryption: Alice recovers (in polynomial time) the plaintext

m = α̂−1β̂(c) = θ̂−1
k · · · θ̂−1

1 (c).

6



Theoretically, the above scheme is rather appealing, but for deriving con-
crete instances one has to clarify how precisely the parameters in the above
description should be chosen. In particular, a key generation procedure for
producing private key/public key pairs is required. So far these problems
are still unsolved, but the authors of MST1 make several suggestions in this
direction.

A key point is the construction of the public wild logarithmic signature α
along with a trapdoor (the factorization into the tame logarithmic signatures
θi (1 ≤ i ≤ k)). For deciding whether a given logarithmic signature α ∈ Λ(G)
is ‘wild-like’, the key generation procedure described in [9] tests whether
α ∈ T NT (G) holds. In the next section we show that this criterion is rather
critical; namely, we prove that totally-non-transversal logarithmic signatures
can be tame. If such a logarithmic signature is used in Alice’s public key,
then an attacker can decrypt arbitrary messages without having to know
Alice’s trapdoor information.

3 Tame totally-non-transversal signatures

It is well-known that under suitable assumptions transversal logarithmic sig-
natures are tame (cf. [8, 9]). Therefore, intuitively a wild logarithmic signa-
ture should be ‘far from being transversal’. In the definition of totally-non-
transversal logarithmic signatures this idea is reflected in the requirement
that not a single block is allowed to be a coset of a non-trivial subgroup.

However, this approach is rather critical: let α = [α1, . . . , αs] be an exact
transversal logarithmic signature for some finite permutation group G with
αi 6= G for all i ∈ {1, . . . , s}. Then we know that there exists an index
i ∈ {1, . . . , s}, so that the block αi is a non-trivial subgroup of G. In general
we cannot expect that any block αj with i 6= j is a coset of some non-
trivial subgroup of G, too. Hence, let us suppose only the block αi prevents
α ∈ E(G) from being totally-non-transversal.
Now assume that γ = [γ1, . . . , γt] ∈ T NT (αi) where 1 < |γj| < |αi| (1 ≤ j ≤
t). Then

α̃ := [α1, . . . , αi−1, γ1, . . . , γt, αi+1, . . . , αs]

is in T NT (G), but of course if |αi| is small, inverting α̃ is easy. Namely, to
factor g ∈ G with respect to α̃ we can proceed as follows:

1. After fusing the blocks γ1, . . . , γt to a single block αi we can easily
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determine the factorization g = α1j1 · · ·αsjs of g with respect to the
exact transversal logarithmic signature α.

2. Replacing αiji
in the latter product with the factorization of αiji

with
respect to γ yields the desired factorization of g. If |αi| is small, then
factoring along γ can be done through a brute-force approach.

The above discussion illustrates that the difference between a transversal and
a totally-non-transversal logarithmic signature can be extremely ‘local’. In
the following proposition we apply this observation to the alternating and
symmetric groups: by means of the subgroup chain

An > An−1 > · · · > A5 > {id},

we construct tame logarithmic signatures in T NT (An) and T NT (Sn) for
all n ≥ 5.

Proposition 3.1 For n ≥ 5 there are tame totally-non-transversal logarith-
mic signatures for all alternating groups An and symmetric groups Sn.

Proof. To prove the statement for the alternating groups An, n ≥ 5 we
define, for each 5 < i ≤ n, a sequence βi = [βi0, . . . , βi i−1] with βij ∈ Ai,
j = 0, . . . , i− 1, in the following way:

βij :=


id , if j = 0
(2, 3, . . . , i)j , if 0 < j < i− 1 and (2, 3, . . . , i)j ∈ Ai

(2, 3, . . . , i)j(2, 3) , if 0 < j < i− 1 and (2, 3, . . . , i)j 6∈ Ai

(2, 3)(1, i) , if j = i− 1.

It is easy to see that the elements in βi cannot form a complete coset of a
non-trivial subgroup of Ai: we have id ∈ βi, and hence βi had to be a group.
But as for k ∈ {0, 1} the sequence βi does not contain the product

(2, 3, . . . , i)(2, 3)k · (2, 3)(1, i) =

{
(1, 2, 4, 5, . . . , i) , if k = 0
(1, . . . , i) , if k = 1

this is impossible. Next, suppose that two (left) cosets βij1Ai−1 and βij2Ai−1

coincide for some 0 ≤ j1 < j2 < i. The case j1 = 0 cannot arise, as βij2

does not stabilize i for 0 < j2 ≤ i − 1. So for some 0 < j1 < j2 < i and
k1, k2 ∈ {0, 1} one of the following situations must arise:

• (2, 3)k1(2, 3, . . . , i)j2−j1(2, 3)k2 ∈ Ai−1 or
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• (2, 3, . . . , i)j1(2, 3)k1 · (2, 3)(1, i) ∈ Ai−1

But i is not stabilized by any of these permutations, so this is impossible.
Consequently, βi is a complete system of (left) coset representatives of Ai−1

in Ai and β := [βn, βn−1 . . . , β6, A5] is an exact (left) transversal logarithmic
signature for An. In particular, β is tame, and replacing (independently of n)
the 5!/2 = 60 elements in the last block with the logarithmic signature from
[8, Figure 5] (which is in T NT (A5)) yields a tame logarithmic signature in
T NT (An).

Now it is easy to construct from β a tame logarithmic signature in
T NT (Sn) for each n ≥ 5: the sequence [id, (1, 2)n(1, . . . , n)] is a complete
set of (left) coset representatives of Sn modulo An, and it is obviously not
a group. Thus, for each n ≥ 5, we obtain a tame logarithmic signature in
T NT (Sn) from the sequence

α :=
[
[id, (1, 2)n(1, . . . , n)], βn, βn−1, . . . , β6, A5

]
,

just by replacing A5 with the logarithmic signature from [8, Figure 5]. �

Remark 3.2 Note that for the symmetric groups Sn we could easily have
given a construction similar to the one for An, taking, for instance, blocks
αi = [αi0, . . . , αi i−1], αij ∈ Si, j = 0, . . . , i− 1, with

αij :=

{
(2, 3, . . . , i)j , if 0 ≤ j < i− 1
(1, i) , if j = i− 1

and building
α̃ := [αn, αn−1, . . . , α5, θ1, θ2, θ3],

where [θ1, θ2, θ3] is the logarithmic signature in T NT (S4) from Example 2.4.
In fact, this method would give us a tame logarithmic signature in T NT (Sn)
for each n ≥ 4.

Remark 3.3 Proposition 3.1 should be seen as an asymptotic result; i. e.,
what we actually give is a family Γ = {γn}n≥5 of totally-non-transversal log-
arithmic signatures for the family of groups {An}n≥5 resp. {Sn}n≥5. The
tameness of the logarithmic signatures is stated by the existence of an algo-
rithm A which on input of a permutation σ ∈ Am resp. σ ∈ Sm for some
m ≥ 5 outputs a factorization of σ with respect to γm in time poly(m).
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For cryptographic purposes, it is often desirable to use short logarithmic
signatures. In [5] the following lower bound for the length of a logarithmic
signature is given:

Remark 3.4 Let G be a finite permutation group and |G| =
∏t

j=1 p
aj

j the
prime factorization of the order of G (with p1, . . . , pt the different prime
factors of |G|). Then for any α ∈ Λ(G) we have `(α) ≥

∑t
j=1 ajpj.

A construction of minimal length logarithmic signatures (i. e., logarithmic
signatures for which the previous bound is sharp) for solvable and symmetric
groups is given in [5]. The sharpness of the bound for alternating groups and
for groups PSL2(q) is proven in [7].

Here we show that for n ≥ 5 constructing tame minimal length logarith-
mic signatures in T NT (An) and T NT (Sn) is also possible.

Proposition 3.5 For n ≥ 5 there are tame totally-non-transversal minimal
length logarithmic signatures for all alternating groups An and symmetric
groups Sn.

Proof. Let [θ1, θ2, θ3] be the following sequence:

θ1 := [(2, 3, 4), (1, 2, 4, 5, 3), (1, 2, 3, 5, 4), (1, 5)(2, 4), (2, 5, 3)],

θ2 := [id, (1, 2)(4, 5), (1, 3, 2, 4, 5), (1, 3)(2, 5)],

θ3 := [id, (2, 3)(4, 5), (1, 4, 2, 5, 3)].

With a computer algebra system it is easy to verify that θ is a (tame) min-
imal length logarithmic signature in T NT (A5). Now we proceed by induc-
tion on n, namely, given a tame minimal length logarithmic signature in
T NT (An−1), θ = [θ1, . . . , θs], we construct a tame minimal length logarith-
mic signature in T NT (An), for n > 5.

Suppose n = p1 · · · pk, with pi, i = 1, . . . , k, not necessarily distinct
primes. Consider the sequence of blocks [β1, . . . , βk] defined as follows:

β1 :=
[
id, β1,1, . . . , β1,p1−2, (n− 2, p1 − 1, n)

]
where β1,j := (j + 1, j, n) (1 ≤ j ≤ p1 − 2), and for i = 2, . . . , k we set

βi :=
[
id, βi,1, . . . , βi,pi−2, βi,pi−1

]
,
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where for j = 1, . . . , pi − 2

βi,j:=
(
(j+1)p1 · · · pi−1, jp1 · · · pi−1, n

)
◦
∏

1≤l<p1···pi−1

(
(j+1)p1 · · · pi−1, jp1 · · · pi−1 + l, l

)
and

βi,pi−1:=
(
n− 1, (pi − 1)p1 · · · pi−1, n

)
◦
∏

1≤l<p1···pi−1

(
p1 · · · pi, (pi−1)p1 · · · pi−1 + l, l

)
.

It is easy to check that α = [θ1, . . . , θs, β1, . . . , βk] is a logarithmic signature
for An. Just recall that An =

⋃n
i=1 An−1gi, where gi is any even permutation

such that gi(i) = n for i = 1, . . . , n, and observe that each product of the form
β1j1 · · · βkjk

with βiji
∈ βi defines an even permutation that maps a different

i ∈ {1, . . . , n} to n (cf. [5, proof of Proposition 3.2]). By construction α has
minimal length.
To verify it is also totally-non-transversal, we only have to check that the
new blocks β1, . . . , βk are not cosets of any proper subgroup of An. That is
straightforward to see, as each of the blocks contains the identity element
and is not a group:

- β1: as |β1| = p1 is a prime and (up to the identity) all elements in β1 are
3-cycles, β1 being a group would imply |β1| = 3 and β1,1 = (2, 1, n)—in
contradiction to n− 2 > 3.

- βi (i = 2, . . . , k): if pi 6= 2 or i < k, the permutation βi,1 maps p1 · · · pi−1

to n, and no permutation in βi maps n to p1 · · · pi−1. If both pi = 2
and i = k, we conclude that p1 · · · pi−1 ≥ 3 and βk,1(2) = p1 · · · pi−1 +1.
However, βk,1(p1 · · · pi−1+1) = 1, i. e., β2

k,1 6= id, and thus βk = [id, βk,1]
is not a group.

Moreover, analogously as in the proof of Proposition 3.1 we can reason that
α is tame. Thus, the statement holds for An.

To get a minimal length logarithmic signature in T NT (Sn), it suffices to
append the block [id, (1, 2)n(1, . . . , n)] to a tame minimal length logarithmic
signature in T NT (An). �

Of course, the alternating and symmetric groups are just examples, and
one can think of identifying tame totally-non-transversal signatures in other
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families of groups, too. We do not elaborate on this topic here, as in our
opinion already the above discussion gives ample evidence that being totally-
non-transversal is not really a suitable criterion for characterizing ‘wild-like’
logarithmic signatures. In the next section we explore the question of how
to recognize at least some ‘weak’ logarithmic signatures (and hence keys) in
MST1.

4 Recognizing weak keys

Let α = [α1, . . . , αs] ∈ Λ(G) for some finite permutation group G. Denoting
the type of α by r = (r1, . . . , rs), for 1 ≤ i ≤ j ≤ s we define Mα

i,j ∈ {0, 1} as
follows:

Mα
i,j :=

{
1, if αi ∪ · · · ∪ αj generates a subgroup of order ri · · · rj

0, otherwise.

For computing the values Mα
i,j we can use the method suggested in [2, Sec-

tion 3.5] for computing the values M [i, j] considered there. The key observa-
tion is that for small values of ri+· · ·+rj, the order of the subgroup generated
by αi ∪ · · · ∪ αj can be computed efficiently. In particular, if `(α) is not ‘too
large’ (having in mind that α is supposed to serve as part of the public key
in MST1, this assumption seems reasonable), we can determine the elements
Mα

i,j (1 ≤ i ≤ j ≤ s) efficiently. The use of these values is summarized in the
next somewhat technically looking remark (cf. [2, Section 3.5]):

Remark 4.1 Let α = [α1, . . . , αs] ∈ Λ(G) for some finite permutation group
G. Then we have α ∈ E(G) if and only if there is a sequence of pairs
(i1, j1), . . . , (is, js) ∈ {1, . . . , s}2 such that Mα

ik,jk
= 1 (1 ≤ k ≤ s), i1 = j1,

and for all 1 < k ≤ s we have (ik, jk) ∈ {(ik−1 − 1, jk−1), (ik−1, jk−1 + 1)}.
Proof. Let α ∈ E(G), and let

G = G0 > G1 > · · · > Gs = {id}

be the subgroup chain corresponding to α. Then some block αi1 of α is the
group Gs−1, and consequently we have Mα

i1,i1
= 1. If s = 1, then we are done.

Otherwise one of the following cases must hold:

• i1 < s and αi1+1 is a right-transversal of αi1 in the subgroup generated
by αi1 ∪ αi1+1 (Gs−2);
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• 1 < i1 and αi1−1 is a left-transversal of αi1 in the subgroup generated
by αi1−1 ∪ αi1 (Gs−2).

Setting (i2, j2) := (i1, i1 + 1) resp. (i2, j2) := (i1 − 1, i1) accordingly, we have
Ma

i2,j2
= 1 as required. If s = 2 then we are done, and for s > 2 the definition

of an exact transversal logarithmic signature guarantees that we can repeat
the above argument with the group αi1 = Gs−1 being replaced by the group
αi2 · αj2 = Gs−2: in the construction of α either αj2+1 must have served as
right-transversal of αi2 · αj2 or αi2−1 must have served as left-transversal of
αi2 · αj2 . Defining (i3, j3) acordingly and going on in this way, we finally
obtain a sequence (i1, j1), . . . , (is, js) as specified in the remark.

Now assume we are given a sequence (i1, j1), . . . , (is, js) as specified in the
remark. Then we know that αi1 is a group. Next, if (i2, j2) = (i1 − 1, i1),
then the residue classes gαi1 (g ∈ αi2) must be pairwise different: as α is a
logarithmic signature we have

αi1−1 · αi1 =
⊎

g∈αi1−1

gαi1 .

Moreover, from Mα
i1−1,i1

= 1 we know that αi1−1 ·αi1 is a group. Similarly, for
(i2, j2) = (i1, i1 +1), we identify αi1+1 as right-transversal of αi1 in the group
αi1 · αi1+1. In the same way, for s > 2 we next recognize αi3 or αj3 as left-
resp. right-transversal of αi2 · αj2 in αi3 · · ·αj3 : the disjointness of the cosets
follows from α being a logarithmic signature, and Mα

i3,j3
= 1 guarantees that

αi3 · · ·αj3—the union of the cosets—is a group. Continuing in this way with
(i4, j4), . . . , (is, js), we finally identify α as an element of E(G). �

If we write down the values Mα
i,j for an exact transversal logarithmic signature

α in matrix form, the above lemma guarantees the existence of a continuous
‘staircase of 1’s’ starting at the diagonal element Mα

i1,j1
and ending in the

upper right corner Mα
is,js

= Mα
s,1:

Example 4.2 Using the left-transversal α1 := [id, (1, 5), (2, 5), (3, 5), (4, 5)]
of S4 in S5, the right-transversal α4 := [id, (1, 2, 3, 4)] of A4 in S4, and the
left-transversal α2 := [id, (1, 2)(3, 4), (1, 3, 4), (2, 3, 4)] of A3 in A4, we obtain
an exact transversal logarithmic signature α := [α1, α2, α3, α4] of S5 where the
third block α3 := A3 is a group. The following table depicts the corresponding
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values of Mα
i,j, and the ‘staircase of 1’s’ is clearly visible:

i�j 1 2 3 4

1 0 0 0 1
2 0 1 1
3 1 0
4 0

On the other hand, if for some logarithmic signature α we have such a ‘stair-
case from a diagonal element to the upper right corner’, then we know that
α is exact transversal. So assume that we have computed the values Mα

i,j

of some totally-non-transversal logarithmic signature α in l- or r-canonical
form. Then we know that all ‘diagonal entries’ Mα

i,i must vanish, but nev-
ertheless large parts of the ‘staircase’ can be present already. In fact, by
looking at the values Mα

i,j in more detail we may find some blocks that can
be fused to close the gaps in the ‘staircase’:

Example 4.3 The following logarithmic signature α = [α1, . . . , α7] can eas-
ily be verified to be in T NT (S7):

α1 := [id, (1, 7), (2, 7), (3, 7), (4, 7), (5, 7), (6, 7)],

α2 := [id, (1, 3)(2, 6), (1, 5)(4, 6)],

α3 := [id, (1, 2, 6)],

α4 := [id, (1, 5), (2, 5), (3, 5), (4, 5)],

α5 := [id, (1, 3, 4, 2)],

α6 := [id, (1, 2), (1, 2, 4), (1, 4)],

α7 := [id, (1, 3), (2, 3)].

Using a computer algebra system, the corresponding values Mα
i,j can be de-

termined easily:

i�j 1 2 3 4 5 6 7

1 0 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 0
4 0 0 0 1
5 0 0 1
6 0 0
7 0

14



As Mα
2,7 = 1, we can ‘eliminate’ the gap Mα

3,7 = 0 by fusing the blocks α2 and
α3 to a single block α̃2 := [α2iα3j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 2] of size |α2| · |α3| = 6.
Analogously, to get rid of the values Mα

6,7 = 0 and Mα
7,7 = 0, we can fuse the

blocks α5, α6, and α7 to

α̃4 := [α5iα6jα7k : 1 ≤ i ≤ 2, 1 ≤ j ≤ 4, 1 ≤ k ≤ 3]

of size 24. Permuting the elements in α̃2 and α̃4 accordingly, the resulting
signature α̃ := [α̃1, . . . , α̃4] (where α̃1 := α1, α̃3 := α4) is both equivalent to
α and exact transversal. The corresponding values M α̃

i,j are depicted below:

i�j 1 2 3 4

1 0 0 0 1
2 0 0 1
3 0 1
4 1

To prevent an attacker from transforming a totally-non-transversal loga-
rithmic signature α into an equivalent exact transversal logarithmic signature
by just fusing some (small) blocks, one has to ensure ‘that the gaps in the
staircase are large enough’. We do not try to give a criterion for identifying
‘truly wild’ logarithmic signatures here, but the above discussion illustrates
that the requirement of being totally-non-transversal is clearly not sufficient.

5 Permutably transversal signatures

In [2] C. Cusack explores the possibility of using sandwiches of permutably
transversal logarithmic signatures as keys for MST1. Such a logarithmic
signature η is constructed as follows:

1. Obtain from a subgroup chain

G = G0 > G1 > · · · > Gs = {id}, (2)

an exact transversal logarithmic signature α = [α1, . . . , αs] ∈ E(G).

2. Transform α into a transversal logarithmic signature β = [β1, . . . , βs]
for G through sandwiching α with some t := (t0, . . . , ts) ∈ Gs (where
t0 = ts = id).
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3. Transform β into another logarithmic signature γ ∈ Λ(G) by permuting
the blocks of β with some σ ∈ Ss : γ := [βσ−1(1), . . . , βσ−1(s)].

4. Finally, by sandwiching γ with some u := (u0, . . . , us) ∈ Gs (where
u0 = us = id) derive a logarithmic signature η = [η1, . . . , ηs] for G.

Here we give some evidence that such logarithmic signatures provide, in prin-
ciple, very few security guarantees. We restrict our attention to finite abelian
groups, as non-abelian groups are already excluded in Cusack’s proposal (see
[2, Section 3.7]). Thus, the above constructed logarithmic signature η can be
written in the form

η = [g1ασ−1(1), . . . , gsασ−1(s)],

where gi ∈ G, (1 ≤ i ≤ s) such that g1 · · · gs = 1.
Cusack does not make concrete suggestions on how to choose the abelian

group; he only points out the possibility of using such a logarithmic signature
η as a public key corresponding to the private key α, and thus letting σ and
(g1, . . . , g1) be the trapdoor information.

However, by construction some block αi1 of α is equal to the subgroup
Gs−1 of G. Consequently, η contains the block

ησ(i1) = gσ(i1)αi1

and we can try to recover αi1 by identifying an index 1 ≤ j1 ≤ s such that
ηj1 · η−1

j10 is a group (where as usual η−1
j10 denotes the first element of ηj1).

Having found the correct index j1 = σ(i1), we can continue in this manner
to identify—up to a multiple in Gs−2—the transversal αi2 of Gs−1 in Gs−2

used in the construction of α: the logarithmic signature η contains the block

ησ(i2) = gσ(i2)αi2 .

So after multiplying ησ(i2) with η−1
σ(i2)0 we obtain a transversal of Gs−1 in

Gs−2 that—possibly up to a multiple in Gs−2—coincides with αi2 . Hence, to
recover αi2 (up to a multiple in Gs−2) we look for an index 1 ≤ j2 ≤ s such
that ηj2 · η−1

j20 is a complete system of coset representatives of Gs−1 = ηj1 · η−1
j10

in the group generated by Gs−1 and ηj2 · η−1
j20. Equivalently, we can check

whether the group generated by ηj1 · η−1
j10 and ηj2 · η−1

j20 is of size |ηj1| · |ηj2 |.
Having identified the correct index j2 = σ(i2), we know in particular

the group Gs−2 = ηj1η
−1
j10 · ηj2η

−1
j20, and in case of s > 2 we can iterate the
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above procedure: next we try to recover the index i3 of the transversal αi3

of Gs−2 in Gs−3 used in the construction of α. For this we check for which
1 ≤ j3 ≤ s the group generated by ηj1 · η−1

j10, η−1
j2
· η−1

j20, and ηj3 · η−1
j30 is of size

|ηj1| · |ηj2| · |ηj3|. Continuing in this way, we should finally obtain the complete
subgroup chain (2). Moreover, each recovered transversal α′

ik
:= ησ(ik) ·η−1

σ(ik)0

(1 ≤ k ≤ s) of Gs−k+1 in Gs−k is equal to the ‘corresponding original one’
αik up to a multiple in Gs−k.

For factoring a given g ∈ G with respect to η we can now proceed as
follows: start by factoring g ·

∏s
k=1 η−1

k0 with respect to the exact transversal
logarithmic signature α′ := [α′

i1
, . . . , α′

is ] for G to obtain an expression of the
form

g ·
s∏

k=1

η−1
k0 = α′

i1l1
· · ·α′

isls (with α′
iklk

∈ α′
ik

).

Then the factorization of g with respect to η can be obtained by multiplying
each α′

iklk
with the corresponding ησ(ik)0 (1 ≤ k ≤ s):

g =
s∏

k=1

(
ηjk0 · α′

iklk

)︸ ︷︷ ︸
∈ηjk

(where jk = σ(ik)).

Clearly, it could happen that we are already mistaken in our choice of j1 in
the first step, namely, that the logarithmic signature α has several blocks
which are groups, and we pick one different from Gs−1. In the same way we
may commit errors in the subsequent steps, and in some cases we may even
end up with a subgroup chain different from (2).

A problem arises if at some step the above approach yields a subgroup
chain that cannot be continued by means of one of the remaining blocks
of η, and we must replace previously guessed blocks, say by a backtracking
approach. If there are too many such backtracking steps, then the attack
can become infeasible. However, in our experiments with groups of order
≈ 48! (the group size proposed in [9]) the above simple approach turned out
to work quite satisfactorily: lacking a concrete suggestion, for our experi-
ments we used several logarithmic signatures for the groups (Z/10Z)61 and
Z/2Z × · · · × Z/48Z. Here deriving a corresponding exact transversal loga-
rithmic signature with the above attack did not pose any difficulties. On the
other hand, it is certainly possible that for some carefully chosen groups and
logarithmic signatures our attack fails to succeed. Thus, our results do not
imply that permutably transversal logarithmic signatures cannot be used at
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all for deriving keys in MST1, but as it stands Cusack’s construction does
not guarantee acceptable security.

6 Conclusions

The above discussion illustrates various obstacles that arise when one at-
tempts to derive practical instances of MST1. As we already pointed out
in [5], we believe that the appropriate (but unfortunately non-constructive)
criterion for choosing logarithmic signatures as keys is that they are not
only ‘non-tame’, but provide factorizations which are almost always hard
to compute. Thus, we believe that the definition of wild adopted from [8]
(Definition 2.2) should be modified in that sense.

In [9] the authors assume that totally-non-transversal logarithmic sig-
natures provide hard factorizations. We give strong evidence against that
assumption by supplying several examples of tame logarithmic signatures
that are totally-non-transversal, including some of minimal length. Also, we
demonstrate that several (sandwiches of) permutably transversal signatures
can be inverted efficiently. Thus, we are rather pessimistic with respect to
the existence of a reliable key generation procedure for MST1 based on the
above mentioned types of logarithmic signatures.
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